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PROCEEDINGS PRESENTATION 

The 8
th

 European Summer University on the History and Epistemology in Mathematics 

Education (ESU-8) took place at Oslo Metropolitan University, Pilestredet Campus in 

Oslo, Norway from 20 to 24 July 2018. This was the eighth meeting of this kind since July 

1993, when, on the initiative of the French IREMs
1
, the first European Summer University 

on the History and Epistemology in Mathematics Education took place in Montpellier, 

France. The next ESUs took place in Braga (Portugal, 1996; conjointly with the HPM
2
 

Satellite Meeting of ICME 8), Louvain-la-Neuve and Leuven (Belgium, 1999), Uppsala 

(Sweden, 2004; conjointly with the HPM Satellite meeting of ICME 10), Prague (Czech 

Republic, 2007), Vienna (Austria, 2010) and Copenhagen (Denmark, 2014).  

Since its original conception and realization, ESU has been developed and established 

into one of the major activities of the HPM Group. From 2010 onwards, it is organized 

every four years, so that every two years at least one major international meeting of the 

HPM Group takes place; namely, ESU and the HPM Satellite Meeting of ICME. 

The purpose of ESU is not only to stress the multifarious role that history and 

epistemology can play in the teaching and learning of mathematics, in the sense of a 

technical tool for instruction, but also to reveal that mathematics should be conceived as a 

living science, with a long history and a vivid present. And in this way to become more 

deeply aware of what mathematics as a discipline is and how it grows; more specifically, 

that mathematics: 

 has undergone changes over time, underscored by shifting views of what mathematics 

is and how it should be taught and learnt; 

 has been in constant dialogue with other scientific disciplines, technology, philosophy 

and the arts; 

 has constituted a constant force for stimulating and supporting scientific, technical, 

artistic and social developments; 

 is the result of contributions from many different cultures. 

In this connection, ESU has a threefold aim as an international meeting: (i) to provide a 

school for working on a historical, epistemological and cultural approach to mathematics 

and its teaching, with emphasis on actual implementation; (ii) to give the opportunity to 

mathematics teachers, educators and researchers to share their teaching ideas and 

classroom experiences related to a historical perspective in teaching; and (iii) to motivate 

further collaboration along these lines, among teachers of mathematics and researchers on 

history, epistemology and education of mathematics in Europe and beyond.  

In this sense, ESU is more a collection of intensive courses than a conference for 

researchers. It is a place where teachers and researchers meet and work together and where 

beginners, more experienced researchers and teachers present their teaching experiences to 

the benefit of the participants from whom they get constructive feedback. ESU refers to all 

levels of education – from primary school, to tertiary education and including in-service 

teachers’ training – with focus preferably on work and conclusions based on actual 

classroom experiments and/or produced teaching and learning materials.  

                                                 
1
 Institut de Recherche sur l’Enseignement des Mathématiques. 

2
 An abbreviation for the International Study Group on the Relations between the History and Pedagogy of 

Mathematics, affiliated to the International Commission on Mathematical Instruction (ICMI). 
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Publishing the Proceedings of the ESUs has always been a major task, since in all cases 

they have become standard references in this domain
3
. The present volume collects papers 

or abstracts stemming from all types of activities that were accepted and included in the 

scientific programme of ESU 8, and is divided into six sections corresponding to each of 

the six main themes of ESU 8; namely: 

Theme 1: Theoretical and/or conceptual frameworks for integrating history and 

epistemology of mathematics in mathematics education;  

Theme 2: History and epistemology in students and teachers mathematics education: 

Curricula, courses, textbooks, and didactical material of all kinds - their design, 

implementation and evaluation; 

Theme 3: Original historical sources in teaching and learning of and about mathematics;  

Theme 4: Mathematics and its relation to science, technology, and the arts: Historical 

issues and socio-cultural aspects in relation to interdisciplinary teaching and learning; 

Theme 5: Topics in the history of mathematics education; 

Theme 6: History of mathematics in the Nordic countries. 

For each main theme, one plenary lecture was delivered and its text appears in the 

corresponding section. The same holds for the panel discussion, which was also delivered 

in a plenary session. There are also papers coming from workshops, which are a type of 

activity of special interest, making focus on studying a specific subject and having a 

follow-up discussion. The role of the workshop organizer is to prepare, present and 

distribute the historical/epistemological (2-hour workshops) or pedagogical/didactical 

material that integrates historical elements (1.5-hour workshops), which motivates and 

orients the exchange of ideas and the discussion among the participants, after they have 

read and worked on the basis of this material. Finally, there are texts and abstracts based 

on 30-minute oral presentations and abstracts of 10-minute short oral communications. 

Each paper or abstract appears under the main theme to which the corresponding activity 

during ESU-8 was mostly (though not exclusively) related.  

Each paper for a workshop or an oral presentation has been reviewed by one or two 

members of the Scientific Program Committee at the usual international standards. In 

almost all cases authors were asked to amend their papers. Papers that have been finally 

accepted are included in the present volume. In all other cases in which either the text was 

not accepted, or no full text has been submitted, only an abstract of the corresponding 

contribution appears. In total there are 51 papers and 28 abstracts corresponding to the 81
4
 

activities accepted and included in the scientific program of ESU-8
5
, authored by 112 

contributors coming from 25 countries worldwide. Moreover, ESU-8 was attended by 113 

registered participants from 27 countries, including secondary school teachers, university 

teachers and graduate students, historians of mathematics, and mathematicians, all 

interested in the relations between mathematics, its history and epistemology, its teaching, 

and its role today and in the past. It is important to note that many of them participated for 

                                                 
3
 For detailed reference see the HPM website  http://www.clab.edc.uoc.gr/hpm/about HPM  

4
 There were two cases in which the authors contributed to the program with two activities, but merged their 

reports into one final paper in each case. 
5
 For various reasons another 9 activities that had been accepted were withdrawn by their authors before 

ESU-8 took place. 

http://www.clab.edc.uoc.gr/hpm/about%20HPM
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the first time in a meeting organized in the context of the HPM Group
6
. We thank all of 

them. Special thanks go to those 63 members of the International Scientific Program 

Committee, (see pp. 875-877), who willingly reviewed the submitted papers, thus 

contributing essentially to the scientific quality of this volume. We are particularly 

grateful to all members of the Local Organizing Committee (see p. 877), who succeeded 

to make ESU-8 an insightful and interesting scientific event that took place in a warm and 

friendly atmosphere. We warmly thank the Oslo Metropolitan University for hosting and 

financially supporting ESU-8, and its personnel for their help and kindness.  

 

Evelyne Barbin, Université de Nantes, France 

Uffe Thomas Jankvist, Aarhus University, Denmark 

Tinne Hoff Kjeldsen, University of Copenhagen, Denmark 

Bjørn Smestad, Oslo Metropolitan University, Norway 

Constantinos Tzanakis, University of Crete, Greece 

 

                                                 
6
 A list of the participants, as well as an author index is found at the end of the Proceedings (pp. 879-885). 
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HERMENEUTICS, AND THE QUESTION OF “HOW IS 

SCIENCE POSSIBLE?” 

 
Hans Niels JAHNKE 

Faculty of Mathematics, University of Duisburg-Essen, Essen, Germany 

njahnke@uni-due.de 

 

ABSTRACT 

The present paper discusses the educational potential of reading historical sources in the mathematics 

classroom under the viewpoint of hermeneutics. In a first step, key concepts of Gadamerian hermeneutics 

will be discussed, ‘application’, ‘hermeneutic circle’ and ‘prejudice’. Taken in their entirety they 

characterize what Gadamer calls the ‘historicity of understanding’ which reflects the intellectual situatedness 

of any reader and provides a foundation to the idea that any text allows a multitude of possible 

interpretations. In a second step, three readers of ancient Greek texts on astronomy are studied in order to 

exemplify the functioning of Gadamer’s hermeneutic conception. The readers are students (grade 9), the 

pedagogue Martin Wagenschein (1896 – 1988) and the philosopher Karl Raimund Popper (1902 - 1994). 

We show their different intellectual backgrounds, different questions and problems they were interested in 

and the quite different ways of reading the sources. Nevertheless, there exists an important point of 

convergence. They all understood the epistemological relevance of their ancient sources culminating in the 

question of “How is science possible?”. Indeed, this question is and should be a central theme of education. 

1  Introduction 

The present paper discusses the educational potential of reading historical sources in the 

mathematics classroom under the viewpoint of hermeneutics. In recent times, reading 

historical sources has become a fruitful avenue of theoretical and practical educational 

activity on all levels of the teaching of mathematics. Some references might highlight the 

scope and variety of work (Arcavi & Isoda 2007, Kjeldsen & Blomhøj 2012, Barnett et al 

2013, Jahnke 2014, Chorlay 2016). A nearly overview on these activities is given by 

Jahnke et al (1990), a more recent survey can be found in Clark et al(2016) 

Beyond that, there is in many countries a trend towards a stronger emphasis on 

activities of modelling. Frequently, this requires tasks with extensive texts for detailing 

circumstances and conditions of the modelling problem in question. Therefore, 

interpreting and writing texts enters the mathematics classroom from this side, too. In 

sum, language, reading and writing will take up a more extended space in today’s teaching 

of mathematics. 

We approach our problem by looking in more detail on the process of reading and 

interpreting a text and ask what hermeneutics, that is the theory and methodology of 

interpreting texts, has to contribute to this problem. We shall see that hermeneutics will 

allow a twofold perspective. There is a dynamical perspective insofar reading and 

interpreting changes the text and the reader. After the very act of reading, the text is not 

the same as before, and also the reader has changed. Thus, hermeneutics makes 

understandable the necessary variety of possible interpretations which is not an outcome 

of vague thinking but of a process involving rigour and imagination. 

The argument of this paper will be unfolded in four steps. First, some key concepts of 

Gadamerian hermeneutics will be discussed. Afterwards, we study three (types of) readers 

illuminating Gadamer’s concept of the ‘historicity of understanding’ and leading to the 

3



 

theme of the variety of possible interpretations. We study students (grade 9) reading an 

ancient source on astronomy, a pedagogue and a prominent philosopher. This part of the 

paper has some relations to Fried (2018) though its conceptual frame is different. In the 

end we shall return to the educational potential of reading sources in the mathematics 

classroom. 

2  Gadamer’s hermeneutics 

Modern hermeneutics originated from methods used for interpreting theological and legal 

texts. It was only in the 17th and 18th centuries that some authors formed the idea of a 

general theory and method of interpretation independent of the subject to which it was 

applied. In Germany, probably for the first time, the Latin term ‘hermeneutica’ in this 

general sense can be found with Johann Conrad Dannhauer (1603–66) whereas Johann 

Martin Chladenius (1710–59) und Georg Friedrich Meier (1718–77) wrote influential 

books on this topic. (Joisten 2010, ch. 6). It was Chladenius who introduced the concept of 

‘Sehe-Punkt’ as translation of the Latin ‘scopus’ (engl. ‘point of view’) which aimed at the 

idea of different interpretations depending on the ‘Sehe-Punkt’ of the reader. (Joisten 

2010, 88ff, Gadamer 1990, 186). Modern hermeneutics then as an established field of 

study emerged in the beginning of the 19th century with the romantic movement and 

historicism in the work of theologian F. Schleiermacher (1768-1834) (cf. Schleiermacher 

1977) and others. 

Gadamer’s (1900 – 2002) ‘philosophical hermeneutics’ can be considered as an attempt 

to mediate between the ‘hermeneutical philosophy’ of young Heidegger (1889 – 1976) 

and traditional hermeneutics of the 19th century. The relation between these two points of 

reference still seems to be a philosophically unsolved problem (Scholz 2011, 444). Thus, 

it is not without difficulties to refer to Gadamer’s Truth and Method (Gadamer 1990, 

originally published in 1960, English translation Gadamer 2004)
1
 as a theoretical frame 

for analysing processes of understanding texts. The present paper tries to circumvent 

systematic philosophical problems by pragmatically limiting and concentrating the 

discussion on three key concepts of Gadamer’s hermeneutics, namely ‘application’, 

‘hermeneutic circle’, and ‘prejudice’. These concepts are introduced and elaborated in the 

middle part of his book in chapter II ‘Elements of a Theory of Hermeneutic Experience’ 

(TaM, 203ff) (‘Grundzüge einer Theorie der hermeneutischen Erfahrung’ (WuM, 270ff)).  

Application. With religious and legal texts the problem of arriving at an unambiguous and 

‘correct’ interpretation receives a special urgency. Laws should be binding rules of 

behaviour within a community or a state which are valid for everybody. The same is true 

for religious texts. Obviously, a community can only function when laws are applied to 

any concrete case in the same way. But what could ‘the same way’ mean? Already in the 

14th century, Italian jurist Bartolus distinguished between three possible types of 

interpretation, a ‘declarative’ one explaining only the meaning of the words, a ‘restrictive’ 

one limiting the set of cases to which the law was to be applied, and an ‘extensive’ 

interpretation which widens the number of cases. (Schröder 2011, 206). In principle, when 

the meaning of the words did not suffice to apply a law jurists had to take into account the 

‘sense’ of the law. In such a situation, jurists would appeal to ‘reason’ or to general 

                                                           
1
We refer to Gadamer (1990) as: WuM, to Gadamer (2004) as: TaM. We shall quote only the English 

translation TaM to which we add the page numbers of the German original WuM. 
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principles of jurisdiction and frequently arrived at rather extensive interpretations. But 

from the times of renaissance up to the 19th century there happened a shift of argument 

and jurists would point more and more to the will of the legislator and the special 

circumstances under which the law was issued. This shift contributed considerably to a 

growing awareness that understanding a text must take into account its author and his 

times and, thus, has a necessary historical dimension. This development substantially 

furthered the emergence of general hermeneutics (cf. Schröder 2011). 

Gadamer is well aware of this development, but in his considerations on ‘application’ 

he stresses another point of view. He considers ‘application’ "just as integral a part of the 

hermeneutical process as are understanding and interpretation” (TaM, 318; WuM, 313). 

As he explains, the decisive point with ‘application’ is 

“that understanding always involves something like applying the text to be 

understood to the interpreter’s present situation. Thus we are forced to go one step 

beyond romantic hermeneutics, as it were, by regarding not only understanding and 

interpretation, but also application as comprising one unified process” (loc.cit.).  

The insight that understanding a text necessarily involves considering the historical 

situation and the author as a historical person was already reached in 19th century 

romantic hermeneutics and historicism. To Gadamer the new element was the application 

of a text “to the interpreter’s present situation”. This point of view he exemplifies with 

several cases. An interpreter in a negotiation should not simply repeat what one of the 

partners says in the discussion he is translating, but he should say it in a way that seems 

most appropriate to him, since he alone knows both languages (loc.cit.). 

In a similar vein a reproduction of a historical piece of music is more than a mere 

reproduction. Rather, the player has to take into account “that the stylistic values of one’s 

own day… set limits to the demand for a stylistically correct reproduction” (TaM, 320; 

WuM, 315). 

Returning to the relation of theological and legal hermeneutics to general hermeneutics he 

says: 

“The fact that philological, legal, and theological hermeneutics originally belonged 

closely together depended on recognizing application as an integral element of all 

understanding. In both legal and theological hermeneutics there is an essential 

tension between the fixed text—the law or the gospel—on the one hand and, on the 

other, the sense arrived at by applying it at the concrete moment of interpretation, 

either in judgment or in preaching. A law does not exist in order to be understood 

historically, but to be concretized in its legal validity by being interpreted. Similarly, 

the gospel does not exist in order to be understood as a merely historical document, 

but to be taken in such a way that it exercises its saving effect. This implies that the 

text, whether law or gospel, if it is to be understood properly—i.e., according to the 

claim it makes—must be understood at every moment, in every concrete situation, in 

a new and different way. Understanding here is always application” (loc.cit., 318/9; 

WuM, 314) 

Thus, the core of application is the fact that a text must be understood “at every moment, 

in every concrete situation, in a new and different way.” Whether we read a love poem or 

a historical document on an administrative act we inevitably relate it to our situation, our 
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ideas, concepts, emotions, phantasies, former experiences, former studies etc. That is, we 

apply the text. And by applying the text we add to it connotations and dimensions of 

meaning the author necessarily could not have thought of. 

Hermeneutic Circle. In Jahnke (2014, 84pp) and Fried et al (2016, 216ff) the reader will 

find a short account of the hermeneutic circle applied to reading sources in the 

mathematics classroom. Hermeneutics distinguishes systematically between the author 

and the reader of a text and their different perspectives. This causes an experience of 

dépaysement (Barbin 1994). Gadamer speaks of the ‘temporal distance’ (‘Zeitenabstand’, 

TaM, 303; WuM, 296) and of different ‘horizons’. Understanding amounts in his 

terminology to a ‘fusion of horizons’ (TaM, 310ff) (‘Horizontverschmelzung’, WuM, 

305ff). In hermeneutics the process by which the fusion of horizons occurs is described by 

a spiral, the so-called ‘hermeneutic circle’ which points to the necessity of already 

possessing an interpretation of a text in order to gain a new interpretation. A reader starts 

with a certain expectation what the text might be about. Then s*he reads the text and 

realizes that some aspects of the expectation do not agree with what is said in the source. 

Thus, s*he has to modify the expectation, read again, modify and so on until s*heis 

satisfied with the result. Here is one of Gadamer’s descriptions of the spiral: 

“We know this from learning ancient languages. We learn that we must ‘construe’ a 

sentence before we attempt to understand the linguistic meaning of the individual 

parts of the sentence. But the process of construal is itself already governed by an 

expectation of meaning that follows from the context of what has gone before. It is 

of course necessary for this expectation to be adjusted if the text calls for it. This 

means, then, that the expectation changes and that the text unifies its meaning 

around another expectation. Thus the movement of understanding is constantly from 

the whole to the part and back to the whole. Our task is to expand the unity of the 

understood meaning centrifugally. The harmony of all the details with the whole is 

the criterion of correct understanding. The failure to achieve this harmony means 

that understanding has failed” (TaM, 303/4; WuM, 296) 

We single out from this quotation two aspects.  

(1) The hermeneutic circle is a process of adaption. Successful interpretation means 

that the harmony between the expectations of the reader and the text is step by step 

enhanced. This might be visualized by a diagram. 

T1P2 T2 T3P1PP3

retuning

expectation of meaning

 

Figure 2.1: Hermeneutic Circle (cf. Glaubitz 2011, 61) 

(2) Gadamer describes the process of adaptation as a dialectical oscillation between 

whole and part. This might refer to the interplay between the meaning of a single word 

and the meaning of a phrase in which a word occurs. In further steps the reader has to take 
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into account the meaning of, say, a paragraph in its interplay with the whole text in front 

of her/him. In this way ever larger units of text have to be taken into account, say, a 

collection of texts up to reconstructing, for example, the philosophical thinking of Greek 

antiquity. The dialectic of part and whole is a principle problem of understanding, 

experienced when reading a piece of literature as well as of mathematics.  

Seen from the dialectic of part and whole it is teachable to consider a subtle difficulty 

in the English translation above. The English speaks of a ‘change’ of expectation whereas 

the German original uses the word ‘umstimmen’ instead of ‘change’. The literal 

translation of ‘umstimmen’ is ‘retune’, a musical metaphor which expresses much better 

the intended holistic meaning. 

In regard to the hermeneutic circle I would like to point at the fact that it is quite 

analogous to the spiral of modelling and can be considered as a process in which a 

hypothesis is put up, tested against the (empirical) data, modified, tested again and so on 

until the reader arrives at a satisfactory result. With modelling, too, it is an important point 

of view that it aims not only at a better and better representation of the problem in 

question, but that it is also dependent of the situation and the needs of the creator of the 

model. 

Considered in this perspective hermeneutics can be related to the “hypothetico-

deductive method”. This is basically the argument by Foellesdal (1979) who elaborates it 

by interpreting a piece of literature (Ibsen’s Peer Gynt). Gadamer, too, in his late years 

agreed that there is a certain reconciliation of his philosophical hermeneutics and certain 

directions of thinking in modern analytic philosophy (Gadamer 1976, 1070). 

The conception of the hermeneutic circle was already well known in the 19th. But 

people at that time thought that in the hermeneutic spiral the reader approaches better and 

better the ‘real meaning’ of a text by putting oneself better and better into the historical 

situation of its author. Though ‘real meaning’ might only be a regulative ideal which can 

never be reached, it was the aim of interpretation in the eyes of Schleiermacher and 

Dilthey. Gadamer’s conception is radically different. He thinks that interpretation and 

understanding necessarily involve also an adaptation of a text to the thinking of its reader 

such that a new meaning emerges which the original author never would have thought of. 

This is a motive we have already seen in the concept of ‘application’. It will become fully 

clear with the concept of ‘prejudice’. 

Prejudice. With the concept of prejudice Gadamer takes up an essential element of the 

philosophy of his teacher Heidegger. There is a whole word field of interrelated concepts 

stemming from Heidegger and being used by Gadamer. They are: Vor-Urteil = pre-

judgement, Vor-Meinung = fore-meaning, Vor-Entwurf = fore-projection, Vor-Sicht = 

fore-sight, Vor-Griff = fore-conception. The basic message enshrined in these concepts is 

“to elevate the historicity of understanding” to the status of a hermeneutic principle (TaM, 

284; WuM, 270). Historicity here does not mean to consider a text as an historical 

document, but the fact that the very act of understanding itself happens at a certain 

moment in time and is an act in history. Any act of understanding starts with a certain 

“fore-conception” or “pre-judgement” (the P1 in fig. 1).  

“A person who is trying to understand a text is always projecting. He projects a 

meaning for the text as a whole as soon as some initial meaning emerges in the text. 
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Again, the initial meaning emerges only because he is reading the text with 

particular expectations in regard to a certain meaning. Working out this fore-

projection, which is constantly revised in terms of what emerges as he penetrates 

into the meaning, is understanding what is there.” (TaM, 285/6; WuM, 271) 

Thus, only “the recognition that all understanding inevitably involves some prejudice 

gives the hermeneutical problem its real thrust” (TaM, 286; WuM, 274). Any reader of a 

text has his personal intellectual history which itself is embedded in the culture of his 

time. This determines the perspective under which s*he approaches a text. Prejudices are 

not an obstacle, but a condition of understanding. However, prejudices become a problem 

when we remain unconscious of them. “It is the tyranny of hidden prejudices that makes 

us deaf to what speaks to us in tradition” (TaM, 286; WuM, 274). 

In order to become conscious of our prejudices we have to uncover them as much as 

possible.  

“Indeed, what characterizes the arbitrariness of inappropriate fore-meanings if not 

that they come to nothing in being worked out? But understanding realizes its full 

potential only when the fore-meanings that it begins with are not arbitrary. Thus it is 

quite right for the interpreter not to approach the text directly, relying solely on the 

fore-meaning already available to him, but rather explicitly to examine the 

legitimacy—i.e., the origin and validity—of the fore-meanings dwelling within him” 

(TaM, 284; WuM, 272). 

Hermeneutic understanding requires from the interpreter “to be open to the meaning of the 

other person or text” (TaM, 285; WuM, 273) and to be permanently aware of the alterity 

and temporal distance of the text (or the other person). 

In a separate chapter Gadamer discusses “The discrediting of prejudice by the 

Enlightenment” (TaM, 288ff; WuM, 276ff) and by historicism and maintains that being 

conscious of our prejudices neither “involves … ‘neutrality’ … nor the extinction of one’s 

self, but the foregrounding and appropriation of one’s own fore-meanings and prejudices” 

(TaM, 286; WuM, 274). The term “self-extinction” had been used by historian Ranke to 

designate the neutrality of a researcher in doing history (TaM, 229; WuM, 215). Gadamer 

uses a whole chapter to uncover the hidden prejudices in the views of historians Ranke 

and Droysen in order to show the illusionary character of the idea of a ‘neutral’ observer 

(TaM, 215-233; WuM, 177-221). 

On the basis of the crucial role of fore-meaning and prejudice Gadamer proceeds to a 

rehabilitation of authority and tradition (TaM, 292ff; WuM, 305ff) and the principle of 

‘history of effect’ (‘Wirkungsgeschichte’) (TaM, 292ff; WuM, 305ff). In this way, he 

thought to have established a new foundation for the human sciences different from 

Dilthey’s. We are embedded in tradition, and tradition suggests concepts and questions we 

pose in regard to the texts we study.  

To sum up, according to Gadamer ‘application’ and ‘prejudice’ are inherent 

components of every act of interpretation and responsible for the ‘historicity of 

understanding’ and explain the necessity and legitimacy of different understandings of a 

text. Interpreting a text is not adequately described as a reconstruction of the original 

8



 

Figure 3.1: The 

source 

‘true’ meaning, but a construction of a new meaning the original author of the text would 

not have thought of.  

Gadamer is vague in delimiting ‘application’ from ‘prejudice’. When a reader thinks of 

an example for a statement in a text, does s*he apply the text or embed the text in her/his 

intellectual background and, thus, refer to her/his prejudices? A first approximation might 

be provided by looking at the human sciences as a whole. On the one hand there is the 

internal functioning of science, and a scientist studying a text would first ask for the state 

of research and embed her/his research problem into this context. On the other hand, there 

is the ‘application’ of human sciences which consists above all in contributing to societal 

debates on, say, ethics, aesthetics, politics and culture in general. 

Résumé. (a) In a principle way Gadamer’s conception of hermeneutics leads to an 

unlimited variety of interpretations of a text. This is a necessary consequence of his 

concepts of application and prejudice and the resulting historicity of understanding 

which reflect the intellectual situatedness of the reader. Since in many cases it is difficult 

to distinguish between application and prejudice we shall henceforth only talk of the 

historicity of understanding.  

(b) The variety of interpretations does not mean that interpretations are arbitrary. On the 

contrary, implicit in Gadamer’s approach is a high demand on the internal quality of 

argument. We mention three points. (1) The spiral process of the ‘hermeneutic circle’ is 

in principle infinite and requires ever subtler and precise arguments for reaching harmony 

between part and whole, and may require the consideration of ever larger collections of 

texts. Gadamer does not give “rules” of interpretation, and it is a matter of judgement 

whether harmony is reached and an interpretation is successful. (2) Any interpreter is 

subject to the requirement that he has to get conscious of his prejudices and to make them 

explicit. (3) Any interpretation has to respect the temporal distance and the ‘alterity’ of the 

text. In a principle way, the distance between the text and an interpretation cannot be 

reconciled. Out of these insights we conclude that in a very high amount interpretation 

requires what a mathematician should have learnt, namely rigour. 

In the following we study three different types of readers in order to explore the relevance 

of Gadamer’s concept of ‘historicity of understanding’, and begin with schoolchildren. 

3  Students (grade 9) as Readers 

The following analysis refers to a teaching experiment described in Glaubitz & Jahnke 

(2003a). The experiment was conducted in a classroom of 26 students aged 15 to 16 years 

and comprised 6 lessons. The students were to read two fragments 

from an ancient Greek booklet on astronomy, ‘The Heavens’ by 

Cleomedes (English transl.: Bowen & Todd 2004; German transl.: 

Kleomedes 1927). Since nothing is known about the author the dates 

of his life are quite controversial, estimates running from 100 BC to 

400 AD (the latter guess by O. Neugebauer). Today, there exists 

consensus that he should have lived in the second century AD. 

Textual analysis shows him as an adherent of stoic philosophy 

(Bowan & Todd 2004, 5ff). Cleomedes’ booklet gives a survey on 

astronomy for the educated public of his time, themes ranging from 
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shape, position and size of the earth over movements of moon, sun, planets, fixed stars to 

special questions like f.e. the difference between solar and sidereal day. The students read 

fragments about (1) the shape of the earth and (2) the method of Posidonius to determine 

the size of the earth. On concrete experiences with reading sources on ancient astronomy 

and about the importance of this topic cf. Hosson 2015 and Tzanakis 2016. 

(1) In regard to the shape of the earth Cleomedes discusses the alternatives of being a 

plane, a bowl, a cube, a pyramid, or a sphere (Kleomedes. 1927, 26ff; Bowen  & Todd, 

2004, 65ff). We used an abbreviated version of the respective passages in Cleomedes’ 

book. On account of observations on the visibility of sun, moon and stars the first four 

alternatives are excluded, thus the earth is a sphere. If, for example, the earth were a plane 

the sun and the stars would rise and set at all places at the same time. Since, however, it is 

well known that the sun rises in Persia four hours earlier than in Spain this cannot be the 

case.  

 

  

 

Figure 3.2: Student drawings. The earth as plane, bowl, sphere 

(2) Posidonius’ (135 - 51 BC (?)) method for determining the size of the earth uses the 

bright fixed star Canopus (Kleomedes, 1927, 33ff; Bowen  & Todd, 2004, 78ff). At the 

time of its declination it is elevated 7.5° above horizon in Alexandria, whereas in Rhodos 

it is just visible at horizon. Since Alexandria and 

Rhodos have approximately the same longitude it 

follows that these cities have a difference of latitude 

of 7.5°. According to Posidonius/Cleomedes the 

distance between Alexandria and Rhodos amounts to 

5 000 stades which implies a circumference of the 

earth of 340 000 stades. Figure 3.3 shows the situation 

with the simplification of parallel rays from Canopus 

to Alexandria and to Rhodos, whereas figure 3.4 is a 

student drawing with non-parallel rays from a point-

shaped Canopus.  

 

The students had substantial difficulties to deal with the 

simplification that the rays from Canopus to Alexandria and to 

Rhodos can be considered as ‘practically parallel’ (figure 3.3) 

because of the enormous distance of the fixed stars from the earth 

(cf. similar experiences in Hosson 2015). They were not ready to 

accept it as legitimate since it seemed to contradict the absolute 

precision characteristic of mathematics. On the other hand, it 

seemed much more acceptable to them to consider Canopus as a 

mathematical point (figure 3.4) in spite of its enormous size. Of 
Figure 3.2: Non-

parallel rays, drawing 

by a student 

7,5°

7,5°

7,5°

Rhodos

centre earth
Alexandria

Canopus

Figure 3.1: Parallel rays 
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course, this is understandable because fixed stars appear to us visually like points at the 

sky (Glaubitz & Jahnke 2003a, 83pp). 

Even more difficult was the discussion on Cleomedes’ 

argument against a cube-shaped earth. In this case, according to 

Cleomedes, the sun would be above horizon at every place only 

for six hours a day (figure 3.5). But this is only true when the 

sun at every moment illuminates only one face of the cubic 

earth, and this again is valid only when the sun moves on a 

special circle which touches the edge of the cube at the moments 

of rising or setting. But in general the sun would illuminate three faces at the same time. 

Thus, Cleomedes’ argument is highly problematic. Even more problematic are his reasons 

against a bowl-shaped earth (Glaubitz & Jahnke 2003a, 81). Thus, the students found 

themselves in a situation which required from them a critical evaluation of a text which at 

first they must have considered as a scientific authority simply because their teachers had 

given it to them. 

The source required from the students in a considerable amount to revise their 

expectations or in Gadamerian terms their prejudices. The students expected that the 

ancient Greeks considered the earth as a plane. The source taught them that they 

considered it as a sphere. The students expected that there was only the alternative plane 

vs. sphere. The source discussed five alternatives, plane, bowl, cube, pyramid, sphere. 

Against their expectations of an earth travelling around the sun, according to the source 

the earth doesn’t move. Angles are not measured in degree, but in ratios of the zodiac. The 

students thought that Cleomedes was an authority whose arguments are always correct. 

Instead of this, they had to accept that he used superficial, even incorrect arguments. 

Students were convinced that mathematics is always exact. They learnt that (applied) 

mathematics makes use of simplifications. 

Résumé. The students had to cover a considerable distance from their original 

expectations to an understanding of the source. There was a permanent tension between 

their modern astronomical knowledge, their prejudices, and the statements and arguments 

of the source. In a certain amount they were aware of the historicity of the source. Their 

guiding question however seemed more that they wanted to learn about the astronomical 

problems discussed than to learn about history. Obviously, they applied the text. 

Nevertheless, the historical distance was present to them. This became clear from a small 

questionnaire they were asked to fill in. There one can find several statements of the type: 

“I found fascinating how somebody could arrive at the idea to prove that the earth is not 

flat by such simple things.” (Glaubitz & Jahnke 2003a, 88pp) This shows, some students 

realized that reading such texts is also teachable under an epistemological point of view. 

4  A Pedagogue as Reader 

The pedagogue considered is Martin Wagenschein (1896 – 1988). He took a PhD in 

Experimental Physics at the university of Gießen in 1921. From 1924 to 1933 he worked 

at the ‘Odenwaldschule’, a boarding school and prestigious project of ‘Reformpädagogik’. 

In the 1920s the school had a high reputation with many visitors from abroad. Children of 

quite a number of prominent people attended the school. The time there became the 

pedagogically formative period of Wagenschein’s life. In his autobiography he spoke of 

the “magic of this school” (Wagenschein1989,34). “At the Odenwaldschule ‘exchange’, 

Figure 3.3: sun and 

cube-shaped earth 
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not ‘instruction’ became for me the unshakable base of teaching.” (loc.cit., 38) In 1927, 

also mathematician Otto Toeplitz visited the school for two days, and attended among 

others a course by Wagenschein (loc.cit., 34). 

In 1933, the founder and director of the Odenwaldschule, Paul Geheeb, emigrated from 

Germany, together with some teachers and students, in order to found a new school in 

Switzerland, and Wagenschein changed to a position at a state driven school. In his 

autobiography he described the Nazi-time in a chapter headed “Wartezeit” (‘waiting 

period’), and the time immediately after the war by the verb “aufatmen” (‘drawing a deep 

breath’). He continued teaching at school until 1957, and gave courses for teachers of 

physics and mathematics at the Technical University of Darmstadt, the University of 

Tübingen and other institutions of teacher training quite until his old age. It was only after 

1950 that he became a visible and prolific writer of articles and books on didactics of 

physics and mathematics.
2
 

Obviously, Wagenschein had a strong and coherent vision of good teaching, and he 

described it in a language full of metaphors. He taught at a regular school, but criticised 

the established school system in a rather fundamentalist manner speaking f.e. of the 

“tragedy of the teaching of mathematics” (UVeD I [1961], 417-428;) which consisted in 

his eyes in an one-sided emphasis on ‘passive knowledge’ (he used the German word 

‘Stoff’). According to him, students frequently cannot connect their knowledge to real 

phenomena, and he complained about too early a formalization. 

It is not easy to describe Wagenschein’s 

approach to teaching for the simple reason 

that he never developed a ‘system of 

pedagogy’. This might have been a 

consequence of the fact that he never held 

a professorship at a university, but it is 

more probable that creating a ‘system’ did 

not fit to his way of thinking and his 

personality. Thus, it seems appropriate to 

begin with some observations in order to 

get an image of his visions. 

Figure 3.6 shows Wagenschein in a 

teaching situation at his age of 87. One 

sees children dealing with some artefacts 

of a physical experiment (the theme was Pascal’s barometer) and, presumably, describing 

what they observe. Wagenschein himself is attentively listening, and this is the message of 

the picture. A teacher should, first of all, be able to remain silent and to listen to his 

students. This is so because for Wagenschein the main problem of teaching was to connect 

concepts and theoretical insights with the phenomena they are to explain. In order to 

become really aware of the phenomena there should be broad opportunities for students to 

describe them in their own language, and independent of the ‘official’ language of science.  

Out of this motive Wagenschein experimented with language. A wonderful example 

worth reading is a small piece of two pages with the title “Das große Spüreisen” (“The big 

                                                           
2
  Many of Wagenschein’s papers are reprinted in Wagenschein 1970a (=UVeD I) and Wagenschein 1970b 

(=UVeD II). For reasons of space we do not mention the title of every paper, but always add in square 

brackets the year of its first publication. All translations into English by the author. 

Figure 3.4: Martin Wagenschein in 1983.  

Source: Wikipedia 
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feeling iron”) (UVeD I [1951], 175pp) which at the time of its publication caused a real 

scandal among physicists and teachers of physics (Wagenschein 1989,79). The German 

word ‘Spüreisen’ is a creation by Wagenschein whose English translation is only a first 

approximation. The word is intended to arouse a connotation of magic like f.e. the English 

word ‘divining rod’. 

The ‘feeling iron’ is an oversized magnetic needle of 1 meter length whose slow 

oscillation around the north-south direction Wagenschein described in a completely 

animistic language attributing something like a free will to it. The description ends with 

the sentence “It lasted nearly a quarter of an hour until our feeling iron came to rest. It had 

to work hard to find its peace.” (UVeD I [1951], 176). 

Wagenschein has written many of his texts in a pronounced emotional and existentialist 

language, take as an example the title of another paper from 1951 “Mind and heart in the 

acquisition of exact scientific knowledge” (UVeD I [1951], 181ff). Therefore, it is no 

wonder that he frequently made reference to Simone Weil’s book (1949) on 

“Enracinement”, since the ‘enracinement’ (‘taking roots’; ‘Einwurzelung’) of phenomena 

in the minds of students was his great theme. (f.e. UVeD II [1966], 60-62) 

In the course of time Wagenschein standardized his approach by using the triad of 

concepts “genetic – Socratic – exemplary” (see Wagenschein 1968). The three concepts 

have a long tradition in pedagogy, as a triad they might be adequate to characterize his 

thinking. Wagenschein explains: “Pedagogy has to deal with genesis: the growing human 

being and … the genesis of knowledge inside him. The Socratic method is involved since 

genesis, the awakening of his intellectual forces, happens most effectively in a 

conversation or a dialogue. The exemplary principle is involved because a genetic-

Socratic procedure must and also can confine itself to limited themes (‘Themenkreise’)” 

(UVeD II [1966], 68). In regard to a Danish reception of Wagenschein’s ideas on 

exemplary teaching cf. Blomhøj & Kjeldsen (2009). 

The language motive for reading sources. In the course of his life Wagenschein 

seems to have read quite a number of original texts by famous scientists, f. e. Aristarch, 

Foucault, Galilei, Leonardo da Vinci, Kepler, Lichtenberg, Newton. The list is by far not 

complete. In his autobiography, in the chapter on his university studies he deals 

extensivelywith reading such sources under the revealing heading ‘Lichtenberg and other 

masters of language’ (Wagenschein 1989, 25-30). Language and the distance to textbook 

knowledge seemed to interest him most. As a consequence, historical sources became part 

of his intellectual life, and reading them was subordinated to his search for authentic, 

peculiar, even idiosyncratic linguistic representations of observations and phenomena far 

off the standardized language of modern science. 

Wagenschein stated at several places “Genesis is not history” quoting explicitly Otto 

Toeplitz (f.e. UVeD II [1965], 78). “The history of his science … is for the teacher not a 

mere subject but helps him to take the questions of his students as serious as they are 

meant.” (loc.cit.) At another place one finds a sentence like this one. „We recognize this 

less from textbooks than out of the history. … The ‘old’ researchers are in reality the 

young ones, the early ones.” (UVeD II [1967], 26;). 

There is a piece of eight pages presumably written in 1962 and published as appendix C 

to Wagenschein (1995) under the title “Genetic teaching (history of human ideas). The 

didactical significance of studying sources, shown by the example of the law of inertia”. 

To my knowledge this is the only paper where he explicitly discussed a possible 
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Figure 3.5: Aristarchos‘ method 

significance of sources for teaching. The general message of this paper is twofold. (1) He 

addresses the teacher, not the student as a possible reader of a source. (2) For the teacher 

sources should be a key to the questions and the thinking of his students. As far as I can 

see, he never used sources in teaching at school, but there is at least one reference to a 

seminar he gave to future teachers on “Didactical suggestions from the writings of the 

scientific pioneers of the 17th century” (Wagenschein 1995, 288). 

The epistemological motive for reading sources. Beyond his interest in the not 

standardized language of historical sources there is also another fundamental reason why 

he was interested in the history of physics and mathematics. This is an epistemological 

one and closely connected to the great importance he attributed to ancient astronomy as a 

subject of teaching mathematics and physics. Time and again he returned to Aristarchos’ 

method of determining the relative distances of sun and moon from the earth (cf. Jahnke 

1998). As is well known, this method consists in observing sun and moon at the moment 

of half-moon in a case when moon and sun are both visible. From the angle moon (M) – 

earth (E) – sun (S), one can determine the ratio of the distances of moon and sun from the 

earth (Figure 3.7). 

Wagenschein is not so much interested in the 

numerical side of Aristarchos’ method, but in the 

underlying geometric and qualitative understanding 

of the phases of the moon. Many students and many 

adults after a long time of attending school have a lot 

of astronomical textbook knowledge. They know 

about the sun as the centre of the solar system, the 

earth travelling around the sun, the moon travelling 

around the earth, the size of the sun being many times larger than the size of the moon and 

the earth, etc. However, when asked to explain the phases of the moon a majority of 

students and adults would refer to the shadow of the earth as a cause for the crescent 

figure. Since on the other hand it is very easy by observing sun and moon when they are 

simultaneously visible at the sky to realize that there is no shadow of the earth involved 

and to arrive at the ‘right’ idea this is paradigmatic for the basic failure in the teaching of 

mathematics and physics. In a sense textbook knowledge prevents students from 

observing and thinking (UVeD II [1966], 59). At some places Wagenschein uses the 

concise wording “verdunkelndes Wissen” (‘obscuring knowledge’) to designate this 

phenomenon (UVeD II [1966], 58). Thus, we have to regain “the primary 

phenomenological reality” (Wagenschein 1995, 291) and Wagenschein calls this process 

the “genetic metamorphosis of science” (UVeD II [1965], 87). 

To regain the primary phenomenological reality meant to „let students understand how 

human beings can come to know such things“or to answer the question “How is science 

possible?” (Wagenschein 1995, 292). This Kantian-type question was a running theme in 

his pedagogical thinking, and he explained it in a pathetic, but illuminating way in an early 

publication: 

“The relation of human beings to nature is mysterious since it touches deeply the 

enigma of their own existence: they belong to it [to nature] and, yet, are able to pose 

themselves opposite to it. Therefore, the question of how we gain and pass on 

scientific knowledge is a humanist question; it concerns the whole human being … 

science is the trace of a one-sided … expression of human nature… It concerns all 
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the more the whole human being since s*he must know this one-sidedness when 

s*he wants to remain whole…” (UVeD I [1951], 182) 

Thus, answering the question of how human beings can come to know is a requirement of 

humanism, and this in turn implies the fundamental importance of ancient astronomy for 

teaching science and mathematics. In this area one can observe with the naked eye or with 

very simple instruments and derive from these observations by means of simple geometry 

far-reaching consequences about the structure of our universe. 

This means in regard to the example of the phases of the moon that the teacher should 

not start with the above figure 7, or alternatively, with a lamp (representing the sun) being 

moved around a tennis ball (the moon) and try to let students see the crescent figure. 

According to his experience, this will not work. Instead: when we suppose that moon and 

sun are really physical bodies (which was not obvious to the Greeks) and that the sun is a 

shining body whereas the moon receives light from the sun, then we can conclude by pure 

imagination a fundamental fact: always is one hemisphere of the moon illuminated by the 

sun, and one hemisphere is dark. Only on the rare occasions of an eclipse of the moon this 

is not the case.  

With this fundamental idea in mind students are asked and guided to observe the moon 

every day during a certain period, say 2 weeks. In fact, they are not asked to observe only 

the moon, but to observe the pair moon – sun. When both are visible simultaneously, that 

is during day-time, this is no problem. But what about when it is night? In this case we 

have to add the sun in our mind’s eyes to the visible configuration by looking in which 

direction the illuminated hemisphere of the moon is pointing. When we prolong this 

direction beyond horizon we will intuitively get an estimate of the position of the sun and 

after a time intuitively realize that the sun must be distant from the earth many times 

farther than the moon, and, since its apparent size is equal to that of the moon, must be 

many times larger than the moon. Thus, in a combination of imagination, thinking and 

observation anybody can get, after some training of his eyes and his imagination, a correct 

qualitative intuition of the configuration earth – moon – sun without any measurement, 

any technical instrument and without any numerical calculation. Obviously, measuring 

and calculating are necessary further steps leading to new insights and to new surprises 

(UVeD I [1951], 184ff).  

The phases of the moon are a fundamental paradigm for Wagenschein’s views on 

history of science and of ‘regaining the primary phenomenological reality’. No wonder 

then, that he was interested in authentic descriptions of this phenomenon he found in 

historical sources. In an Italian – German edition of Leonardo da Vinci’s “philosophical 

diaries” he hit upon a short remark of da Vinci’s (Ms. Arundel 94r) on the phases of the 

moon he liked so much that when quoting it he rearranged it in a way that it looked like a 

poem (UVeD II [1966], 67). Here it is. 

„Der Mond hat kein Licht von 

sich aus, 

und soviel die Sonne von ihm 

sieht, 

soviel beleuchtet sie; 

und von dieser Beleuchtung 

sehen wir soviel, 

wieviel davon uns sieht.“ 

 

“La luna non ha lume da sè,  

se non quanto ne vede il 

sole, 

tanto l’allumina; 

della qua lluminosità, 

tanto ne vediamo 

quanto è quella cheve de 

noi.” 

 

“The moon has no light out of 

herself, 

and as much as the sun sees of 

her, 

as much he illuminates; 

and of this illumination 

we see as much 

as much of it sees us.” 
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We come back to the motive of ‘poem’ in the next section of this paper. 

Résumé. Wagenschein had a strong vision of good teaching formed by his personal 

experiences at the ‘Odenwaldschule’ and he was immersed in the pedagogical tradition of 

‘Reformpädagogik’. He quoted Toeplitz’ statements implying that genesis is different 

from history. He saw historical sources as a valuable component of the intellectual life of 

a teacher of mathematics and physics, but, presumably, did not think about reading 

sources with children and students at school. His central problem was the regaining of the 

primary phenomenological reality and in this context attributed a high relevance to the 

history of science and, especially, to ancient astronomy. He considered answering the 

question of “how is science possible” as a requirement of humanism. He was also very 

much interested in the linguistic dimension of historical sources, and, by this, also the 

literary and artistic quality of sources became important. 

5  A Philosopher as Reader 

The philosopher considered is Karl Raimund Popper (1902 - 1994). Since 1918 he took 

courses on mathematics, physics, psychology, philosophy at the University of Vienna, and 

in the early 1920s he engaged in a social-democratic student organisation, worked in street 

construction and made an apprenticeship as cabinet maker. In 1924 he passed an 

examination as a teacher at elementary schools, andin 1928 he earned a PhD in 

psychology under Karl Bühler. From 1929 to 1937 he worked as a teacher of mathematics 

and physics at a secondary school. In 1937 he obtained a position as lecturer of philosophy 

at the university of Christchurch/New Zealand. In 1945 he changed to the London School 

of Economics, and in 1949 was appointed professor of logic and scientific method at the 

University of London (cf. Popper 1976b and the article on Popper in the English 

Wikipedia). 

Popper was one of the most influential philosophers of the 20th century who is well-

known to a broader public far beyond specialized philosophy. His book The Open Society 

and Its Enemies’, published for the first time in 1945, in which he criticized the in his 

view totalitarian components of the philosophies of Plato, Hegel and Marx, fitted to the 

situation between west and east in the 1950s and, surely, contributed a lot to this public 

visibility. 

In 1934 appeared his major work Logik der Forschung (‘The logic of scientific 

discovery’) which established his philosophy of ‘critical rationalism’ and, biographically, 

helped him to get the position in New Zealand and to emigrate shortly before the Nazis 

entered Austria.  

Base and starting point of Popper’s ‘critical rationalism’is his fierce rejection of 

traditional inductivism and sensualism. Instead, he held the view that theories can never be 

(finally) confirmed by empirical evidence – a philosophical position which came to be 

called ‘fallibilism’. Popper considered scientific progress as guided by a permanent 

interplay between the creation of theories as bold conjectures and the search of scientists 

torefute them, be it by critical argument or by falsifying evidence (cf. the title of 

Popper1976a). 

Relation to ancient astronomy. According to his own testimony Popper was interested in 

and deeply impressed by the Presocratic philosophers since the time when he was 16 years 
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old, and he cultivated this interest all of his life (Popper 2006. 88). But it was only in 1956 

that he published a paper entitled ‘Back to the Presocratics’ in his Conjectures and 

Refutations (1976a, 1
st
 edition in 1956). Since the 1970s,on advise of the later editor A. 

Petersen, Popper began to think seriously about writing a book on Parmenides and the 

Presocratics (Popper 2006. 9ff). He wrote and rewrote a number of papers including a 

preface, but the book itself appeared only after his death (Popper 1998). 

Popper read fluently ancient Greek, all translations of Presocratic Sources into English 

used in the book are his own. He knew much of the philological and philosophical 

literature on Presocratic philosophy and did not hesitate to enter even philological 

arguments where he found this necessary. 

Parmenides (520? – 450? BC) was a student of Xenophanes, the teacher of Zeno and 

lived in the newly founded Greek colony of Elea in Southern Italy (Popper 1998, 139).We 

know of Parmenides’ philosophical thinking by a poem in hexameters in the style of 

Homer and Hesiod of which only 180 lines out of estimated 800 lines have been passed on 

to us. According to Popper, Parmenides’ work “is beset with problems that perhaps will 

never be solved” (loc.cit.). Nevertheless, Popper tried to develop an interpretation whose 

tentative character becomes clear from the fact that his book on Parmenides contains 

several different attempts. 

An overarching motive in Poppers interpretation was the thesis that Parmenides was 

“essentially a cosmologist” (Popper 1998, 143), in contrast to many modern philosophers 

who consider him above all as an ‘ontologist’. 

Parmenides’ poem contained a revelation from the goddess Dike in two distinct parts. 

In the first part, the goddess reveals the truth about what really exists. This is called the 

way of truth. In the second part, the goddess speaks about the world of appearances, the 

illusory world of movement, change, development (loc.cit., 138). This way is called the 

way of opinion. The following is a short account of Popper’s interpretation. 

The way of truth proceeds purely rational and by logical proof. It is the way of the 

Gods. The Way of Opinion is the way of the mortals who believe in sensory perceptions. 

Popper interprets Parmenides as a rationalist who rejects explicitly sensualism (loc.cit., 

103). 

The real world which the way of truth uncovers by rational deduction is very simple. It 

is a universe without change or movement. “This universe consists of one well-rounded 

spherical block that is completely homogeneous and structureless. It has no parts: it is one. 

It has no origin and thus no cosmogony, and it always was and is and always will be at 

rest, changeless and colourless.” (loc.cit., 140)  

By contrast, the appearing world as it is seen by the mortals is a universe in which 

there is change, movement and development. The Goddess describes also this world in 

detail, and this part of the poem contains important and original ideas, such as the doctrine 

of the spherical shape of the earth and a theory of the moon. (loc.cit., 139). Thus, any 

interpreter of Parmenides’ poem is confronted with the paradoxical situation that the best 

achievements of Greek astronomy of the time which in part might have been reached by 

Parmenides himself are attributed to the illusory world of appearances. To say it in 

Popper’s words: “Why does the goddess expound part 2 at all, stressing that it is 

mistaken?” (loc.cit., 124) 
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According to Popper “Parmenides was the first who consciously placed reality and 

appearance in opposition and consciously postulated one true unchanging reality behind 

the changing appearance” (loc.cit., 140). 

How did Parmenides arrive at this distinction and to understand its importance? 

Popper’s attempt to answer this question points to the phases of the moon. This is an 

essential issue in his book. There are three chapters around this idea with slightly modified 

titles and representing different attempts at describing the idea and its context. The titles 

are “How the Moon might shed some of her light upon the Two Ways of Parmenides” 

(1992), “How the Moon might throw some of her light upon the Two Ways of Parmenides” 

(1989) and “Can the Moon throw light on Parmenides' Ways?” (1988). 

Popper’s explanation is rather straightforward. “Parmenides discovered that the 

observation … that the Moon — Selene — waxes and wanes during the course of time is 

false. … She does not change in any way. Her apparent changes are an illusion.” (loc.cit., 

108). “The moon does not change. It is a material sphere of which one half is always 

illuminated, the other half is always dark.” (loc.cit.) Therefore, in eternity the moon does 

not change. This eternal moon is ‘being’. On the other hand, the changing shape of the 

moon from new moon to crescent to half-moon to full moon is mere appearance. It does 

not really exist; it is ‘not being’. 

Of course, to a modern reader and, may be, also to an ancient reader, this case might at 

best be an example making understandable the distinction between reality and appearance. 

It is a stupendous step from there to Parmenides’ radical conception of a rigid universe 

without movement and change. Taking into account the fragmentary state of Parmenides’ 

poem it is clear that much subtler arguments as are given here are required to bridge this 

gap, andany attempt at interpreting Parmenides is necessarily highly hypothetical as 

Popper himself stressed. 

There is another important point. To realize that a hemisphere of the moon is always 

illuminated seems to be only a small step. But we have seen in the last section how excited 

Wagenschein was about it, so much so, that he rearranged a short remark of da Vinci 

expressing this in the form a poem. The same excitement we find with 

Popper/Parmenides. When reporting how,as a boy of 16 years, he hit upon the Presocratics 

Popper said: “The verses that I liked best were Parmenides' story of Selene's love for 

radiant Helios (DK 28 Bl4—15). … before reading Parmenides' story it had not occurred 

to me to watch how Selene always looks at Helios' rays … 

Bright in the night  

with the gift of his light, 

Round the Earth she is erring, 

Evermore letting her gaze 

Turn towards Helios' ray” 

(loc.cit., 88/89, Popper’s translation of Parmenides). And he added: “Since the day when I 

first read these lines (in Nestle's translation), 74 or 75 years ago, I have never looked at 

Selene without working out how her gaze does indeed turn towards Helios' rays (though 

he is often below the horizon).” (loc.cit., 89). At another place he added: “„I personally am 

indebted to him [Parmenides] for the infinite pleasure of knowing of Selene‘s longing for 

Helios…“ (loc.cit., 130) 

To consider Parmenides’ phrases as a love poem about Selene (the moon) and Helios 

(the sun) is only weakly suggested by the Greek wording. Only the half sentence that 
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Selene is always looking for Helios’ rays might be in favour of this interpretation. 

Therefore, it is a (de)construction by Popper, similar to Wagenschein’s poetic 

deconstruction of da Vinci’s short remark. Both, Wagenschein and Popper, show a 

sensitivity to the artistic quality of their sources and, thus, create a personal and individual 

relation to them. 

Résumé. Popper’s book on Parmenides and the Presocratics is a contribution to the 

history of human ideas. The author sees himself as part of the historiographic and 

philosophical tradition and meets philological standards. His guiding problem is the search 

for ideas which are essential in the context of his own philosophical outlook, critical 

rationalism. A key element of his argument is the thesis that the Presocratics, and, 

especially, Parmenides can best be understood from the point of view of ancient 

astronomy. Beyond the main line of argument, as a certain surprise, the artistic quality of 

Parmenides’ poem plays an important part.  

6  Conclusions 

Gadamer’s concept of the ‘historicity of understanding’ which he concretized in the two 

concepts of ‘prejudice’ and ‘application’ implies that there is necessarily an unlimited 

variety of legitimate interpretations of a text. Any interpretation depends on the 

intellectual background and the situatedness of the reader. Any new interpretation by a 

new reader deepens our understanding of a text, understanding is the ‘sum’ of all existing 

interpretations and, thus, open to future. At the same time, reading requires rigour and 

judgement. 

Our three readers: the students, the pedagogue and the philosopher have, of course, 

different intellectual backgrounds, different questions and problems they were interested 

in and quite different ways of reading their sources. Nevertheless, there was an important 

point of convergence. They all understood the epistemological relevance of their sources. 

Indeed, to answer the question of “How is science possible?” is and should be a central 

objective of education. Ancient astronomy (not necessarily Greek as Hosson 2015 shows) 

is particularly suitable for this aim.  

Wagenschein has made us sensitive to the special role of language. This is a particular 

quality of reading historical sources which cannot be replaced by any other educational 

activity. The language of a historical source provides opportunities of reflection which 

cannot be arrived at by the standardized language of textbooks. Additionally, language, 

particular words or phrases, might cause the reader to feel touched and addressed in a 

special way. Then s*he will build up a relation to a text which may last over a long time as 

the ‘poems’ by the pedagogue and the philosopher show.  

REFERENCES 

Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. 

Educational Studies in Mathematics, 66, 111-129. 

Barbin, E. (1994). Préface. In Commission Inter-Irem Épistémologie et Histoire des Mathématiques (Ed.), 

Quatrième université d’été d’histoire des mathématiques (pp. ii–iii). Lille: IREM. 

Barnett, J., Pengelley, D. a., & Lodder, J. (2013). The Pedagogy of Primary Historical Sources in 

Mathematics: Classroom Practice Meets Theoretical Frameworks. Science and Education, 23(1), 7-27.  

Blomhøj, M., & Kjeldsen, T. H. (2009). Project organised science studies at university level: exemplarity 

19



 

and interdisciplinarity. Zentralblatt für Didaktik der Mathematik, 41(1), 183-198. doi:10.1007/s11858-

008-0102-3 

Bowen, A. C., & Todd, R. B. (2004). Cleomedes' Lectures on Astronomy. A Translation of 'The Heavens' 

With an Introduction and Commentary. Berkeley et al.: University of California Press. 

Chorlay, R. (2016). Historical sources in the classroom and their educational effects. In L. Radford, F. 

Furinghetti, & T. Hausberger (Eds.), History and Pedagogy of Mathematics. Proceedings of the 2016 

ICME Satellite Meeting- HPM 2016 (pp. 5-23). Montpellier: IREM de Montpellier. 

Clark, K., Kjeldsen, T. H., Schorcht, S., Tzanakis, C., & Wang, X. (2016). History of Mathematics in 

Mathematics Education. In L. Radford, F. Furinghetti, & T. Hausberger (Eds.), History and Pedagogy of 

Mathematics. Proceedings of the 2016 ICME Satellite Meeting - HPM 2016 (pp. 135 - 179). Montpellier: 

IREM de Montpellier. 

Foellesdal, D. (1979). Hermeneutics and the Hypothetico-Deductive Method, Dialectica 33, 319 - 336  

Fried, M. N. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 

10, 391-408.  

Fried, M. N., Guillermette, D., & Jahnke, H. N. (2016). Panel 1: Theoretical and/or conceptual frameworks 

for integrating history in mathematics education. In: L. Radford, F. Furinghetti, & T. Hausberger (Eds.), 

History and Pedagogy of Mathematics. Proceedings of the 2016  ICME Satellite Meeting - HPM 2016 

(pp. 211 - 230). Montpellier: IREM de Montpellier. 

Fried, M. N. (2018). Ways of Relating to the Mathematics of the Past. Journal of HumanisticMathematics, 

8(1), 3-23.  

Gadamer, H. G. (1976). Artikel 'Hermeneutik'. In: J. Ritter & K. Gründer (Eds.), Historisches Wörterbuch 

der Philosophie (Vol. 4, pp. 1061-1073). Darmstadt: Wissenschaftliche Buchgesellschaft. 

Gadamer, H.-G. (1990). Wahrheit und Methode. Grundzüge einer philosophischen Hermeneutik (6. ed.). 

Tübingen: Mohr. [quoted as WuM] 

Gadamer, H.-G. (2004). Truth and Method (J. Weinsheimer & D. G. Marshall, Transl. 2 ed.). London/New 

York: continuum. [Quoted as TaM] 

Gallin, P., & Ruf, U. (1990). Sprache und Mathematik in der Schule. Auf eigenen Wegen zur 

Fachkompetenz. Illustriert mit sechzehn Szenen aus der Biographie von Lernenden. Zürich: Verlag 

Lehrerinnen und Lehrer Schweiz. 

Glaubitz, M. R. (2011). Mathematikgeschichte lesen und verstehen. Eine theoretische und empirische 

Vergleichsstudie. Dissertation. Universität Duisburg-Essen. http://duepublico.uni-duisburg-

essen.de/servlets/DocumentServlet?id=25416. Accessed 23 July 2019. 

Glaubitz, M., & Jahnke, H. N. (2003a) Die Bestimmung des Umfangs der Erde als Thema einer 

mathematikhistorischen Unterrichtsreihe. Journal für Mathematikdidaktik, 24(2), 71-95.  

Glaubitz, M., & Jahnke, H. N. (2003b). Texte lesen und verstehen. Eine Erwiderung. Journal für 

Mathematikdidaktik, 24(3/4), 252-260.  

Hosson, C. d. (2015). Promoting an interdisciplinary teaching through the use of elements of Greek and 

Chinese early cosmologies. In E. Barbin, U. T. Jankvist, & T. Hoff Kjeldsen (Eds.), History and 

Epistemology in Mathematics Education: Proceedings of the Seventh European Summer University ESU 7 

(pp. 571-583). Copenhagen: Danish School of Education. 

Jaeger, H.-E. H. (1974). Studien zur Frühgeschichte der Hermeneutik Archiv für Begriffsgeschichte, 18 35-

84 

Jahnke, H. N. (1998). Sonne, Mond und Erde oder: wie Aristarch von Samos mit Hilfe der Geometrie hinter 

die Erscheinungen sah. mathematik lehren 91, 20 - 22, 47 - 48.  

Jahnke, H. N. (2014). History in Mathematics Education. A Hermeneutic Approach. In M. N. Fried & T. 

Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for Common Ground (pp. 75 – 88). 

20



 

Dordrecht: Springer 

Joisten, K. (2010). Philosophische Hermeneutik. Berlin: Akademie Verlag. 

Kjeldsen, T. H., & Blomhøj, M. (2012). Beyond motivation: History as a method for learning meta-

discursive rules. Educational Studies in Mathematics, 80, 327-349.  

Kleomedes. (1927). Die Kreisbewegung der Gestirne. Übersetzt und erläutert von A. Czwalina (Vol. 220). 

Leipzig: Akademische Verlagsgesellschaft. 

Popper, K. R. (1968). The logic of scientific discovery (Rev. ed.). London [u.a.]: Hutchinson. 

Popper, K. R. (1976a). Conjectures and refutations: the growth of scientific knowledge (4. ed., rev., reprint. 

ed.). London [u.a.]: Routledge and Kegan Paul. 

Popper, K. R. (1976b). Unended quest: an intellectual autobiography. La Salle, Ill.: Open Court. 

Popper, K. R. (1998). The World of Parmenides: Essays on the Presocratic Enlightenment. Edited by A. F. 

Petersen with the assistance of Jörgen Mejer. London & New York: Routlegde. 

Popper, K. R. (2009). Vermutungen und Widerlegungen : das Wachstum der wissenschaftlichen Erkenntnis 

(2. ed.). Tübingen: Mohr Siebeck. 

Popper, K. R. (2006). Die Welt des Parmenides : der Ursprung des europäischen Denkens (Ungekürzte 

Taschenbuchausg., 2. ed.). München [u.a.]: Piper. 

Schleiermacher, F. D. (1977). Hermeneutik und Kritik. Hrsg. u. eingel. v. M. Frank Frankfurt  

Schönert, J.& Vollhardt, F. (2011). Geschichte der Hermeneutik und die Methodik der textinterpretierenden 

Disziplinen. Berlin: De Gruyter. 

Scholz, O. R. (2011). Die Vorstruktur des Verstehens. Ein Beitrag zur Klärung des Verhältnisses zwischen 

traditioneller Hermeneutik und philosophischer Hermeneutik. In J. Schönert & F. Vollhardt (Eds.), 

Geschichte der Hermeneutik und die Methodik der textinterpretierenden Disziplinen (pp. 443-461). 

Berlin: De Gruyter. 

Schröder, J. (2011). Entwicklungstendenzen der juristischen Interpretationstheorie von 1500 bis 1850. In J. 

Schönert & F. Vollhardt (Eds.), Geschichte der Hermeneutik und die Methodik der textinterpretierenden 

Disziplinen (pp. 203-219). Berlin: De Gruyter. 

Tzanakis, C. (2016). Mathematics and physics: an innermost relationship. Didactical implications for their 

teaching and learning. In L. Radford, F. Furinghetti, & T. Hausberger (Eds.), History and Pedagogy of 

Mathematics. Proceedings of the 2016 ICME Satellite Meeting – HPM 2016 (pp. 79 - 104). Montpellier: 

IREM de Montpellier. 

Wagenschein, M. (1968). Verstehen lehren: genetisch, sokratisch, exemplarisch Weinheim [u.a.]: Beltz. 

Wagenschein, M. (1970a). Ursprüngliches Verstehen und exaktes Denken I (2. Auflage ed.). Stuttgart: Klett. 

(= UVeD I) 

Wagenschein, M. (1970b). Ursprüngliches Verstehen und exaktes Denken II. Stuttgart: Klett. (= UVeD II) 

Wagenschein, M. (1989). Erinnerungen für morgen : eine pädagogische Autobiographie (2., erg. u. 

durchges. Aufl. ed.). Weinheim [u.a.]: Beltz. 

Wagenschein, M. (1995). Die pädagogische Dimension der Physik (1. new ed.). Aachen-Hahn: Hahner 

Verl.-Ges. 

Wagenschein, M. (1995). Naturphänomene sehen und verstehen: genetische Lehrgänge (3rd. ed.). Stuttgart: 

Klett. 

Weil, S. (1949). L'Enracinement: Prélude à une déclaration des devoirs envers l’être humain. Paris: 

Gallimard. 

 

  

21



 

 

22



THINKING WITH LEVINAS ABOUT HISTORY OF 

MATHEMATICS IN MATHEMATICS EDUCATION  

 
Adriano DEMATTÈ 

University of Genoa & Liceo Rosmini, via Malfatti 2, 38122Trento, Italy 

adriano.dematte@scuole.provincia.tn.it 

 

David GUILLEMETTE  

Université du Québec à Montréal, Département de Mathématiques, C. P 8888, 

succursale Centre-Ville, Montréal (Québec), H3C 3P8, Canada 

guillemette.david@uqam.ca 

 

ABSTRACT 

For the French philosopher Emmanuel Levinas, human beings reveal themselves in relation to the 

Other (ethical perspective). In mathematics education, Levinas’ philosophy helps to constitute 

theoretical frameworks in which one could avoid drawing on a private, self-regulated and autonomous 

(in a rationalist and dualist perspective) subject. The phenomenological reflections of Levinas on 

Alterity support our reflection on history and mathematics education, particularly with respect to the 

history of mathematics for a nonviolent mathematics education. Data from empirical studies and from 

our own research with secondary school students (15-18 years old) and prospective teachers have been 

provided in order to stimulate in vivo reflection and feedback of the group. A dialog took place during 

the Workshop. Excerpts from the written, short essays produced by participants and their oral remarks 

are presented and commented in the present article. 

1 Introduction 

The importance of Levinas’ thought in the field of education is widely known and 

confirmed by several publications (see Atweh & Brady, 2009; Ernest, 2012; Radford, 

2008; 2012). Indeed, Levinas has helped us, as teachers (and researchers, as we will 

see), to develop a useful rethinking of our relation with our students and mathematics. 

We became aware of the presence of the “third party” (Levinas, 2010, p.213) - 

persons outside the I - Other relations who require us to perform a list of duties. That 

fact tends to overcome our being available to accept the infinity in the student. For 

instance, the students have to pass national exams; therefore, my professional duty is 

to make them store quite a lot of notions. Moreover, the acceptance of that infinity, 

we believe, can for example imply that I, as a teacher, do not fall either into the 

temptation of a definitive judgment about the students’ performance or into not 

admitting that they could get another chance in case of failure. In connection with 

that, Levinas helped us to develop the concept of violence as the simplistic solution to 

reduce the student to our criteria of judgment. 

On a larger perspective, Levinassian ethics suggested us a new line of reflections 

about some aspects of education that are inherent both to the problem of motivation, 

engagement, willingness of deepening the subjects, etc. and to the question, ‘How 

should a student get involved in the study of mathematics?’ 

To be honest, each of these points recalls some points of Levinassian philosophy 

but not all, indeed. That philosophy refers to our subjective experience, and suggests 

us how to use part of it in the attempt of contextualizing it in our teaching. 
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Moreover, Levinassian ethics helped to realize that students live in the 

“postmodern ethics”, after the title of (Bauman, 1993), which is radically different 

from the traditional ethics dealing with virtues, duties and principles by means of 

which to take decisions in actual situations.Levinassian ethics avoids “the temptation 

and the illusion that would consist of finding again by philosophy the empirical data 

of positive religions” (Trace of the Other). On the contrary, the presence of the Other 

is “meeting and friendship” (Alterity and Transcendence, p. 56). 

We had the idea to discuss the work of Emmanuel Levinas within a workshop. The 

point was that this workshop might lead us to share with the participants how Levinas' 

phenomenological reflection on otherness supports our respective research on history 

and teaching-learning of mathematics. 

We thought that this workshop could engage the participants to think with us about 

the learner’s subjectivity, our relation to history, our experience of history and the role 

of history in mathematics education having in mind this Levinassian ethics. Even if 

there was certainly a didactical and educational dimension in this workshop, our 

approach and the discussions that took place were more theoretical and philosophical. 

2 A workshop: setting the scene 

This paper is a resume of the presentations, activities and discussion that took place 

during the two-hour workshop entitled Thinking with Levinas about history of 

mathematics in mathematics education that took place during ESU-8. 

The workshop involved about 30 participants. The present report aims to describe 

the activities and considers the outcomes as contributions of/for the participants. We 

are aware that the limited number of hours did not permit to take into account the 

possibility to improve the inquiry by qualitative research, for instance by interviewing 

the participants who wrote their opinions following the question form we provided 

them with. In any case, various techniques (dialogue, short oral interviews, written 

answers, informal exchange of opinions) were used. 

Therefore, final conclusions can consider the specific outcomes about Levinas’ 

philosophy with respect to educational use of the history of mathematics compared 

with the limited time at disposal. Considering the involvement of the teachers and 

researchers taking part in ESU, we think that it is of great importance to have their 

opinions taken into account. Therefore, we believe that a useful discussion should be 

started on how to stimulate and collect the participants’ contributions either in the one 

and a half or in the two hours ESU workshops. 

Our idea of a workshop led us to exclude a long introductory talk and to introduce 

the activities right away. The proposal to the participants was to discuss educational 

problems, not only to examine excerpts from Levinas’ works, and that seemed to 

complicate the task by extending the range of questions. Anyway, one must also 

consider that an almost mandatory choice, in view of both ESU8 topics and the need 

to stick the aspects of which the participants are specialized in. 

We chose to propose the workshop as an opportunity for a dialogue on Levinas’ 

philosophy. The importance of this author stands on the idea of alterity in 

mathematics education. The seminal character coexisted with the need to get 

reflections and contributions from the participants, establishing a dialogue in which 
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the participants who already knew Levinas could get involved successfully with those 

who approached the French philosopher for the first time. Mathematical content in 

historical documents was not the main focus but it was a resource to introduce some 

important educational problems inherent to its use. Levinas’s philosophy, in fact, 

could help us to explain the importance of history in mathematics education, with 

some questions in the background such as, 'Why history?’, ‘For what purposes’, 

‘What can history add to mathematics teaching?’ 

We considered the actual behavior of the participants as one of the aims of the 

workshop and in particular we observed both the discussion of some of the topics 

included in the trace form we gave them and the participants’ request of explanations 

about materials and excerpts from Levinas’ works and their suggestions for ways to 

compare Levinas’ philosophy with school education and classroom activities. The aim 

of the dialogue, however, made the outcomes of the workshop hardly predictable. 

Our aim was not to get a critical point of view of Levinas’ works, but on the 

contrary, it was that of finding out the main ideas that his thought can offer. Even if 

his philosophy is today encountering a wider and wider acceptance, we believe that it 

contains a lot of aspects that could be perceived as paradoxical and should be 

clarified: the idea of face, for example, considered not (only) as a part of the body but 

as the way to transcendence. These aspects, we believe, can be the subject of 

discussions. The workshop activities were planned looking to establishing a dialogue 

between conductors and participants as well as among the participants themselves.  

Before the workshop started, it was indeed impossible to know who would be the 

participants, and also which should be their expectations about the proposed activities. 

We did not know if they had previously studied Levinas’ works or made any 

reference to him in their works, etc. A priori, we could expect that, for some of the 

participants, the workshop could be an introduction to Levinas’ philosophy, while for 

others the deepening of aspects of his thought, and for others a useful exchange of 

ideas with participants who already knew Levinas, and finally for others just a 

rhetorical exercise. All considered, the outcome was not predictable in view of the 

participants’ prior ideas and knowledge of the problems. It would have been 

impossible for us to write the present paper before the workshop had been held! 

The workshop, which focused on theoretical concerns, proposed an introduction to 

Emmanuel Levinas’ philosophy (1989, 2010, 2011a, 2011b) by highlighting how the 

phenomenological reflections of Levinas on Otherness support our (the authors’) own 

respective research activities on history and mathematics education. Several elements 

were expected to be discussed with regard to Levinas’ perspective, more specifically: 

- History of mathematics for a nonviolent mathematics education 

- History of mathematics as an experience of radical otherness 

- Reflections on humanism and “antihumanism” with regard to the history of 

mathematics 

- Reconsiderations of our ground pedagogical objectives related to the 

introduction of history of mathematics in the classroom  

- Reflections on how to operationalize these elements in research.  

As we will explain in more detail below, data from empirical studies and from our 

own research with secondary school students and prospective teachers were expected 
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to be analysed and discussed by taking the Levinassian perspective. More concretely, 

we planned: 

- An introduction at a theoretical level to Levinas’s philosophy 

- Readings of carefully chosen short excerpts from Levinas’ texts 

- Discussions in dialogical form aimed to formulate questions and stimulate the 

reflections of the participants 

- Data analysis of empirical studies with the aim to reflect on Levinas’ 

perspective in a more “applied” or “practical” way 

- Reflections upon a list of questions aiming at collecting the participants’ ideas 

that could lead to short writing activities performed in small groups. 

The following sections explain how those activities were carried out and a number of 

objectives were reached.  

3 The Levinassian perspective 

Our first objective was to introduce the group to Levinas’s philosophy by defining 

both the main philosophical projects of Levinas and our own understanding of the 

main concepts that was introduced by Levinas in his philosophical investigation. 

A short PowerPoint presentation was made in order to introduce Levinas and some 

major concepts in his work. Then, the readings of some excerpts of Levinas’s main 

texts were organised. Finally, a group discussion of those readings took place. 

3.1 The presentation of Levinas’ philosophy 

The presentation of elements of Levinas’ philosophy took about 25 minutes. It was 

pointed at some key elements such as: 1) the phenomenological positioning of the 

work of Levinas; 2) his project of a phenomenological investigation of otherness; 3) 

major concepts arisen from this project;4) and some reflections on the meaning of the 

encounter with the past.  

During the presentation, the philosophy of Levinas was situated in the continental 

tradition and more precisely in phenomenology. Phenomenology was succinctly 

presented as a way to conduct philosophical investigation that is characterized by a 

certain rehabilitation of the mind sensitivity through the work of Edmund Husserl 

(1859-1938). In a bold move against metaphysics, phenomena are here considered as 

objects of consciousness, things toward which we orient ourselves, observe and 

reflect upon. This capacity of the mind to be “affected” (in the deep sense of a 

capacity to be influenced bodily, emotionally, cognitively, etc) leads to a philosophy 

that finds its way through idealism and empiricism. In a way, phenomenology was 

presented as a method for those who want to orient themselves in the field of thinking 

or a way to develop a philosophical thinking aimed at the description of how things 

give themselves (im)mediately. Phenomenology, at the time of Husserl, was taking a 

strong stance against positivism and psychologism.  

The work of Levinas (who was a student of Husserl and Heidegger, himself a 

student of Husserl) was presented as situated in that phenomenological tradition. That 

has permitted scholars to view the philosophical project of Levinas as the 

phenomenological investigation of otherness in its fundamentals.  
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Otherness is taken by Levinas not exactly as a simple object of phenomenology in 

the continuity of tradition, but as a particular thematic enabling him both to enter into 

discussions with his masters Husserl and Heidegger and to criticize some of their 

results and to renew the phenomenological tradition. 

As Levinas put it in his several phenomenological essays, the notion of Otherness 

is taken as the central part and the core of the human being. In his work, Levinas 

overturned the traditional (from Plato to Heidegger) ontological way of thinking of 

the human being. For him, the philosophical inquiry on the human being does not 

begin from his nature (the ontological perspective), but from his relation to the Other 

(the ethical perspective). In other words, ethics here is not understood as a “satellite” 

element of human existing, it is rather the central and the determinant field of 

reflections and research. Levinas opened a very new perspective on the human being 

which is no longer perceived as an isolated subject beset by phenomena, an ipseity 

thrown into reality, as Heidegger would say, but an ethical subject revealing himself 

in relation with the Other. 

In this perspective, Levinas introduces the concept of Face (in French visage) 

which could be considered the authority of the Other, the injunction of the Other who 

imperatively asks for a careful relation. Levinas would say that Kant’s categorical 

imperatives are in the Face of the Other. That leads Levinas to see the other human 

being as something infinitely-other, something that cannot be totalised, that cannot be 

filled with intuition. 

To introduce a reflection on historical images and documents, some quotations 

from (Levinas, 1989) were given. Levinas introduces the concept of Resemblance, 

referring to the fact that we have the opportunity to get to know the thing through its 

image. The image is not to be considered a mere simulacrum and resemblance, not 

even a vague link to reality: “We will say the thing is itself and is its image. And that 

this relationship between the thing and its image is resemblance […] there is the 

simultaneity of a being and its reflection. […] Resemblance is […] the very structure 

of the sensible as such […]”. 

Fig. 3.1 shows a person who is doing an action or, better, who is going to do an 

action. We say that the person shows an intention, like in every figurative work of art: 

“[E]ternally Laocoon will be caught up in the grip of serpents; the Mona Lisa will 

smile eternally. Eternally the future announced in the strained muscles of Laocoon 

will be unable to become present. Eternally, the smile of the Mona Lisa about to 

broaden will not broaden”. 

 

Figure 3.1: Oronce Finé, 1532, Protomathesis, Lib. II, fo. 66. 
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But “the immobile statue has to be put in movement and made to speak…”. That 

image requires the student, who analyses it, to carry out the action: mentally or 

practically. The students of the second class of the upper secondary school Liceo 

Rosmini of Trent – Italy used that image to be able to understand how to measure a 

distance of a point far away by means of the above instrument, the quadrant. It was 

used in the Middle Ages and in the Renaissance for topographic and astronomical 

measurements. It is made of a wooden square having sides of about one meter. The 

index can turn around the point A until reaching the direction AE. E is the point we 

want to know the distance of, which is calculated by considering that the triangles 

AFD and ABE are similar. 

A few other Levinassian concepts were introduced in order to give further insights 

into his philosophy, above all in order to help the participants in the reading of the 

excerpts. These concepts will be introduced in the next section, where we present the 

excerpts that have been chosen for the reading activities. 

3.2 Readings of some excerpts from Levinas’ main texts 

After this short exploration of Levinas’ philosophy, we proposed a reading activity to 

the group. The objectives were not only to deepen the exploration of the Levinassian 

perspective, but also to give a hint of the style of analysis that is deployed in that 

work. It was also a way to “enter” Levinas’ work and to start a deeper discussion 

about it. We will try to highlights here how, more specifically, the selected 

excerpts refer to the following notions:  

- Alterity and Violence(in a way, understanding the Other is to commit violence 

against him) 

- Ethics and Hermeneutics (the Other and interpretation) 

- Face of the Other (to be nude in front of the Other, not in an oblique standing) 

- Metaphysical Desire  (the total towardness to the Other, the dis(inter)ested 

relation with the Other) 

Concerning the notion of Alterity and Violence, the introducing “In what sense 

[…] does the absolutely other concern me?” (Levinas, 1986) can be borrowed as the 

fundamental question with regard to the reading of a historical document considered 

as an experience of alterity. Reflections aimed at looking for some answers to that 

question can be found in the following reports of educational activities with students 

of different levels (secondary school students and prospective teachers, see section 4). 

Necessarily, each of those answers will be partial, even if we refuse to consider the 

psychological specificity of the students. In some lines ahead in the same work, 

Levinas insists on the relation with the other and puts forward the danger of 

“transmutation of the other into the same”. Levinas deepens the meaning of the 

previous sentences speaking of the reduction of “an alien world to a world whose 

alterity is converted into my idea”. On the contrary, he opposes the “thought which is 

[…] thought of itself […] a movement of the same unto the other which never returns 

to the same”, that is to “the myth of Ulysses returning to Ithaca we wish to oppose the 

story of Abraham who leaves his fatherland forever for a yet unknown land”. That 

reduction of the other to a mine is what Levinas calls violence (Guillemette, 2017). In 

that we can also see the “ambiguous nature of knowledge” which 
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is “representation and movement […], the dynamism of the infinite and the fullness of 

actuality” (Levinas, 1999, p. 58). 

Concerning Ethics and Hermeneutics, “The manifestation of the other” (Levinas, 

1986) is, in a sense, not different from every “signification”. The cultural context 

illuminates the other. Here Levinas makes a comparison with a text and its context. In 

philosophical hermeneutics, the context has a central role in understanding a text, 

specifically both in the fusion of the horizon with the author and, through the 

reference to specificity and whole, in the hermeneutic circle. Levinas points out that 

“the comprehension of the other is thus a hermeneutic and an exegesis”. The other 

appears in his corporeity, linguistic acts, artistic gestures. “The other is given in the 

concept of the totality to which he is immanent”. The use of the term “totality” 

produces the expectation that Levinas would introduce another level into his 

discourse; in fact, reminding the title of his masterpiece Totality and Infinity, we can 

expect that he goes beyond that term derived from ontology in order to introduce 

infinity. That is made with reference to the face.  

Concerning the concept of the Face of the Other, Levinas emphasizes that“[T]he 

phenomenon which is the apparition of the other is also a face […] the other does not 

only come to us out of a context, but comes without mediation” (Levinas, 1986). The 

face opens to infinity through his independent signification. But how can the infinity 

of the face appear in a phenomenon? The face, like “every entity, when it enters into 

immanence, that is, when it exposes itself as a theme, is already dissimulated” 

(Levinas, 1986). The Other (“the absolutely other”) can be friendship and can be the 

way through which the I can open to infinity. “The face-to-face is a relation in which 

the I frees itself from being limited to itself” (Levinas, 1999, p.56). In that lies the 

pedagogical value of that relation. The ethical relation depends on the fact that the 

approach to the other establishes “an experience different from that in which the other 

is transmuted into the same” (Levinas, 1986). The temptation to make the other a 

mine - to become his owner, to commit violence against him - is not possibly related 

to that situation.   

Concerning the concept of Metaphysical Desire, Levinas emphasizes that “The 

metaphysical desire tends toward something else entirely, toward the absolutely 

other” (Levinas, 2010, p.33). It passes through the acceptance of the alterity of the 

other and also through the openness to walk on a path without end, without aim, 

through the impossibility to anticipate what is being desired. “It is a desire 

that cannot be satisfied”. When a student abandons any reference to the teacher’s 

requests and follows his personal interest for a topic, he desires to 

enter alterity without wondering where to go; it is the situation of somebody who does 

something without thinking of constraints or rewards; it is, in any case, what happens 

- also as the consequence of a request by the teacher - when a student has to 

understand a mathematical concept. Necessarily, he/she abandons, for a moment, any 

reference to the teacher’s requests, and begins an unpredictable process in order to get 

the desired acquisition. So, even if the student can outline the desired acquisition as a 

performance - for example as the solution of exercises – he/she must follow, at least 

for a moment, a blind desire. If the student completely lacks that desire, he renounces 

to enter the process of understanding.  

29



Having a complementary role, the excerpts from page 275 to page 282 of (Levinas, 

1997) aimed at discussing with the participants in what sense the abandoning of 

reference to the other in science can get start to negative consequences. In fact, 

Levinas problematizes the role of science (Levinas, 1999, p.71) by speaking of 

“its incompleteness” as regards the idea of infinity. The statement of the central place 

of “Man” and the “respect for the person, both in itself and in the Other” (Levinas, 

1997, p.275) contrasts with the “anti-humanism” of the 20
th

 century. We wanted to 

submit to the participants those reflections in order to recall the context in which 

Levinas’ thought originated (a Hebrew, a prisoner during World War II, his father and 

brothers killed by the SS…) and to focus on the importance of looking for the other in 

scientific documents as a way to meet “man” while speaking of mathematics. In a 

wider sense, we would underline that science is meant for mankind. 

4 Levinas and the convocation of historical elements in the 

mathematics classroom 

After the exploration of Levinas’ philosophy with the group, our objective was to 

highlight how the phenomenological reflections of Levinas on Otherness support our 

(of the authors) own respective research activities on history and mathematics 

education as well as to discuss it with the group. Two activities based on the data 

analysis from empirical studies were simultaneously organised. Participants had the 

possibility to work on the situations of their choice and were encouraged to reflect 

upon them. A few questions were given to the group in order to help the participants 

to start their reflection. 

4.1 Data analysis concerning Luca Pacioli’s work 

A data analysis activity with the group was organized on Luca Pacioli’s work. 

Some excerpts from Pacioli’s Summa (Fig. 4.1 and Fig. 4.2) were interpreted by 

students (17-18 years old).  

Figure 4.1: Pacioli 1. 

[For the following English translations: “co” literally means “thing”; “ce” means 

“census”.] 

“[…] Find me a number that, if joined to its square, makes 12. Imagine that the 

number be a thing. Square it. It makes 1 census. Join 1 thing. It makes 1 census plus 1 

thing equals 12. Halve the things. It becomes ½. Multiply by themselves. It makes ¼. 

Joint the number which is 12. It makes 12¼ . And the square root of  12¼ minus ½, 

because of the halving of the things, equals the thing that is 3. And the required 

number makes this amount, as it appears. […]”. 

Luca Pacioli, 1494, Summa, folio 145. 
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Figure 4.2: Pacioli 2 

“[…] Find me a number such that, if ¼ of its square is added, makes 3. Let that 

number be 1 co; its square will be 1 ce. Its ¼ be ¼ ce which added to 1 co will make 1 

co p[lus] ¼ ce, it will be equal to 3. You see that you have less than 1 whole ce 

because it results ¼ ce, but I say that you [can] reduce it to 1 whole ce, that is divide 

all equation by ¼; you will have 1 ce p 4 co equals 12 […]” 

Luca Pacioli, 1494, Summa, folio 146. 

Students synthesized their difficulties through questions or utterances, such as: 

“Where is the question? Where does the solution begin? No modern symbols!” This 

suggests their discouragement. The experiment is described in (Demattè, 2015). The 

same documents were presented to the group of participants. 

In this study, we wanted to highlight just the students’ behavior in front of their 

difficulties. They renounced in planning actions in order to reconstruct the meaning of 

specific parts with reference to each other and to the whole text, neither to take into 

account the global meaning as a resource to understand single parts. In the 

Levinassian perspective, that suggests students’ incapability to see the other in the 

text and to consider that the comprehension of the other is hermeneutics. In the 

meanwhile, that suggests the importance to help students in creating the “cultural 

whole” (Levinas, 1986) in which the other is present. In classroom activities, the 

original text and a brief oral presentation by the teacher have not been enough to put 

the students in the trace of the other. In that presentation, the reference to 

mathematical aspects (quadratic equations) was prevalent. This, directly or indirectly, 

led – teacher and students - to violent behaviors, namely to neglect the richness the 

documents offered and, instead, to use it only for the specific purpose to train students 

with problems and equations. In this way, alterity has been converted into a narrow 

idea that came from the teacher. That situation could have hindered the students’ 

approach to the other in the document, considering also the question mark we can put 

on the possibility they share the usefulness of that purpose. 

4.2 Data examination concerning Fermat’s work 

A second data analysis activity was proposed to the group. It was around some of the 

data from a study (Guillemette, 2017) concerning the actual experience of prospective 

teachers engaged in the reading of historical texts. 

Here is the material that was given to the participants: 

In the next two excerpts from video analysis, we can see how future teachers’ 

mathematical activity interacts with Fermat’s minima and maxima method, and how it 

is interpreted. The activity concern Fermat’s general description of his method and 

the first example given. He finds the maximum or minimum of a given term f(x) by 

“adequating” the two expressions f(x) and f(x + e), reducing and clearing remaining 

“e-terms”. The example analysed here (divide a line AC at a point E such that 

rectangle ACE area is maximized) involve a term in the form of f(x) = bx - x
2
. 
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First excerpt (Katia and Mitia): 

Mitia says he doesn’t understand why his [Fermat’s] approach works. Katia says 

the same. 

 

Figure 4.3: Katia and Mitia reading Fermat 

Mitia then read the first paragraph aloud and tries to know the meaning of the 

unknown e. 

Katia gives the hypothesis that e is a variable and that one must find for which 

value of e the area is maximum. Mitia doesn’t see what it comes about. Katia then 

represents the function to be maximized and a second one whose side is increased by 

e. She emphasizes that it is difficult to represent the division by e with this geometrical 

representation.  

Mitia notices that e is 0. Martha, from the other side of the classroom, indicates 

that Fermat previously divides by e. Mitia wonders, “How could he divide by 0?”. He 

concludes that “e is not worth 0, but not far”. Katia continually tries to illustrate the 

procedure geometrically, while Mitia invalidates her reasoning, claiming that the 

value of e is zero. Katia disagrees. 

Second excerpt (Martha, Aliocha and Ninotchka): 

Martha is saying that e is a very small value. 

 

Figure 4.4: Martha, Aliocha and Ninotchka reading Fermat 

Aliocha is trying to reconcile Fermat's method with the basic elements of modern 

calculus. He asks: “if adequating means to subtract the terms”. Ninotchka answers 

that “adequating means simply to equalise”. 
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Then Aliocha asks how she relates Fermat to modern calculus. Ninotchka shows 

his calculations and Aliocha concludes that their reasoning is equivalent. 

After a few moments, Martha points out that Fermat removes e. Aliocha indicates 

that “e is almost 0, so the multiplication by e also gives almost 0”. Martha asks 

herself whether the reader should “decide on the value of e”. Aliocha replies, “Yes”. 

Martha emphasizes that there is something missing in the reasoning. Aliocha asks 

why Fermat is using symbol of inequality, and concludes that adequating means to 

reduce to the minimum. 

In this study, the investigation points out two interrelated experiences lived by the 

prospective teachers: otherness and empathy. Participants have shown serious efforts 

to understand the historical texts without uprooting them from the context in which 

they were produced. Indeed, the associated experience of otherness in mathematics 

seems rough from a cognitive and affective viewpoint, and it may lead to violent 

responses. For Levinas, violence is a “thematization of the Other”, a reification of the 

Other, a way to make the Other a “Mine”. Empathy and violence have been observed. 

Indeed, the subjectivity of the authors is sometimes arduously preserved. The students 

not always maintain an empathic relation with the authors. This violence can result in 

the disappearance of the empathic relationship. The authors are then dispossessed of 

their peculiarities; they are translated, summarized and reified. For us, in a 

Levinassian perspective, there is a violence of synchronization (Levinas, 1987). 

Looking to engage the participants of the workshop in a reflection around these 

elements, the group was asked the following questions aimed at suggesting a trace of 

reflection in order to prepare the written work (see section 5): 

- Would you agree that their way to engage in the reading of Fermat’s text is 

related to ethics? In what sense? 

- In what sense did they (or did not) actually show an ethical relationship 

regarding Fermat in the excerpts? 

- How Levinas can help us to understand the encounter with Fermat (from the 

researcher’s or the educator’s viewpoint)? 

Globally, the ethics to which we refer in these excerpts are that of the interaction I-

Other. Indeed, some ethics that subvert the traditional principles! In a sense, 

the Levinassian approach goes back to the origins of the traditional ethics. We do not 

made reference to the ethical responsibility of the teacher as in Boylan (2016).The 

students showed their ethical involvement in reading the historical documents 

deepening their interpretation, not limiting to the comprehension of the procedural 

aspects. In that way, they started an infinite process, as Dilthey pointed out when 

speaking of the possibility to know the writer and considering “the limits of all 

interpretation, which is able to fullfil its task only up to a certain point. For all 

understanding always remains partial and can never be completed. Individuum 

estineffabile” (1996, p.249). 

5  Final writing activity 

For the final writing activities, participants were invited to work together in small 

groups. Most of them accepted that proposal but some preferred to work individually. 

The suggested task was to answer, in a written form, the questions below. During the 
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work, we talked to the participants. Some participants preferred to only orally discuss 

their opinions with others and not to write down their answers. After the workshop, 

we (the authors) met and shared some oral remarks of the participants. 

5.1 List of questions 

The questions to the group were:  

1. From the educational point of view, what are the differences between Pacioli’s 

and Finé’s documents? Does the visualization of people help in the Levinassian 

perspective? 

2. How can a student find the “presence” of the Other in a historical document? 

3. Describe your agreement about the following statement: ‘For students, 

analysing historical documents is an experience of extreme alterity, positive 

per se. Students, though, are sometimes attracted by that experience and 

sometimes discouraged by it”. 

4. Suppose that instead of debating about Fermat’s Methodus ad disquirendam 

maximam et minimam and posing questions about the sense of the procedure, 

Katia and Mitia might, for instance, have only tried to use the method in 

another example. Do you agree that their behavior is related to Levinas’ ethics? 

5. What did you treasure of Levinas’ philosophy in this workshop? 

6. Which links can you make between Levinas’ philosophy and the history of 

mathematics in mathematics education? What has ethics to do with history of 

mathematics in mathematics education? 

7. Do you agree that not considering mathematical and, generally, scientific 

knowledge related to the Other’s involvement leads to negative consequences? 

Do they regard mathematics education? (See excerpt from Difficult Freedom) 

The rationales for each question are the following. 

Question 1 aims at discussing the relationship between secondary school students 

and authentic historical documents. The question requires comparing the document of 

Pacioli with the one of Finé. After the presentation of Levinas’ philosophy, we 

assumed that the participants could have submitted answers related to the fact that 

Pacioli’s document is somewhat obscure so that students could hardly find another in 

it. On the contrary, Finé’s document shows a person acting with an instrument that 

suggests the presence of mathematics. 

Question 2 is connected with question 1 and proposes a more general reflection 

inherent in the hermeneutical task to comprehend the other. Any reference to Levinas 

is missed out so that the question does not have a rhetorical role. Instead it is proposed 

to the participants in order to gather their opinions. 

Question 3 completes the previous two and focuses on the concrete problem of the 

class. On the whole, the three questions propose different levels of reflection: class, 

historical documents, Levinas’ philosophy. Sometimes the focus is apparent and 

sometimes the problem remains open to different references and elaborations leading 

to the answer. 

Question 4 compares both a real and a hypothetical situation in order to reflect on 

the meaning of ethical involvement of students who read a historical document. In 

that case, the final question can be considered rhetorical because it requires to relate 
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the educational situations with what we consider the first point of Levinas’s 

philosophy. 

Through question 5 we wanted to inquire to what extent our proposal, in its general 

aspects, passed on to the participants. 

Question 6ideally completes question 4 and question 5. After the previous referred 

both to the class (with prospective teachers, in that case) and to Levinas, the focus is 

now on history in mathematics education. 

Question 7 has a complementary role with the main points of the Levinassian 

philosophy we presented. It broadens the reflection to the responsibility of science 

and to the role of mathematics education: a different way to consider the role of 

ethics. 

During the workshop, we realized that some participants already knew Levinas’ 

philosophy. Therefore, they were able not only to give their opinions about the 

questions and the situations we submitted to them, but also to establish connections 

with works of other authors and to come up with suggestions about the workshop 

activities. 

5.2 Resume of the writings 

The following points are the transcription of the answers written by the participants 

during the workshop (the numbers correspond to the previous List of questions; the 

alphabet letters identify each participant. Please note that some of them did not 

answer all the questions). 

1. 

A. I think it is the “appearance” of Infinity and Totality. 

B. Arithmetic – Algebra vs. Geometry. Visualization. Has to do with Levinas 

perspective, is a way of seeing, understanding – cure of other. 

C. Yes, absolutely the visualization helps. 

D. Pacioli’s task is described via words. However, Finé’s document offers a picture 

to help understand. There is no doubt that visualization helps students to read. 

E.---  

2. 

A. He finds a lot of strange and unknown methods, ideas and practices. 

B. The other is in expression, symbolism, other ways of written a text   

which is different from ours. 

C. Maybe to put in context, it is the representation in this time, the discussions 

about the infinity concept in these times… 

D. Different persons offer diverse viewpoints. 

E.--- 

3. 

A.--- 

B. Of course, it is a “dépaysement”, they are trained on that they 

prefer little text, clear question. 

C. Yes, I agree. It is like try to understand other languages. So the visual 

representations can be useful in this task. For instance, to know what kind of artefacts 

have in these times helps to understand the kind of productions awaredby the 

mathematicians in determined times. 
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D. Students might be interested in how historical situations came about. Their 

curiosity can be served as a stimulus to solve the problem themselves. Meanwhile, 

due to the era differences, students can also be discouraged by the solution 

mathematicians figured out. They vary from different notation to ideas. 

E. (Translation of the original in French.) I totally agree with the statement: for a 

student (a majority of them) analysing historical documents is an experience of 

extreme alterity (differently from one another).More generally, learning something 

new is related to an absolute (more or less high) alterity. The student or pupil is 

tackled within his convictions, ideas which he lived, heard, learned before. Ideas that 

don’t fit with the teaching that has occurred. The evidence acquired is now in 

question. What to do? Either to say no to the past for an alterity absolutely disturbing 

or to submit ourselves at a reality that is not ours? Here the work of the teacher begins 

and goes beyond the simple learning of notions. 

To confront with historical text, not because they are ancient, but because they go 

beyond a conceptual level, because they destroy barricades, because the barricades 

had to be destroyed, and they access to other barricades that have to be destroyed, and 

so on, a path that the student will have to take himself.  

4. 

A.--- 

B. No, because they are in procedural way and not conceptual. 

C. --- 

D. Their behaviours are related to the Levinas’s ethics as students (also us 

teachers) learn more from different approaches. In the process of listening and 

discussing with others, we learn. 

E.--- 

5. 

A. I was attracted very much and I have to mention that this was my first contact 

with his work. I leave from the workshop full of questions, quite interesting. 

B. Alterity – otherness, subjectivity, resemblance 

C.--- 

D. Otherness brings us with fresh ideas, approaches to activate our thinking. 

E. The quest for the absolute: tiring, useless and alienating. No thanks! Indeed, the 

statement that teaching is, in a way, violence upon the other seems to me an idea more 

than interesting, more than judicious.   

6.  

A. In an aspect, we face several forms of relationships, the notion of power and 

how we use it. 

B. Understanding the others (different period texts, ideals, goals) 

C.--- 

D. Levinas’ philosophy puts emphasis on otherness, which promotes students with 

abundant opportunities to get familiar with problems and inspire them to think more 

as alternatives are provided with. 

E.--- 

7.  

A. In some way I agree. 

B. Yes. 
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C. Absolutely yes! The students tend to think that the mathematics algorithms or 

procedures are impersonal and disconnected with humanity problems. Other bad 

beliefs which are consequence of this “not considering” is, for instance, the 

mathematicians never wrong and all problems have a only one solution way… 

D.--- 

E.--- 

F. (Not a particular question, just thoughts.) 

Students usually want a method they can follow, which can be violence. But from 

the excerpts they are m??? wondering, trying to understand, finding obstacles while 

doing it. Then they adjust and renew their own understanding. 

They need to respect the others understanding by not just taking it over. 

They learn by making their own understanding and keeping the other alive with 

respect. 

When you get to know an other you need to care about the other person and not 

make the other yours by thinking you understand them. 

5.3 Resume of the oral commentaries 

Some participants who chose not to write their answers preferred to give oral 

commentaries. Just after the workshop, we took note in a debriefing. 

Participant G. He posed the problem of identifying the Otherand highlighted the 

difficulties to “choose” proper manifestations of the Other for ourselves during a 

history-based activity. He pointed out the example of the hat of the person depicted in 

the image from Finé, underlining that it probably had nothing to do with mathematics. 

From that, he raised the pedagogical problem of how to lead students to approach a 

historical document, and to help them to focus on mathematical concepts. 

H. She noted that Levinas can help to think about mathematics itself as something 

that has inherently to be done with that experience of otherness. This helps one 

thinking of mathematics as a way to be-with-the-others. 

I. He insisted on the question “What/Who is the Other?” From a more strictly 

philosophical point of view, he spoke of the necessity of a “mutual transformation” of 

identities. 

L. He made a remark about the notion of trace. Presence and absence are 

modalities of the manifestation of the Other. This implies the responsibility for the 

teacher to make the otherness of the Other to appear. 

M. She insisted on a non-violent relation with the other as something necessary for 

learning. There is the necessity of making room to the Other within the act of 

learning, by letting the Other show himself up. 

N. She referred to Arthur Rimbaud’s “Je est un autre” [I is anOther], as a way to 

think about human subjectivity as something multiple, permeable,etc. 

O. He referred to Jean-Luc Godard “Si vous m’avez bien compris, c’est que je me 

suis mal exprimé” [If you understood me well, it means that I didn’t express myself 

well], as a way to think about the violence of the act of understanding. 

P. She considered multicultural class issues, where history is a way to think about 

different possibilities of teaching mathematics and different capabilities of students in 

learning it. 
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6  Discussion about the activities 

Just after the workshop, we reflected on the fact that participants’ answers could 

surely have been influenced by the reference to the Levinas’ thought: we feared that it 

might even have happened in contrast with their real convictions. To be honest, in 

some sense the questions have to be considered a sort of exercises with respect to 

Levinas’s works. In such perspective, it would have been better to express question 1, 

for example, in a more direct form: “[…] What aspect of Levinas’ thought do you 

consider inherent to the visualization of …”. 

Here, we recall the previous answers focusing on some points, looking for 

connections and possibly sketching unitary discourses. This has the ideal purpose to 

broaden the dialogue we had with the participants also to the readers of these 

Proceedings. 

About question 1, participants A and B use terms that are particularly meaningful 

in the Levinassian perspective, that is: “Infinity” and “other”; the latter sketches a 

reasoning about images as connections with the Other. Participants C and D prefer to 

highlight the use of images in mathematics, specifically in geometry, in order to 

facilitate students’ understanding. 

Question 2. After B, students could track the other through the unusual symbols 

and expressions, and also through particular ways to write the text they see in the 

historical document. From the previous historical document, two examples of 

particular ways to write a text can be the absence of a typographic distinction between 

problem and solution in Pacioli’s excerpts (Fig. 4.1 and Fig. 4.2) and Fermat’s use of 

equalities in the “adequating” method. After A, the student can learn that also in 

mathematics there are different viewpoints. C highlights the pedagogical opportunity 

to refer to the context in which mathematical concepts were used, so that they appear 

as the expressions of a specific historical period.   

Question 3.The answers underline the possibility that students be discouraged 

while working with historical documents, but individual differences can be found. By 

means of the keywords “little” and “clear”, the answer of B gives a hint to discuss the 

ways by which students are used to approach mathematical tasks. We think that this 

can suggest that students are not used to tackle complexity. In addition, C (speaking 

of understanding “languages”) introduces the theme of the difficulties that students 

meet and have to overcome. Both these answers pose an educational problem that is 

how the teacher can help student facing non-trivial mathematical problems (we 

consider, among them, also the interpretation of historical documents). Students’ 

curiosity or specific tools such as visualizations can be resources to be exploited. E 

discusses how students live alterity: his general utterance seems to derive from the 

specific cases of documents interpretation. Alterity is identified with “learning 

something new” and the necessity for students to always overcome new “barricades”. 

This suggests reflecting on an attitude for school success, i.e. the willingness to tackle 

difficulties. After Levinas (2010, p. 213, English edition) “[t]he relation with the 

Other, discourse, is not only the putting in question of my freedom, the appeal coming 

from the other to call me to responsibility, is not only the speech by which I divest 

myself of the possession that encircles me by setting forth an objective and common 

world, but is also sermon, exhortation, the prophetic word”. We would like to read 

this passage in these terms: “the relation with the Other”, present in the historical 
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document, who offers him/herself to me through a discourse inherent in mathematics, 

“is not only the putting in question of my freedom”, i.e. staying in my closure and 

ignorance, without attention for Other’s, conditioning, proposal, “the appeal coming 

from the other to call me to responsibility”, i.e. to being open to the content of the 

document and being ready to tackle difficulties and surmount obstacles that I can 

meet in understanding, “is not only the speech by which I divest myself of the 

possession that encircles me”, by which I put in discussion my previous knowledge 

about historically contextualized mathematics, “by setting forth an objective and 

common world”, by accepting to discuss the problems the document presents to me, 

“but is also sermon, exhortation, the prophetic word”: the Other, I recognise inside the 

document, is the mirror of the Third Party that is the community of mathematicians. 

The Other offers himself to me without violence, shows me a goal, leads me through 

his/her proposal and so gives me motivation. So, a problem with the class rises: are 

we able to help students to see in mathematics (in history and documents) the Other 

who can “exhort” them in their effort with mathematical problems? 

Question 4. D proposes a general reflection on Levinas’ ethics referred to the 

dialogue with the Other in learning. He relates the behaviour of Katia and Mitia with 

Levinas’ ethics. B seems to give the reason for considering their behaviour as ethical: 

because they are working with reference to conceptual aspects and not (only) to 

procedures. 

Question 5. The term “Otherness” is present in two answers (B and D). The last 

contribution (E) mainly refers to violence (to deepen this, see Guillemette, 2017).  

Question 6. The answers confirm that this question could be considered a synthesis 

of the previous five. Again, they propose the theme of alterity (“relationship”, “other”, 

“otherness”) again. We note references to history and mathematics education in the 

use of the following key words recalling the answers to question 2: problems and 

alternatives, different period texts. 

Question 7. The answers report three levels of agreement. The last one focuses on 

educational problems and suggests a few more examples presumably regarding 

mathematics as a socio-cultural process. We expected that the document from 

Levinas’s Difficult Freedom could lead participants’ reflection toward explicit 

remarks regarding the social use of science. 

Participant F opens and closes his “thoughts” by referring to the concept of 

violence. The first reference recalls what Levinas says in his Preface to Totality and 

Infinity: violence toward persons is “making them carry out actions that will destroy 

every possibility of action”. Let us consider students who are requested to perform 

methods or procedures they do not understand: will they be able to act by using them 

in a new situation, for example in solving a problem? We believe the answer is no. 

Nevertheless, we, as teachers, too often force our students to follow rules that, in their 

eyes, have neither justification nor usefulness. Insisting on our reflection on the fact 

that students “want a method” to follow, we can say that they seem to have 

internalized the customs of the person (teacher) who commits violence against them. 

They seem to require behaving like that person even if, in that way, they suffer 

violence. 

We propose here a categorization of written and oral answers, considering the 

different kinds of elaborations that the participants offered. In brackets, for the written 
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answers, the question numbers are written close to the participants’ capital letters; for 

the oral commentaries, O is followed by the participants’ letters. Underlined are those 

answers that touch one or more aspects - out of a, b, c, d, e, f – in case they do not 

match the corresponding question. We consider that question 1 is inherent in the 

aspects a, f; question 2 in a, d, f; question 3 in a, d, f; question 4 in a, d, f; question 5 

in a; question 6 in a, f; question 7 in a, e. Please, note repetitions highlighting the fact 

that some answers touch different aspects; remind that F wrote some thoughts without 

reference to any specific questions. Some answers that express agreement without any 

specifications do not appear in the following categorization.  

Categorization of written and oral answers: 

a. References to the Levinas’ thought (1A, 1B, 4D, 5A, 5B, 5D, 5E, 6A, 6B, 6D, 

OG, OH, OI, OL, OM, ON, OO) 

b. Connections with other authors (ON,OO) 

c. References to mathematical contents (1B)  

d. References to students or class (1B,1C,1D, 3B, 3C, 3D, 3E, 4B,6D,7C, F, OG, 

OP) 

e. References to mathematics education (3C,3E,4D,5E, F, OG, OH, OI, OL, OM, 

OO) 

f. References to the history in mathematics education (2A, 2B, 2C, 2D, 3C, 3E, 

6A, OG, OP) 

The above categorization suggests some reflections about the outcomes of the 

dialogue that took place during the workshop. The added categories b and c touch 

aspects that we recognize absolutely relevant to the topic of the workshop. The small 

number of participants who referred to them does not diminish their value, being 

suggestions that only indirectly derive from the questions we posed. A posteriori, we 

recognize that the presence of b in some questions could have led the participants to a 

critical position with our presentation of Levinas’ thought. Concretely, the reference 

to other authors could have been limited to the quotations of their points of view, 

excluding a further comparison between their theories. The presence of c in some 

questions could have given more concreteness to the reflection, but it is not to 

forget that the aim of the workshop was to focus on methodological aspects. 

The fact that some participants did not choose to write their answers, preferring 

instead oral interventions, suggests the limits of writing as recording tool with respect 

to others, i.e. audio or videotaping. 

It is noteworthy that one of the participants helped us, by email, to ‘interpret’ his  

own written answers a few weeks after the end of the workshop. 

The answers are often short and seem only to give strength to what the 

corresponding questions suggested. We can note that, in the cases in which the 

answers are wider, the participants either chose to answer only some of the questions 

or left out the reference to specific questions. That fact could suggest the organizers to 

further diminish the number of the questions and to make them less analytic. For 

example, it would have been preferable to unify the first two questions rather than 

refer to the historical documents given during the presentation of the workshop, and 

also should have been more important to insist on alterity in historical documents. 

Question 5 should have occupied the first place and, moreover, question 6 should 

have contained the final line of question 4. A different possibility might have been the 
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one of substituting all the questions with keywords, with an introductory statement 

requiring the participants to write down some reflections or suggestions inherent in 

them, or their free observations about the contents and structure of the workshop. 

Question 7 could have been deleted because the reflection on mathematics education 

it proposes seems too wide and even too vague. 

7 Conclusions 

When we got the announcement for ESU8, at the beginning we thought to submit a 

proposal of an oral presentation, but to be structured in a different way that is in 

dialogical form. We thought that brevity would help us to reduce complexity in our 

experiment. Dialogue would give the possibility to introduce ‘Levinas in action’, as 

interactions between the same and the others. This would subvert the traditional 

structure of oral presentations in ESU Conferences and would contrast with the 

participants’ expectation. We concluded that a workshop could be the best location 

for a dialogue on Levinas and for approaching his thought, in case for the first time. 

Moreover, organisers suggested a two hours’ workshop, instead of one and a half-

hour one. We were aware of our responsibility in organizing more complex activities. 

We were also aware that participants would tackle a difficult task, even having a 

longer time at their disposal. We were afraid for the fact that none of them might have 

ever approached Levinas before: what could be the best way to introduce him? Would 

the traditional presentation be enough? What kind of activities to involve participants? 

And in case of a not immediate positive response? 

According to the seminal character of the workshop, a more realistic aim was 

arousing interest in the theme and stimulating involvement in the activities. We 

consider that this aim was reached. Moreover, in the last part of the workshop we 

were asked by a participant for some suggestions about how to deepen Levinas’ 

thought. We concluded that articles and books regarding mathematics teaching or 

history in mathematics education could help to focus Levinas’ role in those 

perspectives (e.g. Boylan, 2016; Maheux, 2013; Radford, 2012; Roth, 2011; Roth & 

Radford, 2011). Moreover, other secondary sources about Levinas’s works could help 

to see him inside the history of philosophy, comparing him, for example, with 

Descartes, Husserl or Heidegger, in order to focus on the aspects of innovation in his 

thought and on his prophetic message. 
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ABSTRACT 

This workshop explored the creative re-construction of historical events in theatrical form, and practical 

ways of using such plays in mathematics classroom contexts with minimal rehearsal. Participants were 

invited to stage cooperatively a 30-minute pre-scripted play featuring Niels Abel and contemporaries, 

fronted by a historian and an educator, aiming to place Abel’s mathematical work in the context of his 

personal life.  The dialogue is designed to display his courage and audacity, and the frustrations and pathos 

of his brief life. Poignant speeches drawn from his correspondence give insight into personal hopes and 

fears, publication challenges, and the intellectual excitement of creating new mathematics. Afterwards,  

participants were invited to critique the play, share ideas or experiences of using such theatrical tools in 

classroom settings, and then discuss in groups how they might go about weaving highlights from primary 

sources and biographical materials (distributed to groups) into dialogues for classroom use.  

1 Why are mathematical plays important? Why the Abel play? 

 Niels Henrik Abel (1802-1829) was a Norwegian mathematician educated in Christiania 

(Oslo). During his short life Abel made ground-breaking contributions in many fields of 

mathematics. This workshop had a dual aim: to pay tribute to Abel and celebrate his life 

and work, but also to experience and reflect on ways that the devices of dialogue and 

theatre can bring mathematical history to life in the classroom. Participants were 

challenged to construct their own dialogues, drawn from primary sources and biographical 

materials, and encouraged to use theatre in the classroom to contextualise and enliven the 

teaching of mathematics, thus engaging learners in the excitement of mathematics-making 

and celebration of the people and stories behind the symbols, concepts and theorems.  The 

story of Abel’s personal life, linked with his extraordinary mathematical achievements, 

makes for excellent and unforgettable drama, constituting a good example of how such a 

theatrical experience can be both engaging and mathematically inspiring.  

 

Framing the challenge for this workshop 

This subsection contains my introduction to the workshop at ESU8:  

My talk on Saturday introduced the idea of using dialogue or theatre as a 

communication tool. This is not a new idea – it is as old as humanity, and has long been 

used for communicating mathematical, scientific and philosophical ideas, by Plato, 

Galileo, and many more. But live dialogue form is sadly neglected in current curriculum-

driven, time-constrained educational systems. Films with mathematical, historical & 

biographical themes are great, but I am convinced, having observed the effect of 

spontaneous drama and improvisation on young people of various ages, that positively 

involving them in the re-enactment of historical episodes is the key to getting their 

attention, and engaging their hearts and their minds. This workshop will make the case 

and (I hope) be inspirational too, by demonstrating theatre in action, involving all of you 
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in the production and enactment. I will then invite you to share ideas and any similar 

experiences, and also to discuss in smaller groups how to use primary source and 

biographical material to generate different plays and dialogues for different levels, and to 

use the power of theatre in your own teaching. In summary, our workshop aim is: observe, 

enact, critique, create! 

Now I am not primarily a playwright or a historian, but a mathematician. I gradually 

stopped going to topology conferences and started going to mathematical history and 

education conferences. Since then I have had plays enacted in whole or in part at a number 

of ESUs, HPM meetings, and other conferences, in Toronto, Braga, Stockholm, Oxford, 

Uppsala, Dublin, Leeds, Washington, Montpellier, Oslo, as well as in some African 

countries: Zimbabwe, Lesotho and South Africa. Some of these involved teacher trainees, 

and some of my plays have been used in classrooms or mathematics-camps elsewhere by 

others. But I am an academic, and though passionate about using history and mathematical 

competitions in mathematical enrichment in schools, I have had limited opportunity to 

mount plays under real classroom constraints, and so I am not the expert! I am hoping 

some of you may be, or may become, experts. 

I challenge you to become co-creators of an exciting educational tool and art-form! I 

want you to run with the ball, catch the vision, and translate your own love of mathematics 

and its history into magic theatrical moments in your own classrooms. It’s not so daunting 

– to convince you of this is a major goal of this workshop. We’ll put this play on now with 

minimal fuss, minimal props and rehearsal, and (I expect) have lots of fun! Here’s the plan 

for the workshop: [displayed on a slide] 

 

Welcome & introduction – 5 minutes 

Allocation of parts & distribution of scripts – 15 minutes 

Rehearsing in corners – 15 minutes 

Performance of play – 30 minutes 

Reactions & critique – 15 minutes 

Discussion in groups with source material – 20 minutes 

General feedback – 15 minutes 

Conclusion and thanks – 5 minutes 

 

First we will allocate parts. Please don’t be shy to volunteer or to nominate somebody: 

2 stage-crew, 1 sound person, 3 directors, 3 major parts, 4 smaller parts, 6 one-speech 

parts, 6 mime/impro parts; others may help with direction or staging.  

2 Casting, rehearsing & stage setting   

Colour-coded name cards were hung around the participants’ necks as they were cast; 

actors and directors of each mini-scene were given the same colour, so they could find 

each other quickly. A few props were handed to appropriate people with their name cards: 

manuscripts, envelopes, etc. Full scripts were given to participants with major parts, and to 

directors so they could coach their actors in entries and exits. Partial scripts were given to 

others, as necessary. Each script had the relevant part highlighted. The parts were listed in 

order on-screen as below, with colour coding to match the name cards.  
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Stage crew & Sound person 

 

Directors of mini-scenes 

 

 Abel and friends in Copenhagen  

 Abel & Cauchy in Paris  

 Abel, Crelle & Crelle’s Secretary in Berlin 

 Abel & Christine Kemp & Maid in Frolen 

 

Major parts: 

 

 MARIA (narrator, historian of mathematics) 

 EMMY (co-narrator, mathematics teacher) 

 NIELS HENRIK ABEL (young Norwegian mathematician) 

 

Smaller parts: 

 

 AUGUST CRELLE (German mathematician and journal editor) 

 AUGUSTIN-LOUIS CAUCHY (renowned French mathematician) 

 CHRISTINE KEMP (Abel’s young Danish fiancée) 

 BERNT HOLMBOE (Norwegian mathematics teacher & textbook writer) 

 

One speech: 

 LEONHARD EULER (German-Swiss mathematician) 

 JOSEPH-LOUIS LAGRANGE (Italian-French mathematician) 

 CARL FRIEDRICH GAUSS (German mathematician) 

 GIFFEN WILSON (English mathematician) 

 FERDINAND DEGEN (Danish mathematician) 

 CHRISTOPHER  HANSTEEN (Norwegian mathematician) 

 CRELLE’S SECRETARY (German) 

 

Improvisation / mime 

 

 FRU HANSTEEN (Hansteen’s wife) 

 FOUR FELLOW STUDENTS & FRIENDS OF ABEL 

 CHRISTINE’S MAID (Danish/Norwegian) 

 

The stage crew co-operated with directors in placing chairs, tables, desk and couch in 

place for the mini-scenes. The scripted ‘curtain’ was simply imagined. The ‘sound’ was an 

optional feature and was dispensed with to minimise technical problems.  

Casting was done within the allocated 15 minutes, with very little pressure.  The use of 

colour-coded name cards on string necklaces was important in achieving this. Rehearsal 

and stage-setting were completed in the next 15 minutes. The staging and delivery 

suggestions in the scripts were kept to a minimum to emphasise the informal, light-hearted 

and impromptu nature of the production. No suggestion was made (even for short 

speeches) that people should try to memorise lines. This, together with the minimal 

guidelines, helped to allay any anxiety and allow freedom for creative improvisation. 

Participants responded well, and there were sounds of much enjoyment and hilarity in the 
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mini-scene rehearsing; people with short speeches took the time to run through their parts, 

often reading to each other. 

 
 

Figure 2.1: A mini-scene in rehearsal. From left to right: 

Marcela Chiorescu (USA), Peter Ransom (UK), Fàtima Romero-Vallhonesta (Spain) 

3 THE PLAY 

[Maria & Emmy appear front stage, seated to one side] 

 

MARIA: Hello everyone! Welcome to our celebration of one of Norway’s greatest 

mathematicians, Niels Abel! [points to slide showing portrait of Niels Abel] 

 

 

 
 

Figure 3.1: Niels Henrik Abel, Lithograph after a drawing by Johan Gorbitz, 1826 

From Encyclopaedia Britannica,  

Courtesy of the Royal Norwegian Embassy, Washington, DC 

My name is Maria, and I am a historian – I am very interested in the story behind 

mathematics. And this is Emmy, who is a mathematician and teacher.  

 

EMMY: Hello! [smiles and waves]  
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MARIA: Emmy, tell us – what is Niels Abel most famous for?  

 

EMMY: Well, he did many amazing things during his short working life in that second 

decade of the nineteenth century, but perhaps it’s his resolution of the problem of the 

quintic!  

 

MARIA: Ah yes, conquering the quintic equation! Let’s set the scene, mathematically. 

One of the great achievements of the sixteenth century was the cracking by Italian 

mathematicians of the long-standing problem of finding general algebraic rules for solving 

cubic equations, and also quartic equations – fourth degree equations. But to find a rule for 

quintics – fifth degree equations – taxed the ingenuity of the greatest mathematicians. 

Here is Leonhard Euler writing in 1767, expressing his disappointment: 

 

[cameo appearance of Euler, aged 60, frowning and shaking his head] 

 

EULER: All the pains that have been taken in order to resolve equations of the fifth 

degree, and those of higher dimensions, ... or, at least to reduce them to inferior degrees, 

have been unsuccessful; so we cannot give any general rules for finding the roots of 

equations which exceed the fourth degree.
1
 

[EXIT] 

 

MARIA: Four years later, Joseph-Louis Lagrange surveyed and analysed the efforts of 

mathematicians over the three centuries before his time, and reported pessimistically: 

 

[cameo appearance of Lagrange, aged 35, sighing] 

 

LAGRANGE: The result of these reflections is that it is very doubtful that the methods of 

which we have just spoken can give the complete solution of equations of the fifth degree. 

And, for even stronger reasons, those of higher degree. This uncertainty, together with the 

length of the calculations that the methods display, must put off in advance all those who 

might be tempted to make use of them to solve one of the most celebrated and important 

problems in Algebra.
2
 

[EXIT] 

 

MARIA: The great Carl Gauss himself, as the nineteenth century began, was pretty sure 

that the thing was impossible, and said so in the final chapter of his Disquisitiones. First 

he gave a masterly analysis of solutions of what he called pure equations – in particular 

what we now call cyclotomic equations [slide appears], and then he continued:  

 

Gauss’s cyclotomic equations:    x
n
 – 1 = 0 

Gauss's ‘pure equations’:           x
m

 – A = 0 

 

[cameo appearance of Gauss, aged 23] 

 

                                                            
1 Based on (Euler, 1770, p. 286), quoted in (Katz, 2009, p. 665). 
2 Based on (Lagrange, 1771, p. 140); English translation in (Stedall, 2008, p. 348). 
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GAUSS: Everyone knows that the most eminent geometers have been unsuccessful in the 

search for a general solution of equations higher than the fourth degree, or (to define the 

search more accurately) for the reduction of mixed equations to pure equations. And there 

is little doubt that this problem is not merely beyond the powers of contemporary analysis 

but proposes the impossible ... 
3
   

[shrugs and EXITS] 

 

MARIA: During the eighteenth century, British mathematicians, too, had been battling 

with this problem. Listen now to the English mathematician, Giffen Wilson, reading a 

paper to the Royal Society of London, at the close of the century. You can feel the 

frustration and puzzlement caused by prolonged failure to resolve the problem of 

equations of higher degree. 

 

 [cameo appearance of Wilson, showing his frustration; he uses a formal, even pompous 

style, suitable for the Royal Society; italics are mine] 

 

WILSON:  The difficulties under which the higher branches of algebra still labour are 

generally known. […] [pause] No degree of equations beyond the second is yet perfectly 

resolved. Cubics present frequently an irreducible case; biquadratics have, by several 

methods, been reduced to cubics; but no formula exhibiting to the eye the actual resolution 

of a biquadratic has yet appeared.  And, for the fifth degree, and all upwards, not even a 

clue to general resolution has been found, by the combined labour and ingenuity of 

mathematicians for several centuries. This failure has been very puzzling and mortifying to 

the cultivators of algebra […] [pause] 

Whether any method will ever be discovered, it is not easy to say. Whoever may be 

fortunate enough to discern a method for fifth degree and higher, will have the honour of 

removing an important and inexplicable barrier, which has so long obstructed the further 

improvement of algebra.
4
 

[EXIT] 

 

MARIA: That honour would go, twenty-seven years later, to the young Niels Henrik Abel.  

 

EMMY: Except that his insight led, not to the algebraic solution of quintic equations, but 

to a proof that a general method did not exist! However, his work opened up wonderful 

new directions of research and discovery. 

 

MARIA: Yes, indeed! Though I should mention that the Italian mathematician, Paolo 

Ruffini, produced a slightly earlier impossibility proof that was obscure and flawed but 

probably influenced Abel. 

EMMY: We call it the Abel-Ruffini theorem today!  

 

MARIA: And so the long quest to solve the quintic ended, as mathematical quests usually 

do, in many more questions. But what questions they were! 

 

                                                            
3 Based on (Gauss, 1801 & 1966, 445), quoted in (Katz, 2009, 722). 
4 Based on (Wilson, 1799, 265). 
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EMMY: Did the young Niels show his talent early in life? 

 

MARIA: Oh yes, I think so! He was born in Norway in 1802, the year after Gauss 

published his great Disquisitiones. His father, with a degree in theology and philology, 

taught him until he was thirteen, then he attended the Cathedral School in Christiania – 

now called Oslo. In his mid-teens, he was recognised as a potentially great mathematician 

by a new teacher, Bernt Holmboe. 

 

EMMY: [smiles] Once again, the teacher is key to the unlocking of gifts in the child! Did 

nobody recognise his brilliance earlier? 

 

MARIA: Sadly, no. Maybe because the opening of the new University of Christiania a 

few years earlier had drained the Cathedral School of its best teachers. 

 

EMMY: [sighs] If only the best teachers were encouraged, and content, to be where they 

can be most influential, instead of wasting their gifts becoming deputy heads, heads, and 

academics! 

 

MARIA: Well, a good head can be very influential! And so can an academic, for students 

and for creative research – 

 

EMMY: [emphatically] Good heads, good academics and good teachers all have distinct 

combinations of gifts. Helping people find their true vocation must be one of the most 

under-rated professions in the world. 

 

MARIA: Here is Bernt Holmboe: 

 

[cameo appearance of Holmboe] 

 

HOLMBOE: [beams] What a privilege it was to have this splendid young genius Niels 

under my charge! I not only helped him win a scholarship to continue at school after his 

father died, but encouraged him to read works by the greats: Euler, Newton, Lalande, 

d’Alembert, Lagrange and Laplace, even before he went to the University of Christiania at 

the age of 19.
5
 

[EXIT] 

 

EMMY: So the teenage Abel would have been aware of Lagrange’s and even Cauchy's 

work, and the outstanding problem in the theory of equations – the quintic equation! 

 

MARIA: He even thought he had found a general method of solution of the quintic, and 

hoped that his paper might be published by the Royal Society of Copenhagen. Fortunately, 

his paper was read carefully by a Danish mathematician, Ferdinand Degen, who 

demanded numerical examples. In looking for these, Abel realised his proof was faulty. 

 

                                                            
5 This speech is my own invention, based on sources such as the biography in the MacTutor archive. 
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EMMY: Ah – it’s good to see an instance of helpful reviewing! Sometimes new and 

ground-breaking work can be damned out of hand! But a good referee can make all the 

difference! So, what was Abel's reaction? 

 

MARIA: Undaunted, he put the theory of equations on a back-burner, while he launched 

into a study of elliptic functions and other things. 

 

EMMY: How did he pick up that elliptic functions and elliptic integrals would be 

critically important fields for research? 

 

MARIA: It was that reviewer, Ferdinand Degen! 

 

[cameo appearance of Degen, reading slowly and carefully from a draft of his letter] 

 

DEGEN: The development of elliptic integrals would have the greatest consequences for 

analysis and mechanics. ... A serious investigator with suitable qualifications for research 

of this kind would by no means be restricted to the many beautiful properties of these 

most remarkable functions, but could discover a Strait of Magellan leading into wide 

expanses of a tremendous analytic ocean.
6
  

[EXIT] 

 

EMMY: Abel would certainly have discovered the work of his fellow sailor, the German 

mathematician Carl Jacobi! 

 

MARIA: Yes, and found that Jacobi’s results followed from his own. But he was very 

curious to know how Jacobi arrived at his. 

 

EMMY: Did Abel publish anything at that stage? 

 

MARIA: A scientific journal had just been launched at the University of Christiania by the 

professor of astronomy, Christopher Hansteen. From 1823, Abel published in Hansteen’s 

journal papers on functional equations and integral equations. 

 

EMMY: Ah, so he found another mentor at the University! 

 

MARIA: Yes! Here is Hansteen: 

 

[cameo appearance of Hansteen with his wife Fru Hansteen] 

 

HANSTEEN: [looking pleased with himself] Ah, never was there another student of mine 

to compare with the young Niels Abel! I encouraged him in his work, and I also worked 

hard to find him a stipend. And my wife, Fru Hansteen, treated him like her own son! [he 

acknowledges her and she smiles, nods, ad libs agreement]
7
 

[EXIT] 

                                                            
6 From the biography of Abel in the online Dictionary of Scientific Biography. 
7 This speech is my own invention, based on standard biographical sources. 
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EMMY: Meanwhile, I expect, Niels would have kept struggling with the elusive problem 

of quintic equations. 

 

MARIA: And longing to visit the great European centres of mathematics, like Paris and 

Berlin! Here he is, a year later: 

 

[cameo appearance of Abel, holding manuscript] 

 

ABEL: I am convinced I have proved the impossibility of general solution of the quintic! I 

have written it out, but the printing costs are so expensive.  I have had to leave out most of 

the details. Now I am told nobody will understand it or believe it. [pause]  I am going to 

have to write a better, longer version in German … [surveys his manuscript, sadly]  

 

But how can I get the right people to look at it? 

[EXIT] 

 

MARIA: This paper would finally be published in a new Berlin journal, edited by a man 

who gave Abel much-needed support, August Crelle. The journal became known simply 

as Crelle’s Journal. It played a major role in the development of effective mathematical 

communication in the nineteenth century. 

 

EMMY: Isolation can kill genius – so can poverty. It’s wonderful that Abel had perceptive 

and supportive teachers and mentors at school and University, and then found a man of 

such influence in the mathematical establishment! 

 

MARIA: Yes indeed – many poor, young geniuses are never recognised and encouraged! 

 

EMMY: Did Abel ever meet August Crelle? 

 

MARIA: It happened like this. In 1826, having worked at learning French and German, 

and raised some funds, he went off, aged 24, on what we might call a mathematical 

pilgrimage, with a group of friends... 

 

[Abel and four friends cross the stage, talking (in mime) and laughing] 

 

First, they visited mathematicians in Norway and in Denmark. Once in Copenhagen, they 

had to decide whether to go to Paris – Abel’s heart’s desire – or to Berlin, where his 

friends wanted to go ... 

 

[Abel and four friends return to mid-stage and mime an argument, pointing in different 

directions] 

 

Professor Hansteen had urged Abel to make for Paris, but he stayed with his friends and 

went to Berlin... 
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[they go off-stage together, but Abel stops briefly and confides to audience, shrugging] 

 

ABEL: ... I am so constituted that I cannot endure solitude. Alone, I am depressed, I get 

cantankerous, and I have little inclination to work.
8
 I will go with my friends to Berlin! 

Then to Paris, I hope! 

[EXIT] 

 

MARIA: Before leaving Copenhagen, Abel secured a letter of introduction to August 

Crelle, from a Danish mathematician. Going to Berlin turned out to be the best thing he 

could have done, for he managed to see his epic paper on the impossibility of solution of 

the quintic safely into Crelle’s trusted hands, earmarked for Crelle’s Journal, and also six 

other papers. 

CURTAIN RISES 

[A Secretary shows the nervous Abel into the office of August Crelle] 

 

SECRETARY: Excuse me, Herr Crelle, that Norwegian mathematician has arrived to see 

you. 

 

CRELLE: Ah, Herr … er … Abel … Niels Abel? Is that how I pronounce it? I do not 

often meet mathematicians from Norway! Welcome to Berlin!  

 

ABEL: Guten Morgen, mein Herr! I am deeply honoured that you have consented to see 

me. 

 

CRELLE: Ach, young man, your letter of introduction from the Danish mathematician 

was glowing, to say the least; but I suspected him of going over the top! However, once I 

had spent some time with the packet of papers you delivered last week, I had no doubt at 

all that I wished to meet the author! I did not expect him to be so youthful! I can see that 

already you are able to penetrate to the very foundations of problems, attacking them with 

extraordinary energy. You seem to see things in new and higher ways that your seniors 

have not seen. 

 

ABEL: I am deeply grateful, Herr Crelle, for your encouragement – 

 

CRELLE: Nein, I suspect the benefit will be mutual, my friend, for your work might well 

make my new journal famous! Come, let us discuss what needs to be done to get your 

work into a form I can publish... 

 

[Abel sits down at Crelle’s invitation, and they pore over the manuscript] 

CURTAIN FALLS 

EMMY: Did Abel stay long in Berlin? He might have been able to meet other important 

mathematicians. 

                                                            
8 From the MacTutor archive, quoting E T Bell, Men of Mathematics (New York, 1986), 307-326. 
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MARIA: It was probably very exciting but quite stressful having to win his way into the 

corridors of mathematical power, and survive in a big German city. He was certainly 

inspired, but longed to have peaceful thinking time! From Berlin, he writes a letter home 

in March: 

 

[Abel sits at a café table in Berlin, pen in hand, reading his scribbled letter] 

 

ABEL:  I look very much forward to my return home to obtain the possibility to work in 

tranquillity. I have material enough for many years, and just now so many ideas are 

wandering around in my head.
9
  

 

EMMY: He must have been starting to do that great work in analysis for which we 

celebrate him today in a number of theorems! He was a pioneer of true rigour in analysis, 

wasn’t he? 

 

ABEL: All my efforts I will now apply to bring more light into the tremendous obscurity 

which undoubtedly there is in the Analysis.  

[shakes his head in amazement] It is quite amazing that it can be studied by so many, and 

yet is not at all strictly treated. There are exceedingly few theorems in the Higher Analysis 

which are being demonstrated with convincing rigour. [sighs] Everywhere one finds this 

unfortunate habit of reasoning from the particular to the general. 

 

EMMY: Yes! He really shared the vision of Cauchy! 

 

MARIA: And, like Cauchy, he was appalled at the careless manner in which 

mathematicians had been treating infinite series. He wrote to his old teacher and friend, 

Bernt Holmboe: 

 

ABEL: My eyes have been opened in the most surprising manner. If you disregard the 

very simplest cases, there is in all of mathematics not a single infinite series whose sum 

had been rigorously determined! In other words, the most important parts of mathematics 

stand without foundation. It is true that most of it is valid, but that is very surprising. I 

struggle to find a reason for it, an exceedingly interesting problem … 

 

[Abel gets up from chair and makes EXIT] 

 

MARIA: Before going back to Norway to work out all the ideas beginning to simmer in 

his mind, Abel continued to travel through Europe, intending to meet and talk with some 

of the mathematicians whose works he had read. He arrived in Paris in July, hoping 

especially to meet Augustin-Louis Cauchy, the great proponent of rigour in analysis.  

 

From Paris, in August, he writes to Professor Hansteen: 

 

                                                            
9 This and the following speeches to Holmboe from Berlin are from Abel’s biography in Encyclopaedia 

Britannica. 
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[Abel sits at a café table in Paris, reading his scribbled letter] 

 

ABEL: Finally I have arrived at the Focus of all my mathematical wishes, to Paris! [...] 

Above all I would like to have my memoir completed [...] to be presented to the Institute. I 

have the hope that the Academy will print it. 

[EXIT] 

 

MARIA: Young and unknown, poor Abel was too optimistic. 

CURTAIN RISES 

[Abel excitedly runs after Cauchy as he walks by, and attempts to speak to him] 

 

ABEL: Euh, excusez moi, Professeur Docteur Cauchy! 

 

CAUCHY: [brusquely, over his shoulder] Oui, monsieur, qu’est-ce que tu veux? 

 

ABEL: [trying to keep up with Cauchy] Bonjour, Monsieur Professeur! I would be greatly 

honoured if I could have a talk about mathematics with you at your convenience. 

 

CAUCHY: [stops] I am very busy, young man! Do you not purchase my Exercises des 

Mathematiques? 

 

ABEL: Oui, Monsieur, I am very impressed, but I was hoping to discuss some work of my 

own – 

 

CAUCHY: [glares at Abel] Your work? With me? Indeed! Young man, I have far too 

much of great importance to do, I cannot spare time to listen to your speculations. 

 

ABEL: [thrusting a packet at Cauchy] But, Monsieur Cauchy, may I give you my paper to 

read? I can come back and discuss it later. 

 

CAUCHY: [hesitating, and then reluctantly taking the packet and glancing at the 

contents] Hmm, oui, if I have time perhaps I may look at it. But no – if you are serious, 

you should submit it through the proper channels to the Académie. [hands the pile of 

papers back and walks off] Adieu, Monsieur. 

 

ABEL: Adieu, Professeur, merci!  

[sighs, stuffs the papers back in the packet, then turns and walks away, looking sadly over 

his shoulder as the great Cauchy strides off]  

CURTAIN FALLS  

MARIA: Two months later Bernt Holmboe receives a letter: 

 

[cameo appearance of Holmboe] 

 

HOLMBOE: [holding an envelope, looking excited] A letter – from Paris! It must be from 

young Niels!  
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[taking out and reading letter – which can be this script] ... Hmmm ... The French are 

much more reserved with strangers than the Germans. It is extremely difficult to gain their 

intimacy, and I do not dare to urge my pretensions as far as that; any beginner struggles to 

get noticed. 

[aside to audience] Ah, poor Niels – a little fish in a big pond! But what a very talented 

fish! I wonder if he has managed to meet the biggest fish of all – Monsieur Cauchy... 

 

ABEL: [voice off-stage, while Holmboe reads on silently, pulling appropriate faces] I 

have just finished an extensive treatise on a certain class of transcendental functions to 

present it to the Institute which will be done next Monday. I showed it to Mr Cauchy, but 

he scarcely deigned to glance at it. Without bragging I dare say it is good. I am curious to 

hear the verdict of the Institute. Cauchy is ‘fou’ [proud, aloof ], and he is unapproachable. 

But he is the mathematician who these days best knows how to present mathematics. He is 

now publishing a series of memoirs entitled ‘Exercises des Mathematiques’. I buy them 

and read them diligently.
10

 

 

HOLMBOE: [shaking his head] Poor, poor, Niels! How did he find the money to buy 

those pamphlets? I expect he is starving himself...  

[EXIT] 

 

MARIA: This paper that the great Cauchy would scarcely glance at is known to historians 

today simply as Abel’s Paris Memoir. Dealing with the transcendental functions, this was 

one of the most important mathematical achievements of the early 19th century. Cauchy 

was supposed to referee it, but [speaking with sarcasm] it presumably stayed buried on his 

desk, while poor Abel worried about it for the rest of his short life. In the winter of the 

year 1826, Abel returned home to Oslo. 

 

EMMY: His head must have been buzzing with new ideas! Did his home University give 

him a post? 

 

MARIA: He was desperately hoping so, but the one available post went to his old teacher, 

Bernt Holmboe, who would be famous for writing many of the first Norwegian 

mathematics textbooks. The University did give Abel a small grant, but he had to scratch a 

living as a supply-teacher and tutor.  

He was deeply in love with a girl called Christine Kemp. They became engaged and 

hoped to be married as soon as he secured some means of supporting a family. Meanwhile 

he researched and wrote with all the energy he could muster, while battling recurrent 

illness. Much of his time was spent trying to unwrap the mysteries of the general theory of 

solvability of equations: 

 

[cameo appearance of Abel, writing at table in between bouts of coughing] 

 

                                                            
10 Partially in MacTutor archive and in E. T. Bell, Men of Mathematics (New York, 1986), 307-326. 
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ABEL: I aim to investigate the following problems: One – To find all equations of any 

given degree that are algebraically solvable. Two – To decide whether a given equation is 

algebraically solvable or not. 

 

MARIA: These questions would not be fully resolved in his short life. What he did show, 

and published in Crelle’s Journal, in Berlin in 1829, is this result: 

 

ABEL: Gauss’s method for finding the roots of the equation x
n 
– 1 = 0 can be generalised 

– I have to find a criterion for algebraic solvability of a general equation. His method 

depends on the fact that there is one of the n roots such that each root is a power of that 

one. 

 

[slide] 

Gauss's method for:  x
n
 – 1 = 0, 

depending on the fact that there is one of the n roots 

such that each root is a power of that one, 

can be generalised to find a criterion 

for algebraic solvability of a general equation. 

 

ABEL: Now, at last, I believe I have proved a wonderful theorem: If the roots of an 

equation ... [scribbles while theorem is displayed on another slide]  

 

If the roots of an equation of any degree are related so that 

all of them are rationally expressible in terms of one, designated as x,  

and if, furthermore, for any two of the roots, θx and θ1x, 

where θ and θ1 are rational functions, we have 

 

θ θ1x = θ1 θx, 

 

then the equation is algebraically solvable. 

 

In an Abelian group, composition is commutative: for any elements g, g1 of the group 

 

gg1 = g1g. 

 

[EXIT] 

 

MARIA: Today Abel’s name is celebrated in the name ‘Abelian group’ – a group in which 

the composition operation is commutative: multiplying any two elements of the group can 

be done in any order, the answer will be the same. You can see the connection with his 

theorem, so it is a fitting way to remember him. 

  

EMMY: Whatever became of that paper Abel left with the Paris Académie? 

 

MARIA: He wrote a two-page note to Crelle with a brief summary, which was published 

in Crelle’s Journal. The original manuscript was only found by Cauchy after a search 
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prompted by Jacobi! It was finally published in 1841. That ill-fated original manuscript 

was mysteriously lost again, but over a century later there was great excitement among 

historians when it was discovered in Florence, in 1953.
11

  

But let’s go back to September 1828 ….
12

 

CURTAIN RISES 

[Abel lying on a couch holding manuscript and pen; he coughs periodically. His fiancée 

Christine Kemp is seated beside him] 

 

ABEL: Ah, Christine, you must help me reply to Herr Crelle! It’s over two weeks since I 

received his kind letter.  

 

CHRISTINE: I remember how happy you were when you received it! 

 

ABEL: [smiling] Yes, I had not expected such a quick answer. And he also kindly took the 

trouble to copy and send me excerpts from letters of Jacobi and Legendre! I really must 

thank him. I should have replied sooner, but I wanted to finish this short manuscript on 

elliptic functions and send it too. 

 

CHRISTINE: It’s wonderful, isn’t it, that he holds out good hope of an appointment for 

you in Berlin? Maybe we can get married at last and live in Berlin! 

 

ABEL: I will implore him to let me know as soon as possible when anything has been 

decided, favourable or not, for if it does not work out as I hope, I must be prepared to 

improve on my conditions here. I can do nothing until I know what will happen. 

 

CHRISTINE: He will certainly grant you this request – he knows your abilities, Niels! 

 

ABEL: You must help me draft this letter! I want to say how much pleasure I have taken 

in the remarks of Legendre and Jacobi! I can see that Jacobi has arrived at my 

transformation theory for elliptic functions by taking a different path, and I am very 

curious to learn about his method. 

 

CHRISTINE: Are you going to ask him to publish in the journal this new paper of yours? 

 

ABEL: Yes, perhaps he will have a few pages to spare in the upcoming fourth issue. I 

want to ask him to print this paper first. Then the paper on equations can follow 

afterwards. 

 

CHRISTINE: Why? He is very keen on the equations paper isn’t he? 

 

ABEL: I know, but I believe that the elliptic functions will be of greater interest to 

mathematicians. And also, you know, my health will hardly permit me to occupy myself 

with the equations for a while – it’s exceedingly difficult stuff, and will take too much 

                                                            
11 See full story in (Del Centina, 2002). 
12 The following scene is based on a letter from Abel to Crelle (Abel, 1828). 
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effort. Shall I confide in him that I have been ill for a considerable period of time, and 

compelled to stay in bed? 

 

CHRISTINE: Oh, Niels, you must be careful! [she puts arms around him] Even if you are 

now recovered, the physician has warned you against any strong exertion! 

CURTAIN FALLS 

MARIA: Christine’s fears were justified. Six months later, Niels Abel died, on the 6
th

 of 

April 1829. 

 

[cameo appearance of Christine, sobbing. A maid brings a letter in on a tray] 

 

CHRISTINE: Oh! A letter ... from Berlin! It must be from Herr Crelle ... [tears the 

envelope open, then gasps] Niels has been appointed to a post in Berlin! ... Too late, too 

late, oh my poor Niels, two days ago you would have been so, so proud! ...  

 

[she breaks down, crumpling the letter and hurling it on the floor, then she runs off stage 

covering her face]  

 

MARIA: Niels Abel’s body was buried in the churchyard at Froland. August Crelle writes 

a glowing tribute to his young friend, in his journal: 

 

[cameo appearance of Crelle with pen in hand, writing obituary, and reading from his 

draft] 

 

CRELLE: All of Abel’s works carry the imprint of an ingenuity and force of thought 

which is unusual and sometimes amazing, even if the youth of the author is not taken into 

consideration! … [reflective pause]   

One may say that he was able to penetrate all obstacles down to the very foundations, 

with a force which appeared irresistible.  He attacked the problems with an extraordinary 

energy. He regarded them from above and was able to soar so high over their present state 

that all the difficulties seemed to vanish. … [pause]  

But it was not only his great talent which created the respect for Abel and made his loss 

infinitely regrettable. He distinguished himself equally by the purity and nobility of his 

character … and by a rare modesty equal by his genius – what a combination!  

[walks off slowly, speaking to himself and looking very sad]  

Those of us who knew him cherished him. If only he’d lived and come to Berlin … 

[EXIT] 

 

EMMY: Looking back, it seems that in spite of the efforts on his behalf by Crelle, Abel 

was relatively unknown when he died – so sad!  

 

MARIA:  Well, both Legendre and Jacobi recognised his brilliance. But Cauchy mislaid 

his monumental Paris manuscript, and Gauss seems never to have read the copy Abel sent 

him of his 1826 paper on the quintic!  
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EMMY: Maybe because Gauss still believed the thing was impossible! [snorts]  

 

MARIA: But maybe because Gauss minimised the problem, imagining he himself had 

more or less solved it earlier. Nobody can be sure with Gauss! Some say Gauss was loathe 

to give the glory to another. It has even been suggested that, because Abel omitted to slit 

the pages before posting it, Gauss couldn’t be bothered to cut it open and read it. 

 

EMMY: [groaning, and covering her face with her hands] Oh, no! I feel like I could slit 

his throat! 

 

THE END 

 

 
 

Figure 3.2: Abel monument, Oslo, designed by Gustav Vigeland (1908) 

 

4 Review, critique & reflection  

Following the play, open discussion took place, with guiding questions: What were the 

best moments? What didn’t work well? What improvements (for this script) can you 

suggest, in staging, action, emotion, voice projection? How could you re-script Abel’s 

story for different groups, levels of communication, different balances of the personal, the 

historical, and the mathematical? In particular, how much mathematics to include? Did the 

nature and magnitude of Abel’s mathematical achievements get through? The problem of 

authenticity versus accessibility – how close should such a play stay to the primary source 

material? Can any of you share experiences of using theatre?  

In the glow of achievement, few participants seemed in the mood to criticise, and the 

discussion was largely positive, with different people particularly liking different moments 

of the play. There was little experience of using anything similar in teaching.  Some 

feedback is collected in the final section below. 

During the discussion some hardcopy materials were circulated, and then participants 

were invited to form smaller groups, and reflect on how they might go about weaving 

highlights from such primary sources and biographical materials into dialogues suitable 

for classroom use at various levels. The materials were selected and extracted according to 
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a number of criteria: relevance to Abel’s life and work, reasonably short, potential for 

dramatization, easy availability (to promote the idea that source material for creating 

reasonably authentic dialogues is not hard to find), illustration of the richness of further 

resources, insight into the historiographical challenges of achieving authentic dialogues. 

The materials included extracts from the MacTutor History of Mathematics archive; one 

of Abel’s letters in full; biographical material on Holmboe and Hansteen from the 

Dictionary of Scientific Biography and Encyclopaedia Britannica; a collection of quotes 

from Abel; a paper on the fortunes of Abel’s famous ‘Paris Memoir’ which features in the 

play; and references for further reading and possible play-writing. 

5 General feedback & conclusions  

The workshop concluded with a short plenary discussion, inviting feedback from the small 

groups. This section collects some responses and retrospective feedback.  

Length of play 

The scheduling was generally agreed to be fine for such a workshop, but would 

naturally have to be adjusted for a particular classroom at a particular level. Some felt 

plays of 30 minutes would be the maximum to aim for. “This workshop worked well as 

people were there because they wanted to attend. In a classroom there are often students 

present who would rather be elsewhere, so in my opinion shorter plays may be a way 

forward.” “It was amazing how well the actors played their role to bring the persons to life 

with such short notice.” “I think it is a good idea to write such pieces for schools. They 

would have to be short like this one or even shorter, but they can awaken feeling for the 

human side of these scientific persons.”  

Practicalities for classroom use  

It was important for this workshop to get the casting and rehearsing done in a very 

short time, and to demonstrate how to achieve this. Useful strategies were the use of large 

colour-coded name-labels for the characters, casting directors to lead the rehearsing of 

mini-scenes, highlighting the relevant lines in everybody’s script, encouraging a relaxed 

attitude to reading the lines, and keeping the staging simple. The enthusiasm and 

enjoyment shown by the participants was palpable.  “What made this work well, was the 

limited time we had to prepare ourselves. It would not have worked if we had a longer 

time because some people would not have been engaged.” “I was surprised how well the 

event ran practically without any preparation.” “Having a large cast was important: 

everyone had a part to play.” “Everybody was required to participate and it was extremely 

enjoyable.” “It is good to give opportunity for everyone to participate in some way, but to 

balance this with each person having space to watch some of the action.” “It helped not to 

have to worry about memorizing lines. This freed up some people to improvise.”  

Coverage and general content 

While the play was felt to do justice to the main events of Abel’s life, some discussion 

took place on omitted episodes with dramatic potential, e.g. the story of how Holmboe 

became Abel’s teacher when the previous teacher was removed from his position after 

beating a student who died of the injuries. In any attempt to portray in a classroom some 

facets and moments of a mathematician’s life, there will be a rich menu of possibilities, 
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and selection will depend on the class and level. It is not necessary to be comprehensive; 

one small dramatic episode can spark interest in the person’s life and give colour to the 

mathematics. Humour was seen to be an important ingredient.  

The mathematics 

In this workshop “there was a good balance between personal and mathematical”, 

“good balance between maths and biographical information”, but the question of how 

much mathematics to bring into a play, and how to frame it, is heavily dependent on the 

class and the purpose. This play presents just three glimpses of mathematics (on slides). 

Equations should be kept to a minimum, adjusted according to the background of the 

participants. At higher levels it may be worth weaving in some information on the 

development of the formula for third and fourth degree equations. To avoid the 

mathematics entirely is to miss the chance to signal that such apparently dry symbols are 

tied up with human drama. At appropriate levels teachers could follow up with work in the 

classroom. “… it engages students who might not have taken an active participation in 

mathematics in the past as well as introducing them to their heritage.” “[While the] level 

of maths in the play is too advanced for high school, yet because it involves solving of 

equations, which is a very familiar subject to students, it shouldn't be a problem [to 

interest them]”; “[Such theatre] enriches the mathematics curriculum and gives students an 

appreciation of the thoughts behind the evolution of mathematics … it shows them that 

everyone has struggled with new concepts, so they should not feel bad about themselves 

when they do not understand the mathematics they are being taught the first time they 

meet it.” “In the average classroom, there will be a few students who are mathematically 

talented, others who have dramatic talents, and such a joint activity can open up lines of 

peer communication.” 

Can such theatrical experience enliven mathematics education? 

 Participants commented as follows: “Some people who were generally shy and quiet 

came out of themselves and so seemed to grow in stature.”  “In general, it was a fun 

experience and very memorable.” “It was great! I really enjoyed to be part of the play.” 

“What made this memorable for me was working with such a lovely group of people and 

discussing how we would present it. It threw light on Abel and Cauchy as people and 

portrayed events in a vivid way that was not possible reading about them in a book.”  “The 

play brings you very close to a different perspective of mathematics, the appreciation of 

mathematics as a cultural-human endeavour. I hope one day I will incorporate it in one of 

my classes.” “This play is a great way to expose students to lesser-known aspects of the 

human side of Niels Abel.” “It was the first time I had attended a theatrical workshop 

based on mathematics, so I didn’t know what to expect. I came because I’m interested in 

exploring different ways to present the mathematical concepts to students. I found it 

interesting, amusing and original.” “I love the concept of a play as a means to incorporate 

history of maths in education.”   

Future use and new directions  

We close with some ideas from participants: “… we were presented with the text as a 

finished article, but for it to be an enriching experience for the students; they will need to 

be … part of the creative process.” “It would be worthwhile to look at the social context of 

the time, the geographical location and other events of the time leading up to the 
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development of the concepts involved.” “Teachers should try something different and 

outside their comfort zone sometimes!” “[When I incorporate this in one of my classes] I 

will first assign the roles to my students, then give them time to practice on their own and 

then play together. It will be very similar to what we did in Oslo, but … I will probably 

not do it in one class period. I would want them to have more time to think about this play 

and the role Niels Abel played in the history of mathematics.” “I intend to use the play on 

either Abel or Cauchy/Gauss at a conference in 2020; have to translate it, to make it really 

work with my students (Dutch teacher training, ages 17-20) … I will find a student to 

write a play in Dutch or on Dutch mathematicians.” 
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ABSTRACT 

This workshop will build on the plenary lecture that the author will present on The art and 

architecture of mathematics education – a study in metaphors. The workshop will offer 

opportunities for participants to trace the images of and about mathematics and 

mathematicians, and play with metaphors related to the aims and the nature of the 

discipline, from different periods and geographical areas. The participants will be 

encouraged to work on creating an ideal 'exhibit' to represent one such collection of 

images or objects, as if it were to be displayed in an environment such as a museum 

dedicated to mathematics, be it a real building or a virtual one. The purpose of such work 

would be to analyse, discuss, and decide which precise aspect of mathematics the group or 

individual participants find most fascinating, and how that could be communicated to an 

imagined audience. 

The workshop would aim to further inspire participants to take active part in 

constructing images and narratives of and about mathematics, to illustrate in different 

ways what mathematicians have done or do. The resulting images or ideas of the work 

from the workshop will be shared with all the participants after the workshop. 
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ABSTRACT 

Conceptualization of professional development have moved from “deficit” and “workshop 

or training” models to models of “professional growth” where teachers engage actively in 

collaborative inquiry into their own practice to enhance their knowledge of pedagogy, and 

students (Widjaja et al. 2017). However, through researching papers from Proceedings of 

HPM Satellite Meeting, ESU, CERME, ICME, in books and journals in the 21
st
 century, 

we find that the studies on HPM and mathematics teachers' change or professional 

development mainly happen in universities, are mainly for pre-service teachers and the 

direct approach in this context is to give graduate courses (Barbin and Tzanakis, 2014). 

In Mainland China, the situation is somewhat different. As a teaching research system 

has been practiced nationally since the 1950s (Wang, 2009), we have combined the 

teaching research system – mainly a Lesson Study (LS) – with HPM, which we call HPM 

Lesson Development (HPMLD). In the course of a LS, the teacher who conducts the LS 

would follow a procedure as shown in Fig.1 (Wang, Qi and Wang, 2017) with support 

from professional learning community (PLC), which is made up of a school-based group, 

an HPM research group, and a teaching expert group. Each group in the community has its 

own expertise, which is the reason why they get together, and without collaboration, it 

may be impossible to develop a sufficiently complete HPM Lesson. Through HPMLD, the 

teachers' knowledge, beliefs, attitude, and even instructional competencies would improve 

(Wang, 2013; Yue and Wang, 2016).  

However, the influence of HPM has to be extended. So we publish the developed 

lessons, and make them open to all teachers. Some teachers interested in HPM adopt the 

instructional designs of the developed lessons in their own teaching, which is called HPM 

Lesson Sharing (HPMLS). On the other hand, we use the developed HPM Lessons to 

teach Pre- and In-service mathematics teachers, which is called HPM Lessons-based 

Teaching (HPMLbT), as one way of spreading the conception of HPM. What is the 

procedure of HPMLD, HPMLS and HPMLbT? What are the effects of HPMLD?  

In this workshop, we organized a LS according to Fig. 1. Firstly we provide text from a 

textbook and curriculum’s requirements in China, the link with learned knowledge and 

knowledge learned later, and a historical resource about the studied topic. Participants in 

small groups design a lesson based on the above resource, the knowledge of the students 

they would teach, and the format of the design in China (Fig.2), under the guidance of the 

workshop organizers. Secondly each group presents its design. Then we play a video of an 

exemplary lesson, and participants watch and assess the lesson based on our assessment 

worksheet. Thirdly, we conduct a post-lesson debriefing, and participants revise their 
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design. Lastly, we use a case study to introduce teachers' professional development during 

the HPMLD and the procedure of HPMLS and HPMLBT, and construct a preliminary 

framework of HPM and mathematics teachers' professional development (shown as Fig.3). 

 

Figure1: The procedure of the HPMLD (Wang, Qi &Wang,2017) 

 

 

             Figure 2                                                                Figure 3  
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ABSTRACT 

In this paper we explore Gaston Bachelard’s notion of phenomeno-technique to explain how a geometrical 

instrument can be conceived as a “connaissance-en-action” (knowledge-in-action) in the construction of 

geometry. In particular, we analyze relations between a field of notions to teach and a field of problems to 

solve. So, firstly, we examine a hierarchy of instruments (Gerbert d’Aurillac, Jean Errard, Oronce Fine) that 

can be used to construct notions in an elementary geometrical teaching. They illustrate two kind of genesis 

of instruments defined by Pierre Rabardel as instrumentalization and instrumentation. Secondly, we analyze 

how the hierarchy of problems in Dioptra of Hero of Alexandria leads to a global notion of similitude in a 

geometrical space. As conclusion, we present what we call “an instrumental approach” in teaching of 

geometry. 

1 Introduction: Gaston Bachelard’s phenomeno-technology 

Since around 25 years, the role of instruments of mathematics for teaching had been the 

subject of meetings and works in French IREMs (Hébert 1994, Johan 1996). More 

recently, several experiments using ancient instruments had been proposed in geometrical 

teaching, for students aged 11 until 14 years, in the same time of a revival of this teaching 

(Barbin 2014, Barbin et al. 2018). Often, these works propose to use an instrument only 

and the main didactical purpose is to give to students interesting applications of 

knowledge learned in classroom before. While in our purpose, linked to Bachelard’s 

phenomeno-technology, instruments are sawn as knowledge-in-action and they correspond 

to notions or theorems that can be introduced and explored in teaching in the same time 

than the instruments are used. 

Gaston Bachelard is a famous French philosopher of sciences, who wrote on physical 

sciences principally. His historical epistemology had been a basis of works in French 

IREMs (Institute for Research in Mathematical Education). He introduced the notion of 

phenomeno-technology in Le nouvel esprit scientifique (1934). He began to explain that 

scientific observation is neither a naked situation: “scientific observation is always 

polemical; it either confirms or denies a prior analysis, a pre-existing model, an 

observational protocol” (Bachelard 1984, p.12). Then he continued with experimentation 

(Bachelard 1984, p. 13): 

“And once the step is taken from observation to experimentation, the polemical 

character of knowledge stands out even more sharply. Now phenomena must be 

selected filtered, purified, shaped by instruments; indeed, it may well be the 

instruments that produce the phenomenon in the first place. And instruments are 

nothing but theories materialized. The phenomena they produce bear the stamp of 

theory throughout.” 

And he concluded:  
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“A truly scientific phenomenology is therefore a phenomeno-technology. Its purpose 

is to amplify what is revealed beyond appearance. It takes its instruction from 

construction.” 

We will specially focus on this Bachelard’ conception: “instruments are nothing but 

theories materialized”. Precisely, we would like to show that instruments are “knowledge-

in-action” (Barbin 2004, Barbin 2016).  

For this purpose, we can quote two other authors: Gilbert Simondon is an important 

philosopher of techniques and Pierre Rabardel is a researcher on psychology and 

ergonomics. The first one wrote that “object that comes out of technical invention takes 

with it something from the human being who produced it […]; we could say that there is 

human nature into technical being” (Simondon 1969, p. 248). For the second one, 

“instrument is a means of capitalizing on accumulated experience (some authors say 

cristallized experience). In this way, any instrument is knowledge.” (Rabardel 1975, p. 

73). 

In this paper, we will examine phenomeno-technology about geometrical instruments 

only and its consequence for implanting an instrumental approach in teaching of 

geometry. We will begin with the role of instruments for construction of a geometrical 

world, then we will analyze links between genesis of instruments and construction of 

knowledge, and then we will examine the invention of a geometrical space with the 

dioptre of Hero of Alexandria. We will conclude to precise what we name “an 

instrumental approach in teaching of geometry”. 

2 Instrument and invention of a geometrical world: the quadrant of 

Ionians  

Historians of Greek mathematics explained that, in VI
th 

century BC, Ionians used a 

quadrant to measure the distance of a boat in sea, which is an inaccessible distance by land 

surveying. A quadrant is made with a quarter of circle and a rod that turns and with which 

we can make sights (fig. 2.1). 

                                                            

Figure 2.1: Quadrant of the Ionians 

I let you imagine the real situation with sea, boat and us on the beach. Now, suppose 

that somebody asks me the question: how do you use the instrument? It will be more 

comprehensive to draw a layout. With this layout, I shall explain that I can climb on the 

top of a tower, make a first sight in direction of the boat, then return myself in direction of 

the ground and make a second sight (fig. 2.2). 
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Figure 2.2: Distance of a boat: layout 

Then suppose that somebody asks me: how do you find the distance of the boat? It will 

be better that we go together on the beach and that I draw a diagram on the sand to explain 

that “an equality of sights implies an equality of distances”, and it is a first rational 

discourse (fig. 2.3). 

 

Figure 2.3: Distance of a boat: diagram 

More generally, we can precise the different roles of layout and diagram. The layout 

permits a description of doings to answer to the question: what do you do with the 

instrument? While diagram is the basis of a first rational discourse to answer to the 

question: how do you find the result? Moreover, a diagram coordinates elements of a 

particular configuration, which can be activated, transformed or generalized by its re-

cognition in various situations.  

Now, suppose that somebody asks me: how do you know that your discourse is true? I 

shall add letters to the diagram to specify some of its parts called angles and lengths and I 

shall obtain a figure that permits a theoretical discourse on magnitudes, which is “if angles 

BAD and DAC are equal then lengths BD and DC are equal” (fig. 2.4). From a problem of 

inaccessible distance, Ionians invented a geometrical world made of figures and of relation 

between figures. The quadrant can be considered as “knowledge-in-action”, because it 

contains in itself a knowledge associating angles and distances. 

                                                                   A 

 
                                           B                         D                         C                       

Figure 2.4: Distance of a boat: figure 
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3 Genesis of instruments and construction of knowledge: 

instrumentalization and instrumentation  

In this second part, we will examine genesis of instruments; that is, birth or invention or 

creation of instruments, if you prefer. To understand relations between knowing subjects 

and instruments, we will go on by using history because, as Simondon wrote, “we have to 

grasp the historicity on how instruments become through how human being become” 

(Simondon 1969, pp. 107-109).  

Rabardel distinguished two types of process in genesis of instruments (Rabardel 1995, 

p. 109). In the first type, there is an “enrichment” of an instrument (as artefact) by the 

subject without modification of the underlying diagram. He called it an 

“instrumentalization”. In the second type, there is a change of diagram by the human 

being with a modification of the instrument. He called it “instrumentation” (fig. 3.1). We 

are going to illustrate these two processes with ancient instruments taken in history. 

                                 

Figure 3.1: Instrumentation and instrumentalization according to Rabardel 

3.1 Instrumentalization: from Gerbert’s stick to Errard’s instrument 

The stick of Gerbert d’Aurillac is more a tool that an instrument, in the sense that it does 

not contains knowledge. Indeed, for our purpose, that is to analyze an instrument as a 

“connaissance-en-action” we have to distinguish an “instrument“ from a “tool” (Barbin 

1994). The word “instrument” (in French linked with the verb “instruire”), is taking by us 

as an object whose conception integrates a knowledge. It is not the case for a simple stick. 

This distinction is useful in this paper later to compare the knowledge integrated in 

different instruments. 

Let examine how Gerbert of Aurillac solved a problem of inaccessible distance, which 

is the width of a river, in his Isagoge Geometriæ (around 1000). Gerbert d’Aurillac wrote 

that a geometer has to have a stick with him always. How to do with the stick? Let see the 

layout and the figure (fig. 3.2). Similarity of triangles permits to write a proportion, in 

modern writing, the ratio BD : CD is equal to the ratio BP : OP.  As BP is equal to the sum 

of the lengths BD and DP, we can calculate BD from accessible measures.  

 

Figure 3.2: Width of a river with Gerbert’s stick 
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Now, to give an example of instrumentalization, we will go from the stick to Jean 

Errard’s instrument, presented in his La géométrie et pratique générale d’icelle (2
d
 ed., 

1602). The instrument is more sophisticated, since it is composed of three rulers: AB is 

horizontal, AC can turn around A and EF can glide along AB (fig. 3.3).  

 

Figure 3.3: Errard’s instrument (Errard 1602, p. 18) 

The book contains two layouts corresponding to two problems of inaccessible 

distances: width of a river and height of a tower (fig. 3.4).  

 

     

Figure 3.4: Two inaccessible distances with Errard’s instrument (Errard 1602, pp. 21-22) 

We have to remark that the underlying diagram is the same for these two problems, and 

also the same than for Gerbert’s situation (fig. 3.5). But now, we can say that the diagram 

is incorporated into the instrument and that this instrument is a “knowledge-in-action” 

(Barbin 2004, Barbin 2016). The knowledge corresponds to proposition 4 of Euclid’s 

Book VI (Euclid, pp. 200-202). We have an instrumentalization: this instrument is an 

enrichment of the stick that does not engage new diagram. 

 

Figure 3.5: Diagram for inaccessible distances 
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3.2 Instrumentation: Gerbert’s instrument and Oronce Fine’s articulated set 

square 

We go on with a process of instrumentation that engages new diagram. Gerbert d’Aurillac 

proposed an instrument more elaborated than a simple stick. A layout with letters permits 

to show how to use this instrument for measuring an inaccessible height of a tower (fig. 

3.6).  

 

Figure 3.6: Height of a tower with Gerbert’s instrument: layout and figure 

The instrument is composed of two perpendicular sticks FE and DC, such that DF, FE 

and FC are equals. Here, we have a new diagram and we can explain on the figure how to 

determine the height. By equalities of angles, the triangle BHE is isosceles. So AB is equal 

to the sum of the lengths HE and FC. Now, the user doesn’t need to calculate ratios to 

obtain the result. But the instrument incorporates a new knowledge, which concerns 

isosceles triangles. 

Another example of instrumentation is given with the instrument of Oronce Fine 

presented in his Protomathesis (1532). It is composed of a stick and of a square set turning 

around the bottom of the stick. The layout shows how to use the instrument to measure the 

width of a river (fig. 3.7). The instrument is down on a bank of the river, and an alidade is 

aligned with the other bank.  

 

Figure 3.7: Width of a river with Oronce Fine’s instrument: layout 

How to obtain the width of the river? We have a new diagram and a figure on which we 

can state the theorem on the height of a rectangular triangle, that is theorem of the height 

of a rectangular triangle, in modern writing: AH
2
 = BH × HC (fig. 3.8). If we take AH 

equal to 1 then HC is equal to 1/BH. The distance is very easy to calculate, but the 

instrument incorporates a strong theorem, that is proven by Euclid two times, as a 

consequence of Pythagoras theorem in Book II, and as a consequence of the theorem on 

similar triangles in Book VI of his Elements. 
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Figure 3.8: Weight of a river with Oronce Fine: figure and theorem 

We can conclude with three comments on process of instrumentation concerning 

teaching. Firstly, in the two chosen examples of instrumentation, the inaccessible distance 

can be easily obtained from the accessible. Secondly, in each process of instrumentation, a 

new knowledge is incorporated into the instrument and the underlying diagram changes: 

isosceles triangle for Errard’s instrument, theorem on height in a rectangular triangle for 

Oronce’Fine’s instrument. Thirdly, we can write that more the instrument is “instructed” 

by theory, then less the user has to be instructed.  

3.3 Instrumentalization and instrumentation: the place of the subject 

The two processes has to intervene in teaching because they engage activities of the 

learner. Rabardel emphasized the two places of the subject in the two processes by 

writing: 

“These two types of processes are the fact of the subject […]. What 

distinguishes them is the orientation of this activity. In the process of 

instrumentation, the activity is turned towards the subject himself, while in the 

correlative process of instrumentalization, the activity is oriented towards the 

component artefact of the instrument” (Rabardel, 1995, pp. 111-112).  

We can complete the scheme above by indicating the three instruments that can 

illustrate the two processes (fig. 3.9).  

 

Figure 3.9: Instrumentation and instrumentalization accordingly with Rabardel  

In a previous paper (Barbin, 2016), I remarked the difference between this scheme and 

the one given by Luc Trouche (fig. 3.10). This last scheme corresponds to what Trouche 

wrote: “Rabardel distinguishes, in the genesis of an instrument, two crossed processes, 

instrumentation and instrumentalization: the instrumentalization concerns the 

personalization of the artefact by the subject, the instrumentation concerns the apparition 

of schemes into the subject (that is to say the manner with which the artefact contributes to 

pre-structure the action of subject for carrying out the task in question)” (Trouche, 2015, 

p. 267).  
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Figure 3.10: Instrumentation and instrumentalization with Trouche 

In our epistemological and didactical purpose, we do not see the instrument as a way to 

pre-structure the action of the subject. But, like in Bachelard’s phenomeno-technology, we 

rather consider that the instrument is structured by the subject’s knowledge.  

4 Instrument and invention of a geometrical space: on Hero of 

Alexandria’s dioptre  

In his Dioptra (III
rd

 century), Hero of Alexandria considers one instrument only: the 

dioptre. It is not a complicated instrument. There is an upper part which can only turn 

around or to be inclined on a leg (fig. 4.1). Moreover, we can make sights through two 

holes of the upper part, like it is shown on the layout by the discontinued line. Moreover, 

technical means permit to obtain the horizontal position when it needs for the upper part 

and the vertical position for the leg of the instrument.   

                

Figure 4.1: Hero of Alexandria’s dioptre 

Hero wrote: “in general, dioptre is used for measuring distances of any kind, when this 

operation only can be made by far” (Hero 1858, p. 177). Indeed, the book is composed by 

a series of problems of inaccessible distances ranged in a “deductive” order, in the sense 

that one problem is solved by using solving of previous problems. Reading Hero is very 

interesting because he explained steps by steps how to solve problems. Let read the second 

problem: “Problem 2. Two points A and B are given such that it is not possible to see one 

of them from the other: to join them by a straight line”. Hero explained how to bypass the 

obstacle, which prevents to see one point from the other point, And, as for each problem, 

we have to make a diagram. Hero wrote: “while making these operations, we write them 

on a paper, that is we represent the layout, with indicating the summits of the broken line 

and the lengths of its several parts” (fig. 4.2). We have to put the dioptre in A and to mark 

AG on the ground, a straight line with an arbitrary length. Then we have to put the dioptre 

in G and to mark GD perpendicular to AG, with an arbitrary length. Then we have to put 
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the dioptre in D and to mark DE, etc The points G, D, E, etc. are accessible points and 

they have been supposed to be in the same plane. 

 

Figure 4.2: Problem of inaccessible distance in Hero: diagram and figure  

After which, to obtain different points belonging to the straight line AB, we have to 

draw a figure with two steps. Firstly, we have to draw “real” lines that are on the ground 

with their measures. Secondly, like Hero wrote, we have to imagine and to draw other 

lines, the “imaginary” lines AM, MB, AT, etc., on which the reasoning will be explained. 

Their drawings are discontinued lines (fig. 4.2). We can calculate AM and MB from the 

“real lines” and their ratio. In Hero’s example, we obtain 72 and 32, and the ratio AM: MB 

is equal to 72 : 32. Now, let take (for example) AT equal to 9 on AM and TU perpendicular 

to AT. Hero explained that the ratio 72: 32 is equal to the ratio 9: TU and so TU equal 4 . 

In the same manner, we can obtain the point U of AB, etc. Hero wrote: “by observing the 

same ratio always”. That means there is the conception of a “global similarity” between 

several rectangular triangles, so, this similarity operates in a geometrical space. So, we can 

consider that dioptre is a simple instrument that needs an instructed user. 

This “global similarity” is different of the notion of similarity in Euclid’s Elements 

(Barbin PUR). Indeed, Euclid’s geometry is a study of figures without introduction of 

space. In Book VI, Euclid only proved similarity between two geometrical forms of same 

type (two triangles, two rectangles, two polygons, etc). Hero did not state Euclid’s 

fundamental theorems on similar forms. But he represented figures accordingly to an 

implicit “scale”, where an explicit ratio operates on forms of a geometrical space by a 

“global similarity”.  

Let consider two other figures corresponding to Hero’s problems: the problem of the 

tunnel of Samos (fig.4.3) and the problem of the depth of a well (fig. 4.4). To solve these 

problems, Hero introduced rectangular triangles that can be deduced thanks the calculation 

of one ratio only. These figures are linked by a “global similarity”.  
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Figure 4.3: Problem of the Tunnel of Samos: diagram and figure 

 

 

Figure 4.4: Problem of the depth of a well: layout, diagram and figure 

5 An instrumental approach in teaching of geometry with phenomeno-

technology  

As we remarked above, several works on using instruments in geometrical teaching 

propose to use an instrument only to solve one problem only, and the main didactical 

purpose is to give to students interesting applications of knowledge learned in classroom 

before. Also, it is chosen instruments, different of those presented in this chapter, because 

these instruments permit to read measures of angles by numbers. Thus, these instruments 

lead to trigonometry rapidly (on instruments and angles see Chatelon & Troudet 2018, 

Mercier 2018, Guichard 2018).  

While in our purpose, linked to phenomeno-technology, instruments are sawn as 

knowledge-in-action and they correspond to notions or theorems that can be introduced 

and explored in teaching in the same time than the instruments are used. They are simple, 

in the sense that they did not include a way to read angles. Here, an “instrumental 

approach” means a teaching where students use instruments, not in a disparate manner, but 

use a set of instruments following a cognitive and mathematical order that can permit to 

construct a geometrical knowledge. Also, following Simondon, it is a teaching where 

historical elements are integrated thanks to the use of ancient instruments (Barbin et al., 

2018).  
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We can characterize an instrumental approach of teaching by three features. Firstly it is 

a teaching by problem-solving, where problems of inaccessible distances play a major role 

to introduce objects and theorems as tools to solve problems. Secondly, it is teaching 

beginning with spatial situations and going on with two explicit types of activities for 

learners. There are at first activities of drawings with scales representing situations on the 

ground (layouts and diagrams), and then activities of enouncing rational discourses on 

figures with letters, like in Hero’s Dioptra. For this purpose, an instrument can be used to 

solve a hierarchy of problems, organized in a deductive manner. Thirdly, it is a teaching 

where a hierarchical field of instruments and an ordered field of knowledge are 

constructed in a mutual “enrichment” (Barbin, 2016). 

We propose that learners themselves distinguish different steps in activities of problem-

solving, corresponding to steps in learning (on activities on the ground and drawings, see 

Chatelon & Troudet 2014). It is interesting to differentiate the roles of drawing layouts, 

diagrams, figures with real and imaginary lines, because, in this instrumental approach, an 

instrument is considered as a knowledge-in-action corresponding to an underlying 

geometrical diagram. For this purpose, we stress on the mutual “enrichment” between 

constructions of new geometrical knowledge and of new instruments introduced in 

teaching. It is important to well conceive and to use the two possibilities in teaching: we 

can introduce the same knowledge to conceive several instruments and we also can 

conceive an instrument corresponding to a new geometrical knowledge. 
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ABSTRACT 

Latest interactive and dynamic geometry software introduces new practices in Mathematics education, 

adding virtual 2D or 3D animated graphs to traditional artifacts and compass-and-straightedge constructions. 

This work presents the results of a teaching experiment in primary school, realized using Montessori method 

and setting math education through perceptual-sensory inputs. 

Cheap material was exploited to introduce pupils to one of the most important deductive process: the 

geometric proof. An all brand-new artifact was realized in order to explain Pythagorean Theorem using a 

hydro-mechanical system. The proof was performed starting from practice, direct observation by real and 

virtual tools. Pupils used GeoGebra, a dynamic geometry freeware: they built shapes, determined areas and 

verified the equivalence.  Pupils repeated the proof using crayons, producing pictures full of creativity. 

Finally, we show a comparison between new technological tools and traditional real tools. Teacher’s role 

was to involve students in an educational project with real and virtual tools. 

1 Introduction 

Traditional mathematics education throughout the world, especially in the early historical 

phases, was based on a set of tools borrowed from the world of practical experience (Lave, 

1988; Gravemeijer et al, 2013). More so nowadays, in the era of fastest and most 

pervasive technological advance, we can observe more and more complex relationships 

between mathematics as a purely conceptual discipline and mathematics as an applicative 

activity (Blum and Niss, 1991). This ambiguity emerges in expressions like “mathematical 

models”, referred to physical models of mathematical concepts, e.g., reproductions of 

plane and solid geometric figures made of cardboard, wood, plastic and models of surfaces 

of higher order that make it possible to materialize abstract concepts of mathematics 

(Ahmed ed al. 2004; Bartolini Bussi, 1996; Hershkowitz et al., 1990).At the beginning of 

the last century this trend in mathematics education was well in tune with the development 

of active methods in education, supported in the same period by John Dewey (Dewey, 

1938). Afterwards, the active involvement of students was supported within a laboratory 

setting, with hands-on approach and exploiting Information and Communications 

Technology (ICT). This experimental approach, where exploration plays a major role, 

seems appealing for students who quite often find the evidence offered by experiments 

much more compelling than a rigorous proof and are bored by the request to produce 

mathematical arguments. On one side, the experimental approach is suspected to obstacle 

the development of mathematical styles of reasoning. On the other side, the use of 

technology suggests many motivations to sustain the experimental approach, as seen in 

many experiences throughout history. Moreover, there are many researches producing 

formal results inspired by trialing, conjectures suggested by experiments, descriptions of 

algorithms, and software for mathematical exploration (Laborde et al. 2006; Capone et al. 
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2018). 

Latest interactive and dynamic geometry software are nowadays introducing new 

practices in math’s education, supporting traditional artifacts (Verillon and Rabardell, 

1995) and compass-and-straightedge construction with virtual but very effective 2D or 3D 

graph, geometric shapes and animations (Arzarello et al., 2014). Nevertheless, as a result 

of recent researches in cognitive neurosciences (Kosslyn, 1991; Cheng and Newcombe, 

2005), learning processes of mathematics and geometry happen in the same brain regions 

and circuits which people exploit for intuitions about space, time, approximate amount 

and number awareness. Language is ordinarily used while learning mathematics, but 

mathematical reasoning itself seems to happen in its own parts of the brain (Dehaene, 

2011). On the other side, among the main features of Montessori method, there are respect 

for individuality of each child, hands-on experiences, skills in cooperative and manual 

work. Therefore, this method is one of the possible instances of Pedagogical Activism: 

each pupil, if properly taught, may become an active constructor of his own knowledge. 

In our work, we show the results of a teaching experiment in a primary school, realized 

using Montessori method and setting math education through perceptual-sensory inputs, 

especially by touch sense and visual representations. Everyday and cheap material, e.g. 

colored frames, tiles, golden pearls, and many other classical tools, as “regoli”, have been 

exploited to create geometric shapes and to introduce pupils to one of the most important 

deductive process: the geometric proof. 

In order to achieve this goal, an artifact was realized in order to explain Pythagorean 

Theorem using a hydro-mechanical system, relying on a fluid contained in three squared 

boxes, two built on the two perpendicular of a right-angled triangle and the third built on 

the hypotenuse. In this way, the artifact gives a visible proof of the equivalence of the 

areas. Therefore, a backtrack path was treading: the theorem was not demonstrated as in 

traditional proofs but starting from the opposite point of view - practice, direct observation 

by real and virtual tools, then, only at the end, thorough formulation of the theorem. 

In addition, a specific user friendly and intuitive dynamic geometry freeware, 

GeoGebra, was used, eliciting enthusiasm and curiosity in the pupils: they built the 

shapes, determined the areas and so it was very straightforward to verify the equivalence 

between the squares.  Furthermore, they repeated the proof of the theorem using real 

graphics tools, producing pictures full of creativity. Finally, we present a short comparison 

between technologically innovative virtual tools and traditional real tools, such as ruler 

and compass. Teacher’s task was to motivate the students, involving them in an education 

project that refers to an effective integration of both real and virtual tools. 

2 Principles of Montessori’s Method 

Maria Montessori was an Italian physician and educator who lived in Italy at the turn of 

the 19
th

 and 20
th

 century. She was a great innovator: she founded a new pedagogical 

thinking about children with mental illness and disability, up to the formulation of a 

method suitable for all children. Montessori’s approach is founded on original principles: 

teachers must start from "things", concrete representations of geometrical objects. But, 

above all, teachers are facilitators and they must let the things themselves speak to the 

students. 

Essential Montessori education principles include teaching child-centered, early 

scholarization, pupil’s freedom, centrality of environment, senses education through 
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material objects, the school is considered as a small society and teachers play the role of 

guides. 

According to the principles of Pedagogical Activism, the synthesis of the Montessori 

method is the importance attributed to direct experiences. There is a revaluation of the 

realistic exercise, concreteness, primacy of activity and learning by doing: practice and 

technology are media and not targets. There is respect for individuality, hands-on 

experiences and skills in cooperation are considered very relevant. Each pupil, if properly 

taught, may become an active constructor of his own knowledge.  

3 The Pythagorean Theorem  

As in precious Montessori’s book “Psicogeometria” (Montessori, 1934/2012), the target of 

our experiment was to study the potential benefit of artifacts and dynamic geometry 

software to get to the concept of one of the best-known topics in elementary Geometry, 

the Pythagorean theorem. 

3.1 Project outlines 

Our experiment was set in a primary school, for fifth year’s pupils and in the lower level 

of a secondary school. Teachers worked, at first, in homogeneous groups, with parallel 

classes, with the same objectives. Subsequently, teachers of primary and secondary school 

worked in heterogeneous groups, to try to build vertical curricula. 

The organization of the vertical curriculum has stimulated innovations both on the 

methodological and managing level of the disciplines also to facilitate connections, 

relationships and awareness. 

3.2 Lab activities 

The terms of the so-called Pythagorean Theorem were already known by Babylonian 

a thousand years before Pythagoras, but the famous philosopher was the first to prove 

it. Over 371 different proofs of the Pythagorean theorem were found and proposed in 

the history of Mathematics, as collected in a book in 1927 (Loomis, 1927). Our 

project is aimed to develop a practical approach to this fundamental theorem to 

investigate the impact on learning of this methodology, inspired by Montessori’s 

ideas: it is fundamental to teach mathematics first of all through perceptive-sensorial 

stimuli, especially through the hands, because the cerebral areas that allow us 

movements are very close to those that make us perceive the geometric shapes and the 

approximate quantities.  

The explanation of the Pythagorean theorem usually starts with the statement, 

continues with the demonstration and then the applications follow. Montessori’s 

concept, on the other hand, is different and very simple: we need to start from 

“things”, that is, from the concrete representations of geometrical objects. Here is her 

quote: “Was it not from the things that the first surveyors drew their knowledge? 

Were not correspondences and relations between things, which stimulated some active 

and interested mind to formulate axioms and therefore theorems?” 

“The way a concept has been understood for the first time by human beings is the 

natural way to present that concept to children”. 

In the following subsections we will describe 3 lab activities, through which we 

conducted our experiment in Montessori’s spirit. 
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3.2.1 The artifact 

Theoretical reflections just described inspired our educational experimentation in primary 

school, in a fifth-grade class, aiming to study the potential benefits of artifacts, in 

particular a hydraulic device, for helping students to conceptualize Pythagorean Theorem 

through water containers properly shaped. 

The artifact is realized starting from the construction of a box shaped as a right triangle, 

on whose sides squares were built; the square built on the hypotenuse has a hole on the 

outer side, to fill the device with a liquid. All the boxes are communicating with each 

other through pipes, so that the liquid can flow from the big square to the small ones at the 

same time and vice versa (figure 3.1). The entire device is built on a circular plane with a 

pin that allows the rotation of the artifact. The smallest perpendicular side measures 15 

cm, the biggest one 20 cm and the hypotenuse 25 cm. Then, it is possible to show how all 

the liquid contained in the square box built on the hypotenuse can be contained exactly in 

the square boxes built on the perpendicular sides. 

 

Figure 3.1: Hydraulic artifact to prove the Pythagorean Theorem 

Artifact can help children to have a different view of mathematics, which is often 

distressing and negative; so, mathematics appears "colored" and touchable, improving 

their attitude towards mathematics and their mathematical skills. In this case all the 

channels are involved to receive the information: you learn exploiting visual memory, 

(therefore non-verbal visual channel), by listening (auditory channel), by reading (verbal 

channel) and by doing (kinesthetic channel). While using an artifact, a teacher observes 

how students use it and their cognitive patterns, as well as their special ways of 

thinking/knowing. Here is the importance of mental images in mathematics: mental 

images are not only passive figures inside the head, but productive mental representations 

that allow us to imagine something, even in the absence of perceptive stimuli and which 

therefore allow us to construct forms of creative thought in order to realize new forms of 

knowledge. 

3.2.2 Crayons 

After formalizing the theorem, children reproduced the construction in the maths 

notebook, using the squares as minimum units. This activity allowed them to have an 

immediate, visual and practical approach to the equivalence between the squares, as in 

figure 3.2. 
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Figure 3.2: Construction of squares on the sides of a right triangle with crayons 

The exercise was carried out with the construction of squares; we can certainlysay that 

there were no difficulties in the construction of the squares on the perpendicular sides, but 

it was different for the construction of the square on the hypotenuse. The students showed 

uncertainties about the correct position of the lines; in this sense, there was the necessity 

to talk about technical expertise that they will have to acquire in the following of their 

learning process. Thus, once the sketch was drawn and colored, the children counted the 

unit squares and verified the Pythagorean theorem. Moreover, this activity further 

simplified and facilitated the understanding of the concept of area as the measure of a 

surface. 

3.2.3 Geogebra 

Pupils, after few and short preliminary lessons inspired by practical learning by doing 

education methodology, got mastery of basic features and functions of GeoGebra 

(Zenging, 2018) so that they could begin to draw geometric shapes and right triangles 

and squares. Subsequently, the theorem was depicted, calculating the areas of the 

surfaces of the squares by GeoGebra’s specific command and directly proving the 

evidence. In addition, they spontaneously tried to extend the Pythagorean theorem by 

iterating the construction indefinitely, giving life to creative images and to apply 

Pythagoras’s theorem also to polygons with 3, 5 or more sides, as shown in figures 

3.3 and 3.4. 

Nevertheless, it was very interesting to let pupils experiment the difference 

between GeoGebra and compass-and-straightedge construction of geometric figures 

and besides, to exploit GeoGebra’s toolbox and functions for step by step 

constructions, which melts old- and new-fashioned geometry learning methods. 
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Figures 3.3 and 3.4: Example of development of ideas in Geogebra activity 

3.3 Rethink and discovery 

After GeoGebra experience, we draw many considerations: for example, we can assert 

that we detected an increasing students’ attention about the possibilities of exploiting 

this software to design, analyze, calculate, proof. We tried to summarize and list our 

observations, classifying them in pros and cons.   

 

3.3.1 Pros of Virtual 

We registered a significant reduction of teaching time, because, first, pupils are very 

much attracted by computer’s features and quickly and intuitively become used to 

employ active software graphical instruments. This educational process helped 

students to achieve a better awareness of the demonstration in much shorter time and 

an improvement of learning effort perception. 

Thus, there was also an optimal integration between class teaching and preparation 

of lessons and materials: teacher essentially played the role of a guide, but pupils 

impressed their personal fingerprint in the development of the lessons and the results 

were finally original and sometimes unexpected. 

Lastly, GeoGebra’s dynamical geometry tools, with its easy way to draw lines and 

shapes, which does not require manual ability to get perfect graphical outcomes, helped 

students to directly concentrate on the process and then they had the opportunity to better 

understand the deep meaning of geometrical constructions and relationships. 

 

3.3.2 Cons of Virtual 

Even though the overall outcomes of virtual applications were positive, as described 

above, students’ trend is towards action without pre-thinking: it does not happen 

rarely that pupils fail to understand the reason for some results, typically those that are 

an exception to the rules, while they tend to accept uncritically the output produced by 

the app they are using. “Even if confidence and motivation could be enhanced by 

using software, the question still remains if this translates into better overall 

performance in the classroom. This may be a question as to how the software is 

implemented as to how well it enhances or deteriorates a student’s learning.” 

(Formaneck, 2013). Generally speaking, software use could generate a superficial 

attitude in the learner, whose confidence with virtual tools risks to make him to 
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surrogate the necessity of learning with the ease of quickly getting a result, without 

minimally submitting it to an aware checking process. 

 

3.4 Evaluation 

 

In order to test the effectiveness of our teaching activities, we administered to pupils 

several worksheets, basically centered on two different strategic approaches: 

equidecomposability and application of inverse formula, as respectively shown in figures 

3.5 and 3.6. 

 

  

Figure 3.5 and 3.6: two examples of worksheet administered to test pupils after 

activities about Pythagorean theorem.  

 

The text in figure 3.5 is: Let’s demonstrate 

Pythagorean theorem using decomposition. 

Follow the tutorial: Draw a right triangle of 

dimensions 6, 8, 10 cm. Build the squares on 

the perpendicular sides and colour them with 

two different colours and then divide the 

greater sqaure in four equal rectangles. 

Finally cut these shapes. Build the square on 

the hypotenuse, composing the shapes just 

cut. Calculate the areas as a proof of 

Pytagorean theorem. 

The text in figure 3.6: Problem on 

Pythagorean theorem. Observe the figure. 

The hypotenuse in a right triangle ABC is 15 

cm and the greater perpendicular side is 3 cm 

less than hypotenuse. After have calculated 

the area of Q3 and Q2, calculate the area of 

Q1. Finally, confirm Pythagorean theorem. 

 

 

The first worksheet aims to prove the Pythagorean theorem by decomposing figures. The 

worksheet allows the student to reflect on the statement of the theorem, to demonstrate it 

practically by decomposing the squares built on the perpendicular sides in two different ways, 

and then constructing the square on the hypotenuse using the pieces obtained cutting the smaller 

squares on the perpendicular sides. Despite all previous multiple activities, yet some pupils 

hesitated about how to combine the four rectangles and the small square (see figure 3.5). The 

second worksheets a more traditional geometry problem with an illustration and then it also 
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required reading, reasoning and calculation skills, as well as logic and the capability to find an 

inverse formula (figure 3.6). Often pupils read the text and the questions too quickly and with a 

low attention level; this is often the origin of multiple errors. However, in our strategy, pupils 

were pulled to analyze the text and also reasoned about the inverse formulas and the triangles 

with sides multiple of 3, 4 and 5 were used only for simplicity’s sake, to facilitate the task of 

decomposing and reasoning at the beginning. Later pupils were made aware of the general case, 

with right triangle with sides measures different from Pythagorean triples, more difficult to draw 

but equally compliant the theorem. 

The evaluation table, depicted in figure 3.7, is related to the activities carried out in the 

learning unit and it was directly conceived according to new teaching guidelines, oriented 

towards an accurate evaluation of the competences achieved by the pupils. As in figure 

3.7, there are descriptors that explain the different levels of competence achieved in the 

different tasks. 

 

Dimensions Startinglevel Basic level Intermediate level Expert level 

To know how to 

calculate area of the 

main polygons 

Students don’t 

know formulas and 

cannot calculate 

areas 

Students know 

formula but they 

don’t know how to 

apply it 

Students can 

calculate areas of 

polygons 

Students can 

calculate areas even 

in different 

situations 

To know how to 

apply Pytagorean 

theorem 

Students cannot 

apply the theorem 

Students apply the 

theorem only if they 

are assisted 

Students can apply 

the theorem 

autonomously 

Students can apply 

theorem even using 

inverse formulas 

To know how to use 

geometrical 

software 

Students cannot use 

geometrical 

software 

Students can use 

geometrical 

software with the 

help of a tutorial 

Students can use the 

software with 

mastery 

Students can use the 

software also to 

experiment in new 

contexts 

Figure 3.7: Evaluation table 

4   Conclusions and future work 

At the end of this experiment, we stress our final observations about multiple ways to 

represent and prove the Pythagorean theorem using artifacts and dynamic geometry 

software. It was possible, first, to realize a peer education experience, with much 

enthusiasm and curiosity in learners. The pupils ran across arithmetic and geometry paths 

at the same time, enriching their knowledge and skills through a variety of activities and 

methodologies. 

The artifact allowed them to get an immediate understanding of the theorem, thanks to 

the visual and original aspect given by the presence of the water. Alongside the purely 

practical activities, experiments have been carried out with the GeoGebra software to 

develop technological skill as in National Guidelines. 

Students’ motivation led to new discoveries, as with GeoGebra it was shown that the 

theorem is valid for all regular polygons and in a iterative application; specifically, this 

work has come across the demonstration of the validity of the theorem also with 

equilateral triangles and hexagons.  Besides, simulations technologies were considered 

with new awareness, moving forward to more critical and conscious use of virtual tools. 

Test worksheets were indeed a way to compare all the activities done previously and draw 

indications about the effectiveness of teaching and learning. 
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Though, the time available did not allow us to investigate other important aspects, such 

as a study of a wider range of topics and the evolution in time and the impact on long term 

memorization of the concepts learned by this approach; in this regard, we hope that this 

work can be a starting point for future reflections and studies. 

From the results achieved up to now, we had the opportunity to verify how the 

proposed method led to a concrete and more aware learning, to be regarded as acquisition 

of skills by primary and secondary students, along with the construction of new 

knowledge through repeated real and virtual lab experiences. 
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ABSTRACT 

At the beginning of the 20th century, Mikhail Bakhtin developed a critical mode of literary analysis based 

on the dialogic principle. This dialogical principle emphasizes that each utterance of a discourse is 

necessarily “in dialogue” in a given sphere of speech communication. For Bakhtin, these utterances are 

following one another according to laws of appreciative convergence in a close dependence on historical 

conditions. Bakhtin’s philosophy has inspired few researchers to establish or develop theoretical foundations 

in mathematics education, but also, closer to us, in history and mathematics education.In this paper, we will 

try to show how Bakhtin’s thought can support reflection, not on history, mathematics or mathematics 

education per se, as it has often been discussed, but on our ways of being in research and doing research 

within or field. 

1 Introduction 

This paper is a development of the oral communication that took place during ESU-8. The 

objective, here, is to introduce some elements of the philosophy of Mikhail Bakhtin (1895-

1975)in order to bring new ways of thinking about being and doing research within the 

field of research on history of mathematics in mathematics education.  

As discussed by Fried, Guillemette and Jahnke (2016), the field has moved, for the past 

decade, toward a reflection on didactical and pedagogical foundations concerning the role 

of history of mathematics in teaching and learning, as well as the development of 

theoretical and conceptual frameworks. They argue that theoretical or conceptual element 

that could support research concerning history of mathematics in mathematics education 

should at least address the question of why we ought to learn history or historical elements 

related to mathematics? What part of pupils and students intellectual lives is touched by 

history? The historical nature of mathematics must at least be put on the table, as 

something to question. In other words, the nature of mathematics itself must be 

problematized. Our own view of mathematics of the past should also be problematized, 

asking what it means to stand facing the past? Our own posture towards the past should be 

explored. 

In this quest, this paper tries to draw attention on the dialogical principle that has been 

developed by Bakhtin in order to bring theoretical and conceptual elements to support 

teachers’ and researchers’ reflection. We would like to argue, in this paper, that elements 

of Bakhtin’s philosophy could support reflection, not only upon history, mathematics or 

mathematics education per se, as it has sometimes been discussed, but also upon our ways 

of being in research and doing research within or field. The main argument that will be 

discussed is that this perspective could help particularly the researchers by making 

possible and visible the dialogical interactions between researcher, participants and history 
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of mathematics, but also the teachers trying to deepen their comprehension ofthe relation 

between their interventions, the learners, the mathematics and the history of mathematics 

in their classrooms. 

2 A Bakhtinian perspective 

In this section, we will try to introduce key elements of the Bakhtinian philosophy 

(Bakhtin 1929/1977, 1979/1982, 1978/1997, 1963/1998). This quick introduction will 

focus on two major elements: the dialogical principle and the concept of polyphony. 

The philosophical works of Mikhail Bakhtin, born in Russia, can be included in the 

dialectical tradition inaugurated by Hegel, developed by Marx and continued among 

Russian thinkers such as Ilienkov, Mikhailov and Vygotsky. At the beginning of the 20th 

century, after the Russian revolution, Marx’s philosophy and the development of 

phenomenology in Europe have motivated and influenced a group of thinkers called The 

Bakhtin Circle constituted for instance by the linguist Valentin Voloshinov (1895-1936), 

the literary scholar Pavel Medvedev (1891-1938) and the philosopher Matvei Kagan 

(1889-1937). The circle was animated by profound insights around literature, linguistic, 

psychology and philosophy, at a time where Marx was discussed in its very philosophical 

potential. It was a very productive Marxist intellectual group. Unfortunately, the group 

didn’t survive to the Stalinian purges.  

2.1 The dialogical principle 

From his analyses of Freud, de Saussure and linguistic theories conducted within the 

group, Bakhtin has developed a critical mode of analysis based on what he called the 

dialogical principle. He then applied it in different areas such as literary analysis and more 

generally to the analysis of ideology (see Sabo and Nielsen, 1984). This said, this 

reflection goes far beyond literary criticism, to the point of disrupting the foundations of 

the human sciences. 

Succinctly, the dialogical principle emphasizes that each utterance of a speech is 

necessarily an answer to another utterance in a given sphere of speech communication. 

This concept of sphere of speech communication is important because it determines the 

very condition of the dialogue in which the speech inscribes itself inherently. Indeed, for 

Bakhtin, at every moment of the dialogical analysis, one must understand and utterance as 

an answer of another utterance, but, ate the same, time as a condition to other utterance to 

emerge. In other words, Bakhtin would say that any movement of consciousness is itself 

dialogical, penetrated by and in dialogues with other movements of consciousness, and 

thus, cannot be approached without consideration for other movements of consciousness 

to which it answers, and which it allows as an answer. 

A speech is then perceived here as a dialogue, but this dialogue is not understood as a 

simple sequence of statements constituting a form of exchange or conversation. These 

aspects would be only the superficial manifestation of dialogism which “goes far beyond 

the relations between the replicas of a formally constructed dialogue, because it is almost 

universal and crosses the whole human discourse [...] in a general way, all that has 

meaning and value” (Bakhtin, 1963/1998, p. 77, our translation).  

Indeed, for Bakhtin, there is an ongoing dialogue both at the level of language and at 

the level of ideas, and these levels are intimately linked. He emphasises that our inner or 
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outer speeches are constituted by whole monologues, analogous to paragraphs, or by 

whole utterances. But these monologues and dialogue hardly lends itself to an analysis of 

grammatical constituents. In this sense, Bakhtin would say that: “These units of speech, 

which could be called the global impression of enunciation, are related to each other and 

succeed one another not according to the rules of logic or grammar, but according to laws 

of appreciative convergence, of dialogical concatenation, and in a close dependence on the 

historical conditions of the social situation and the whole pragmatic course of existence. 

There is between the psyche and ideology an indissoluble dialectical interaction: the 

psyche dismantle itself, destroy itself to become ideology, and reciprocally” (id., pp. 63-

64, our translation). 

But what are those “laws of appreciative convergence” and “of dialogical 

concatenation”? What is happening concretely? For Bakhtin, “when the listener perceives 

and understands the meaning of speech, he simultaneously takes an active-responsive 

attitude toward it. Either he agrees or he disagrees with it (completely or partially), 

augments it, applies it, prepares for its execution, and so on. And the listener adopts this 

responsive attitude for the entire duration of the process of listening and understanding, 

from the very beginning - sometimes literally from the speaker’s first word” (1986, p. 68). 

On the other side, the speaker is also expecting such an active-responsive relation. Bakhtin 

add that “[The speaker] does not expect passive understanding that, so to speak, only 

duplicates his or her own idea in someone else’s mind. Rather, the speaker talks with an 

expectation of a response, agreement, sympathy, objection, execution, and so forth... 

Therefore, each kind of utterance is filled with various kinds of responsive-reactions to 

other utterances of the given sphere of speech” (id., p. 91). This attitude of the speaker and 

the listener as active-responsive communication lead inherently to the observation of 

different speech genres regarding the given sphere of speech communication. Indeed, the 

speaker will adapt is speech and perform a certain style when situated himself in relation 

with the listener, in the ways he perceived the listener, in a close relation to history, 

ideology, social determinations, but also to direct relations such as subordinated, fraternal 

or enmity relations for instance.  

To sum up, Bakhtin suggests understanding the utterance as something produced within 

the dialectical relation between the self and the ideology. In other words, he simply means 

that the words that I used are necessarily the words of someone else. This simple 

observation will lead to deep insights regarding human sciences, making the possibility to 

bring new ways of thinking human subjectivity and human cultural production.  

Indeed, for Bakthin, the dualism between the world of objects and the I who thinks it, 

isolated atom without history, immutability in prey to the laws of the phenomenon, is 

everywhere present in the philosophy of his time. In contrast, Bakhtin (1986/2003) argues 

that the impoverishing dualism of Cartesian rationalism must be fought by repudiating the 

abstractions of idealist philosophy, in order to better grasp the nature of the concrete 

action or “act” constituting the “value-center” of human existence. The ego is here a 

dynamic, corporeal, creative and moving entity. Bakhtin strives to formulate a 

phenomenology of “the practical act”, a phenomenology that focuses on our activities as 

bodily beings in a world that pre-exists abstract constructions. 

As we will see history of mathematics and mathematics education do not escape from 

the scope of this dialogical principle. 
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2.2 The concept of polyphony 

Taking through the lens of this dialogical principle, a scientific, literary or philosophical 

work is called “polyphonic” when, setting the scene in a given sphere of communication; 

it offers a large plurality of discourses and understandings of the world.  

For Bakhtin, Dostoyevsky’s novel The Brothers Karamazov would be the archetype of 

the polyphonic work. Indeed, the author depicts many characters inhabited by singular 

personalities who have finely established roles (the bourgeois, the liberal, the scientist, the 

atheist, etc.). These characters act as “spokespersons of worldviews” (Sabo and Nielsen, 

1984, p. 80), and Dostoevsky strives to make them talk together. The confrontation of 

these individuals, endowed with a strong ipseity, highlights the existential, ideological and 

socio-historical texture of that time.  

For Bakhtin, the polyphonic aspect of the novel of Dostoyevsky is the more objective 

and effective way to describe the reality of the author, in this case, Russia after the reforms 

of 1860. In the dialogical perspective, the work of the author is to perceive “great ideas” 

and “representations of men who speak of their ideological universe” (Bakhtin, 

1978/1997, p. 182). The concept of polyphony is central to the philosophy of Bakhtin. 

Indeed, for Bakhtin, it is the meeting of discourses, “acts” and social horizons that allows 

us to say something about reality. It is in the illustration of tensions and reconciliations 

between different positions that brings clarifications. 

2.3 A critical standpoint 

By promoting the polyphonic aspect of his work, the author ensures that “reality loses its 

statism and naturalism [...] the future begins to penetrate in the form of trends, 

possibilities, anticipations” (Bakhtin, 1970/1982, p. 129, our translation). Such cultural 

production, for Bakhtin, “has essential views on freedom, overcomes determinism and 

strict mechanisms” (ibid.). Indeed, for Bakhtin and is collaborators, there is an important 

link between human struggle for social justice and more broadly with the struggle for 

meaning that occurs within all sectors of human cultural production, such as sciences, 

literature, art and philosophy. 

3 Bakhtin and mathematics education 

Bakhtin’s philosophy has often been summoned in human sciences. For instance, it has 

inspired many researchers in mathematics education to support theoretical and empirical 

research. We will present in this section some examples (of course, we will refer to work 

to whom we are familiar and will inevitably omit number of cases), and we hope that these 

examples could help to understand more precisely the Bakhtinian perspective and how it 

could be convoked in research. 

In the emergent historico-cultural perspective on mathematics education (Radford, 

2011, 2018; Roth and Radford, 2011), element of the Bakhtinian philosophy are discussed 

in order to think about the subjectivity of the learners and the very concept of sociability 

within the classroom. Inspired by Vygotsky, this point of view pleads for a non-mentalist 

conception of the mind. Opposed to rationalism and idealism, it proposes a sensitive and 

historical conception. On the one hand, it is sensitive, rooted in the body, senses and 

affect. Body, perception, gestures and signs are considered as constituent parts of the 
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mind. On the other hand, it is historical, rooted in culture, history and language. We shall 

then speak about the mind as a praxis cogitans (Radford, 2011). 

Regarding mathematical objects, this perspective suggests that objects are “historically 

generated during the mathematical activity of individuals” and constitute “fixed patterns 

of reflective activities anchored in the changing world of social practice” (id., p. 7, free 

translation). In other words, individual activities constitute the genetic root of the abstract 

object, which contains varied expressive dimensions; rational, aesthetic and functional 

aspects related to culture. 

From this perspective, learning cannot be understood as merely a personal process of 

knowledge construction or reconstruction. Rather, learning results from our contact with 

our environment’s cultural artefacts and social interactions. It is “the perceived which 

comes to light in the intention, which expresses itself in the sign or in the action mediated 

by the artefact during the sensorial practical activity […] something likely to be converted 

in a reproducible action, which meaning aims at this cultural eidetic pattern which is the 

abstract object itself” (ibid.). 

Thus, learning mathematics, as it could be called cultural objectivation, is not simply 

learning “to do” mathematics (even less to solve mathematical problems), but rather “to 

be-in-mathematics”, the mathematical activity being nothing else than a way “to be-with-

others” (Radford, 2012). This is where the important ethic thematic of the theory settles 

down. As such, Radford (2008, 2012), through Bakhtin (and Levinas), insists on the fact 

that subjectivity “begins” in the ethical relation to the Other, “is” as a responsibility to the 

Other. Ethic here is not taken in as “satellite” elements of human existence; it is rather the 

central and the determinant field of reflections. As Bakhtin would say, “extracted from the 

interactive context which puts in relation the I, the Other, and the World, the subject 

succumbs to solipsism. At this moment, the subject loses its grip, becomes empty, 

arrogant, degenerates and dies” (1978/1997, p. 40). 

From this perspective, history of mathematics in the context of mathematics education 

can take special meanings (see Guillemette (2015) for more elements of reflection about 

that). Indeed, history of mathematics offers meeting opportunities with ways to do and to 

be radically different in mathematics. Articulating the problem of learning with the 

question of Alterity, History could bring particular experiences of otherness. Thus, 

attention is not on an individual with personal possibilities of emancipation, but rather on 

the possibility for learners to discover new ways of being-in-mathematics, to open, with 

others, the realm of possibilities in mathematics. 

Sfard’s sociocultural approach in mathematics education and the concept of 

“commognition” (2001, 2008) also convoke elements of Bakhtin’s philosophy. The idea 

here is to define “communication” which will become the central core of this perspective. 

For instance, Sfard and Keiren (2001) argue, with references to Bakhtin, that 

communication takes place between people, but it can also be an interaction between a 

person and herself, more often than not our thoughts take the form of an inner dialogue. 

This perspective claim, drawing on Bakhtin that communication is a process in which 

“any particular action always means addressing somebody or reacting to somebody’s 

former utterances, or both” (id., p. 58).  

The authors speak about reactive and proactive (response-inviting) utterances, thus 

distinguishing between the two types of speaker’s meta-discursive intentions: the wish to 

react to a previous speech or the wish to evoke a response in another interlocutor. 
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Therefore, when performing, for instance, data analyses, the idea is to perceive 

consecutive utterances in a discourse as endowed with invisible arrows that relate them to 

other utterances—those which have already been pronounced and those which are yet to 

come. As Sfard and Keiren explain, “these arrows are our metaphor for a speaker’s meta-

level intentions, communicated indirectly. By addressing her partners, the speaker lets 

them understand that she is interested in an interaction. The organization of these invisible 

arrows in a conversation often reveals certain regularities […] interaction analysis is 

performed with the help of a diagram in which the imaginary arrows […] are made 

visible” (ibid.). 

In order to think about the process of learning mathematics, this discursive approach 

claim that there is a dialogical aspect of the mind, and that, at both individual and society 

levels, thinking, like a conversation between two people, “involves turn-taking, asking 

questions and giving answers, and building each new utterance—whether audible or silent, 

whether in words or in other symbols—on previous ones in such a manner that all are 

interconnected in an essential way” (Sfard, 2000, p. 299). These are the basic arguments 

deployed here to understand “thinking as communicating” (Sfard, 2008). 

A third example can be found with the work of Barwell (2014, 2016) who has 

convoked a Bakhtinian perspective when analysing multilinguistic classrooms in 

mathematics. Attention to the dialogical interactions within the classroom has permitted to 

observe different speeches genre when teachers engage learners in mathematical activities. 

For instance, Barwell show importance of what he calls formal and informal speeches 

within this context, and how teachers answer (or sometimes didn’t notice) to informal 

demands perceived from a dialogical perspective. These informal demands have, 

particularly here within the context multilinguistic classroom, important consequence 

concerning the pedagogical intervention of the teachers and classroom interactions. 

A last example is the work of Gerovsky (2010, 2012) who tackles gender issues and 

problems related to social justice in mathematics education. Thinking with Bakthin about 

speech genre in the classroom, she observes that there are dominant voices and also 

marginal voices that have a hard time to be heard. The perspective developed by Gerovsky 

carries critical aspects by bringing into focus fragile, marginal or in-minority ways of 

being-in-mathematics, often suggesting social and political demands. This perspective also 

suggests that there is no ideologically neutral knowledge and that all acts of knowing are 

embedded in an ethical problem for which we need to develop our sensitivity. 

4 Bakhtin and the field of history of mathematics in mathematics 

education 

Closer to our concerns, Bakhtin has also been summoned more precisely in our field of 

research. Specifically, a Bakhtinian perspective has helped to think about what it means 

for the students or the pupils to meet history of mathematics or elements related to history 

of mathematics, but also helped to understand history of mathematics itself by giving 

insights about what to look for and to discuss about texts within history and to develop 

way to discuss about a historical text with the learners. Two examples will be quickly 

discussed in this section. 

For Radford, Furinghetti and Katz (2007), the particular meaning attributed to 

mathematical objects is circumscribed to the limits of our own experience. This limit can 
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only be crossed by the encounter with a foreign form of understanding, as Bakhtin would 

say “A meaning only reveals its depths once it has encountered and come into contact with 

another, foreign meaning: they engage in a kind of dialogue, which surmounts the 

closeness and one-sidedness of these particular meanings” (Bakhtin, 1986, cited in 

Radford, Furinghetti and Katz, 2007, p. 108). In this sense, history of mathematics is a 

possible place where it is possible to overcome the peculiarity of our own understanding 

of mathematical objects limited to our personal experiences. It “history erects itself as the 

place where we can surmount the one-sidedness of our particular meanings; it is a place to 

enter into a dialogue with others, and with the historical conceptual products produced by 

the cognitive activity of those who have preceded us in the always-changing life of 

cultures.” (ibid., p. 109). 

The story here appears as the background or a place that could help to stimulate 

introspection, or what Bakhtin would call our inner dialogue, and also to bring 

confrontation and critical reflection around our own conceptions and knowledge in 

mathematics. In this sense, Radford et al. (2000) pointed out that the history of 

mathematics is “a wonderful place where it is possible to reconstruct and reinterpret the 

past in order to open up new possibilities for future teachers” (p. 165). 

It should be noted that the focus here is not on an individual experiencing personal 

emancipation possibilities, in a more or less sustained movement of self-reliance and self-

reference, but towards the possibility for the learners to discover new ways-of-being-in-

mathematics, to open, with others, the space of possibilities of the mathematical activity. 

Indeed, the mathematics class is perceived here as a community space, political and 

ethical, open to novelty and subversion (see Radford, 2006, 2008, 2011). 

A second example can be found in the work of Barbin, who thinks both history itself 

and the work of historians in terms of a Bakthinian perspective (see Barbin, 2014), but 

also the interaction between voices from history of mathematics and the mathematics 

classroom (see Barbin, 2011).  

For Barbin, history has a certain subversive potential that can be linked to the 

Bakhtinian critical standpoint mentioned above. One of the major roles that history could 

play in the scientific and educational world is that it can dethrone styles and worldviews 

that enjoy a traditional or official status. The idea here is to look at the place of the Other 

within historical text and dialogical interaction in the writings of mathematicians from the 

past. She emphasises the necessity to read the author as somebody explaining something 

to somebody else, and that both are holding a specific and to-be-described position in the 

ongoing dialogue. 

In this sense, she argues that: “An original source has to be read as a rejoinder in a 

dialogue. What dialogue? Firstly, it is a dialogue between author and his or her 

contemporaries. To take dialogism into account is a good means for pupils to understand 

that mathematics is not a ‘long quiet way’, but that mathematics is a struggle for spirit. We 

have to read the author as somebody explaining something to somebody else. So, it is also 

a means to establish a second dialogue, a dialogue between the teacher and his or her 

students. In this case, an original source could be filled also with utterances between the 

teacher and the students” (Barbin, 2011, p. 15). 

The purpose, in the perspective developed by Barbin, is especially not to separate the 

dialogue taken place within history and the one taken place within the mathematics 

classroom. On the contrary, the idea is to put forward the passage between the two spheres 
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of speech communication. This, in order to understand better the role and the implication 

of introducing history in the classroom, but also, for the classroom itself, to maintain the 

polyphonic aspect of the interactions that are taken place in order to achieve pedagogical 

goals such as reorientation (dépaysement in French) (see Barbin, 1997). 

5 Bakhtin and research itself within the field of history of mathematics 

in mathematics education 

In this section, we will try to show how Bakhtin’s thought can support reflection, not on 

history, mathematics or mathematics education per se, as it has been discussed above, but 

on our very ways of being in research and doing research within or field.  

Through our reading of Bakhtin’s works, we will propose new ways of thinking about 

the role and position of the researcher and the participants, but also that of history of 

mathematics, in such a context of research. This will include ways to appreciate and 

account for the dialogical interaction between researchers, participants (teachers and 

students) and history of mathematics (understood as a third-party interlocutor) that this 

perspective suggests. To support our point, and to reach more “applied” or “practical” 

issues, some examples of interaction between researchers and participants from our own 

research concerning mathematics teachers’ education will be discussed within this 

dialogical perspective.  

5.1 A reflection around research and history 

Research in our field, or a certain important part of it, is characterised by the objective of 

understanding better the role and the potential of history of mathematics within 

mathematics education.  

What could it mean to think about research itself in a dialogical way? The idea is to 

think about research itself as an opportunity to get ourselves in a dialogue with the 

participants and elements of the history of mathematics. In this sense, researchers are 

creators of events, of course, related to specific objects of research. The objective here is 

to give back to the community the voices of the participants that are confronted, and in 

dialogue, with elements of history of mathematics. 

This said, for Bakhtin, any utterance of a speech cannot be understood without 

considering the sphere of communication in which it inscribes itself. It means that each 

voice that is presented and analysed in research cannot be presented and analysed without 

any reference to order voices that have made it possible and to other voices that are 

possible because of it. This is why a proper Bakhtinian perspective in research carries this 

injunction to give not only the voices to participants, but to present these voices in their 

dialogical interaction. 

This said, what is interesting in the Bakhtinian perspective regarding our own field of 

research is that this perspective can include voices that cannot manifest themselves, voices 

from the past. Indeed, theses voices coming from the history of mathematics cannot 

manifest themselves in the classroom, but they can be summoned by the means of 

interpretation. Interpretation is from the Latin interpretatio; itself built on inter, which is 

between, and pretare, which is close, praesto, what is present. Here, voices from the past 

have to join voices in the present by the means of something in-between. But, again, the 

movements of consciousness that bring these voices in the present have themselves to be 
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understood here in their dialogical interaction. This is a very delicate aspect to take in 

consideration, because the pedagogical implications are very important. 

As Barbin put it many times, having in head what has been brought in section 4 above), 

history could bring a “culture shock” in “immediately immersing the history of 

mathematics in history itself” (2012, p. 552, our translation). Therefore, the objective is 

not to read historical texts simply related to our (modern) knowledge, but rather in the 

context of the one who wrote them. This is where history becomes a source of 

“epistemological astonishment” by questioning knowledge and procedures typically taken 

as “self-evident” (ibid.).  

We join here the position of Jahnke (1994; 2014) around the idea of learning-to-listen 

with the history of mathematics. For Jahnke, starting from a hermeneutic approach, the 

reading of a historical text in mathematics brings two interrelated forms of reflections. 

Firstly, there is the experience of “dissonance” or “alienation”, just like the feeling of 

being in a foreign country. The students learn something about their own mathematics by 

experiencing and “reflecting on the contrast between modern concepts and their historical 

counterparts” (Fried et al., p. 218). This reflection goes in both directions, so that the 

students deepen both their understanding of history and of their own set of modern 

conceptualizations regarding mathematics and mathematical objects. Secondly, the task is 

now to think about the situation of the mathematicians living in the past. This task requires 

being able to argue from the assumptions of these persons, to use their symbols and 

methods. This poses completely new demands on the students’ abilities in their 

mathematical activities. 

According to the hermeneutic perspective, a text consists in the merging of different 

horizons, the horizon of the reader and the horizon of the author. This means, of courses, 

that different readers embedded in their different backgrounds arrive at different 

interpretations. As Jahnke would say, the texts and historical artefacts are here the 

problems and the things that students are confronted with. 

Yet, we would like to say with Bakhtin that these interpretations arise in the classroom 

within an already ongoing dialogue on mathematics, and that this dialogue could include 

the teacher and also the researcher. The concepts of dialogism and polyphony, borrowed 

from Bakhtin, can here provide the necessary means to think about the elaboration of a 

description of what happened objectively and that includes us as a teacher/researcher in its 

description, and also voices from the past. 

5.2 The example of Direct cinema 

Within the oral communication that took place during ESU-8, we brought the example of 

Direct Cinema in order to give some insights about our understanding of this Bakhtinian 

perspective on research. This example seems for us particularly relevant as one can 

retrieve an investigation that is going on, researchers (here the filmmakers) that try to 

understand a community (here the protagonists) trying to make sense of their past. In this 

context, the dialogical principle and the concept of polyphony can be illustrated 

concretely. 

In every encyclopaedia related to cinema, there is a small part of it dedicated to Direct 

Cinema, a way of doing documentaries that arise during the1960s in the province of 

Québec in Canada. Filmmakers from this movement had the idea to produce a very special 

kind of documentary. They were searching to present some kind of fiction related to real 
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events that could include themselves. Paradoxically, they were looking for a more 

authentic way of investigating phenomena with this medium. More concretely, the idea 

was about to go within the community that is concerned with the phenomena that interest 

the filmmakers. The film proposes to show this meeting and how the interaction with the 

members of the community has created a certain event that could have brought new ways 

of thinking about the phenomena. There is no “God’s view” or contemplative perspective, 

but a real engagement by the filmmakers in their object of investigation. 

The movie Pour la suite du monde by Michel Brault and Pierre Perrault (1962) is a 

perfect example of a movie from this Direct Cinema movement. In this film, the 

filmmakers are interested in a community that are living on an isolated island on the St-

Laurent river in the province of Québec in Canada, called Ile aux Coudres. This more or 

less isolated community has conserved a kind of ancient ways of living and traditions 

from the people of Québec and are confronted, by that time, with modern ways of living. 

They went there with their camera and tried to create something with the community. As 

the spectator understands it when seeing the movie, the filmmakers proposed to the 

inhabitants of the island to go fishing for the beluga whale. At that time, this particular 

fishing activity has been abandoned 40 years ago. The camera then follows the members 

of the community in his quest to retrieve the way to organise this fishing for the beluga 

whale that requires special technique and competencies.  

What the film provides is a series of conversation between the members of the 

community, as well as decisions and actions that they are taking and doing together. The 

camera is present during these truly realised events, but the filmmakers do not interact 

explicitly. The result is that we have a tissue of dialogical interactions that include the 

members of the community, the filmmakers (that implicitly influencing the events and by 

controlling the camera) and the voices from the past that arisen from artefacts related to 

the ancient fishing activity. Soon, in the film, tensions emerged from these interactions, a 

very polyphonic dimension appears as progressive, conservative or pragmatic, for 

instance, speeches and ways-of-being reveals themselves. It is by revealing these tensions 

and by finding a way to make accessible the dialogical interaction that the filmmakers 

succeeded in their quest to describe the reality of this special community. 

5.3 To be and to do research in a Bakhtinian perspective 

This little example of Direct Cinema can help to understand more concretely the 

Bakhtinian perspective. We will now describe how the perspective was deployed our 

research recently. From this description, we will try to highlights some final reflections 

related to the pertinence of it in our field and ways to pragmatically conduct research in 

this sense. 

In this study (see Guillemette 2017, 2018), we were searching to describe the 

dépaysement épistémologique lived by prospective teachers engaged in the reading of 

historical texts during a history of mathematics courses. Six participants were recruited in 

this study. Seven activities consisting in the readings of historical texts were experienced: 

- A’hmosè: Rhind Papyrus, problem 24 

- Euclid: Elements, proposition 14, book 2 

- Archimedes: The Quadrature of the Parabola 

- Al-Khwarizmi: The Compendious Book on Calculation by Completion and 

Balancing (Al-kitāb al-mukhtaṣarfīḥisāb al-ğabrwa’l-muqābala), types 4-5 
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- Chuquet: Tripartys en sciences des nombres, problem 166 

- Roberval: Observations sur la composition des mouvements et sur le moyen de 

trouver les touchantes des lignes courbes, problem 1 

- Fermat: Méthode pour la recherche du minimum et du maximum, problems 1 to 5 

Phenomenology, the dialogical principle and the concept of polyphony help us to 

develop our methodological framework. Inhabited by the comprehensive and critical 

perspective that carried these elements in human sciences, the study proposes a description 

of the lived experience of dépaysement épistémologique that takes the form of a 

polyphonic narration. 

These reading activities were conducted following Fried’s (2007, 2008) 

recommendations. For this author, just like many others, the reading of historical texts 

appears to be the preferred approach when using history of mathematics in order to create 

this dépaysement épistémologique, the very meeting with mathematicians from the past.  

Video recordings of classroom activities, individual interviews and a group interview 

were conducted and provide the data. For video recordings, analysis allowed us to 

describe the learning process that took place in the classroom. The individual interviews 

dealt with the experience of the course, the experience of the readings and the experience 

of dépaysement épistémologique. 

The polyphonic novel was then constructed from extracts of the interview group and 

enhanced by video recordings and individual interviews previous analysis phases. 

More precisely, in order to obtain this polyphonic novel, the first step was to construct 

the transcript of the group interview with care. Then, several attentive readings of the 

transcript were made. These readings have revealed some extracts of dialogue containing 

rich and profound reflections in relation to the lived experience of the participants. Twelve 

extracts of the transcript were selected. Thereafter, a careful reading of each of these 

extracts was made again and a list of various topics, thematics, reflections or statements 

were created for each of these extracts. The twelve extracts were then systematically 

treated individually. For each of them, four writing phases succeeded each other.  

The first step of writing was to rework the raw extract from the transcription of the 

dialogue. The dialogue was then shaped so as to make it more readable with the addition 

of paragraphs and spacing.  

The second writing step was to complete the extract, with the addition of information 

on the participants. These additions allowed to “defend” each participant in the dialogue 

and to refine and highlight their thoughts and appreciative orientations. Taking the form of 

paragraphs inserted into the dialogue, these additions allow us to position ourselves 

author/researcher as the agent of the participants, as their spokesman. These intercessions 

were both fuelled and justified by the descriptions of reading activities and the specific 

descriptions of the experience of the participants obtained during previous phases of 

analysis. 

In the third step of writing, personal reflections were added. It was to be heard more as 

an author/researcher in the narrative. Usually at the beginning of the extract, one or more 

paragraphs were added. These provided space to express our thoughts that were emerging 

at the time of writing. 

The fourth and final step of writing was to refine the narrative by emphasizing the 

theme of the extract and the polyphonic style exercised. 
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These four writing steps were repeated for each of the twelve extracts released initially. 

These were then combined to form the final polyphonic novel describing the dépaysement 

épistémologique experienced by future teachers of mathematics. This narration of the 

collective experience takes its density from fine description of each character/participants 

from previous analyses. It has led to the emergence of tensions, viewpoints moving away 

and approaching each other, viewpoints that overlap and influence each other. 

The description provides multiple looks, which, in tension, carries fruitful discourses 

on the lived experience of participants. As Bakhtin put it in its dialogical critic explained 

above, it is in the tension between discourses coming from different spheres of 

communication, different ideological horizons and different aesthetic spaces that one 

could grasp the reality of human life. 

Globally, the form of a polyphonic narration for this description is a methodological 

response to an epistemological challenge that underpinned this research. Indeed, this 

discursive strategy allows the production of a description that, first, can respect the 

phenomenological requirement and stringency to keep alive the subjectivity of the 

participants without objectivizing it in any manner and, second, embrace a conception of 

teaching and learning in mathematics education that claims that learning is necessarily 

“learning-with-others” (Radford 2011, 2013).  

Yet, this study cannot provide any clue concerning the way one could provoke 

“systematically” dépaysement épistémologique in his classroom, and above all, in the 

same way that happened in this particular study or in any “positive” way. This study had 

much humbler objectives, by trying, from an empirical position, not to “confirm” or 

“infirm” theoretical considerations around the introduction of history of mathematics in 

the classroom, but to enrich and deepen them by a reflection that is emerging from the 

contact with the participants. 

In the next excerpts from video analysis, we can see how participants’ mathematical 

activity interacts with Fermat’s minima and maxima method, and how it is interpreted. 

The excerpt concern Fermat’s general description of his method and the first example 

given. He finds the maximum or minimum of a given term f(x) by “adequating” (which 

means approximately equal) the two expressions f(x) and f(x + e), reducing and clearing 

remaining “e-terms”. The first example (divide a line AC at a point E such that rectangle 

ACE area is maximized) involve a term in the form of f(x) = bx - x
2
. 

A team of three students (Martha, Aliocha and Ninotchka) are engaged in this reading: 

 

Fig. 5.1: Martha, Aliocha and Ninotchka reading Fermat. 
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Martha is saying that e is a very small value. 

Aliocha is trying to reconciliate Fermat’s method and the basic elements of modern 

calculus. He asks, “if adequating means to subtract the terms?”. Ninotchka answers that 

“adequating means simply to equalise”. 

Aliocha then asks how she relates Fermat to modern calculus. Ninotchka shows his 

calculations and Aliocha concludes that their reasoning is equivalent. 

After few moments, Martha points out that Fermat removes e. Aliocha indicates that “e 

is almost 0, so the multiplication by e also gives almost 0”. Martha asks herself whether 

the reader should “decide on the value of e”. Aliocha replied that yes. Martha emphasizes 

that there is something missing in the reasoning. Aliocha asks why Fermat is using symbol 

of inequality, and concludes that adequating means to reduce to the minimum. 

With Fermat’s method, which participates of the beginnings of calculus formalization, 

participants are confronted with an exploratory reasoning showing genuine and foreign 

way of dealing with these mathematical objects and procedures. The encounter with this 

fragmented and emerging mathematical discourse brings an impression of distance to the 

participants. They cannot do nothing else but to convoke their own modern modalities of 

expression (especially here representation of algebraic quantities) in order to enter in 

dialogue with Fermat’s utterances (reflecting on geometrical magnitudes), responding 

themselves to other utterances (especially here to Diophantus around the notion of 

adaequalitas). This distance, which is here a temporal one, as well as the polyphonic 

aspect of the text itself and of the classroom organisation, emphasis for the participants 

how individual activities, mediated by the sociocultural context, constitute the genetic root 

of the mathematical activity, containing rational, aesthetic and functional expressive 

dimensions. In our reading, this is where history of mathematics, with the experience that 

it provides, and the dialogue that it forces, seems to bring the most for pre-service 

teacher’s reflection on mathematics and mathematics education. 

The methodological framework inspired here by elements of Bakhtin’s philosophy has 

helped us to get in a dialogue with the participants and the mathematicians of the past. It 

has also helped to describe how together the researcher, the participants, the voices from 

the past and the actual mathematical culture come into dialogical interactions. 

On the one hand, from a research perspective, the idea is to give access to this share 

meaning, to grasp the world in common that emerges from the introduction of history into 

the mathematics classroom. From this perspective there is a need to report the multiplicity 

of experiences. This doesn’t mean to report, side-by-side, each of the participants’ 

experiences, but to really provide the “common world”. This common world has nothing 

to do with the consensus that could emerge around a certain understanding of history or 

mathematics or their relations, but is constituted of tensions emerging from dialogical 

interactions between participants researchers and voices from the history of mathematics.  

It is by revealing these tensions and by finding a way to make accessible this dialogical 

interaction that a study could eventually succeed in its objective to describe what it means 

for the students or the pupils to meet history of mathematics or elements related to history 

of mathematics. Again, the challenge here is to find ways to “write” and “present” a 

description that could introduce these dialogical interactions to the research community. 

On the other hand, from a more pedagogical perspective, the idea could be to think 

about the sphere of speech communication related to Fermat and his contemporaries. 

Without referring explicitly to Bakhtin with the students (but why not?), it could be to 
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interesting to investigate more profoundly the link between the participants of this sphere 

of speech communication in which Fermat is inscribed. Asking to whom Fermat is 

writing? In response to what? How Fermat’s methods, concepts and idea have been 

received? Which attitude does he enact and which attitudes are expected by Fermat from 

his reader? The reading of a historical text such as Fermat’s text on minima and maxima 

method could then become an exploratory and interpretative activity within mathematics 

that could generate element of a debate (such as Barbin 2011 suggests) both at the level of 

Fermat and his contemporaries, but also at the level of the classroom when students enter 

in a dialogue with Fermat having themselves an active-responsive attitude related to the 

mathematics that are proposed by Fermat. Indeed, from a Bakhtinian perspective, students 

have expectations from a mathematical text, could be in terms of rigor, organisation, tone, 

clarity, utility, generalizability, notation, etc. and those expectation could lead to 

disillusion, agreement, disagreement, consideration, reconsideration, etc. 

From this Bakhtinian perspective on the mathematics classroom and on this particular 

type of activity referring to history, one could perceive an ongoing dialogue in the 

classroom. Pedagogical goals could emerge from this perspective and be pursued. For 

instance, reflection on meta-issues in mathematics such as the historicity of concepts, 

methods, definitions and notion, historicity of notation and rigor, mechanisms underlying 

the discovery or development of mathematical objects or procedures, intrinsic and 

extrinsic forces that drive mathematicians, links between the development of these 

concepts and the development of societies and cultures, etc. Moreover, these pedagogical 

goals could be pursued by emphasising, promoting and maintaining the polyphonic aspect 

of the context in which the students are subsumed, both at the level of history and at the 

level of the classroom.  

6 Conclusion 

We hope that his paper could help researchers and teachers to reflect upon ways of 

conducting research in our field and to think about the very meaning of introducing 

history in the mathematics’ classroom. In our quest to develop reflection around 

conceptual and theoretical elements related to history in mathematics education, this paper 

has tried to draw attention on the dialogical principle and the concept of polyphony that 

has been developed by Bakhtin and his collaborators. We have argued that elements of 

Bakhtin philosophy could support reflection, not only on history, mathematics or 

mathematics education, but on our very ways of being in research and doing research 

within or field and to think about the classrooms in such context.  

We believe that the Bakhtinian perspective deserves to be explored and discussed 

within our field. The work of Bakhtin presents an important radicalness regarding its way 

of thinking about the human subjectivity and the way in which it is inserted in the 

historical, social and cultural world. We think that the elucidation and the development of 

these positions could, in many ways, help investigations and intervention related to the 

introduction of history of mathematics in mathematics education. 
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ABSTRACT 

In this paper, we argue for the use of digital technologies in making original sources more accessible to 

students. We present a teaching scenario outlining a use of GeoGebra to ‘unpack’ a selected proposition 

from Euclid’s Elements. We discuss potential benefits of applying digital technologies through Duval’s 

(2006) framework of semiotic registers, through Trouche’s (2005) framework of instrumental genesis, and a 

use of Barnett and colleagues’ (2014) approach of guided reading. The combination of original sources and 

use of digital technologies appears to be a somewhat overlooked area in the HPM research, not least in terms 

of empirical investigations. Yet, in this paper we lay down the theoretical bricks for such further 

investigations. 

 

Keywords: Original sources, digital technologies, semiotic registers, instrumental genesis, guided reading. 

1 Introduction 

As often pointed out in the HPM literature,
1
 use of original sources is one of the most 

rewarding but also one of the most challenging endeavours in the teaching and learning of 

mathematics (e.g. Jahnke et al., 2000). One challenging aspect for the students of course 

concerns situating the source in a historical context often rather different from that of the 

present. Another challenging aspect concerns the fact that original sources often are quite 

inaccessible to the students, e.g. because the language of the source is different from that 

in their usual textbooks, the mathematical notation is different, mathematical concepts are 

defined differently or even called something different. Hence, in the HPM literature it is 

often debated how to make the original sources more accessible to the students (e.g. see 

Jankvist, 2014). Several approaches have been suggested, developed and refined over the 

years, e.g. the hermeneutic approach (Jahnke et al., 2000; Glaubitz, 2010), guided reading 

(Barnett, Lodder & Pengelley, 2014), comparative readings (e.g. Siu, 2011). (For further 

discussion of these and other approaches, see Jankvist, 2014). 

In this paper, we argue for, if not an actual approach, then yet a different way of 

making original sources more accessible to students, namely by having students use digital 

technologies, e.g. Dynamic Geometry Software (DGS) or Computer Algebra Systems 

(CAS) or other digital technologies, to ‘open up’ the original source material. The free 

dynamic geometry tool GeoGebra (www.geogebra.org) combines geometry and algebra as 

well as spreadsheets on one interface and can offer dynamic visualisations of 

mathematical concepts, facts, statements, axioms, etc., and potentially motivate students in 

accessing original sources and learning mathematics. We are not the first to suggest a 

combined use of historical sources and digital technologies. Oftentimes students are quite 

                                                           
1 HPM is the ICMI affiliated International Study Group on the Relations Between History and Pedagogy of 

Mathematics. 
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familiar with one or several such digital technologies – e.g. in Danish upper secondary 

school CAS is mandatory in the mathematics program – and may thus be able to use their 

competencies within these as a way of ‘unpacking’ an original source. In the terminology 

of Jahnke (2019), we could consider the digital technologies as making up another 

hermeneutic circle for the students’ work. If relying on Sfard’s (2008) notion of discourses 

in relation to mathematics, we might argue that the digital technologies makes up a 

familiar discourse for the students, and that this familiarity can be profited from in relation 

to using original sources. Or if applying Duval’s (2006) notion of register, we may argue 

that the digital technologies offer a more familiar ‘register’ to the students. But whether 

choosing one or the other theoretical basis, the fact remains that there seems to be an 

unresolved potential in relation to using digital technologies when teaching with original 

sources in mathematics – a potential which the HPM literature largely seems to have 

missed out on – with a few exceptions
2
 – and this despite the fact that attention was 

already drawn to such potentials in the ICMI Study (Fauvel & van Maanen, 2000).  

Through a number of examples, Isoda (2000a) argued how digital technologies – e.g. 

DGS, CAS, spreadsheets – could contribute to students’ mathematical inquiry and 

reflective thinking by providing multiple representations. For example, in relation to a use 

of DGS in the reading of Descartes’ Geométrie: “One of the major pedagogical concerns 

for many years has been that students have lost the opportunity to experience classical 

geometrical intuitions, which are not replaced by a haze of algebraic symbols; DGS begins 

to offer a chance to re-experience some age-old intuitions.” (Isoda, 2000a, p. 354). Further 

argumentation and illustration are to be found in the HPM proceedings (Isoda, 2000b; 

2004), the ESU proceedings (Aguilar & Zavaleta, 2015; Bruneau, 2011; Chorlay, 2015; 

Hong & Wang, 2015; Jankvist, Misfeldt & Aguilar, 2019), and in miscellaneous other 

channels (Baki & Guven, 2009; Burke & Burroughs, 2009; Caglayan, 2016; Erbas, 2009; 

Kidron, 2004; Olsen & Thomsen, 2019; Papadopoulos, 2014; Zengin, 2018). Yet, only 

about a handful of these may be considered as actual empirical research studies.
3
 And 

equally important, only very few of these studies make use of the extensive mathematics 

education literature on digital technologies in the teaching and learning of mathematics. 

This paper aims to address the above claimed potentially fruitful interplay between the 

history of mathematics and the use of digital technologies. We do so by outlining 

mathematics education theoretical constructs, also related to digital technologies, which 

when combined may play a role in structuring such an interplay, and by providing an 

example of a teaching scenario on Euclid’s proposition 22 from the Elements Book I and 

the use of GeoGebra.  

                                                           
2 As part of a recent review in his master’s thesis at the Danish School of Education, Balsløv (2018) 

identified only some fifteen incidents in decades of HPM-related literature that specifically address the 

combination of using history of mathematics in combination with digital technologies. All of them are 

published from year 2000 and on. 
3 Jankvist, Clark and Mosvold (in review) provided an empirical example of how a Danish School of 

Education graduate student on her own initiative used DGS to further her understanding of Vieté’s 

geometrically-inspired method to solve two third degree equations. In addition, two master’s theses from the 

Danish School of Education provide empirical evidence concerning a use of Fermat’s method for evaluation 

of maxima and minima in relation to a use of CAS in upper secondary school (Balsløv, 2018), and a use of 

Euclid’s proposition on the construction of equilateral triangles and a use of DGS in primary school (Olsen 

& Thomsen, 2017). 
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2 Representations and semiotic registers 

As occasionally pointed out in the available HPM literature
4
, digital technologies hold a 

large potential in terms of multiple representations. To this end, Duval’s theory of 

semiotic registers seems suitable to articulate key aspects of this potential.  

The outset for Duval (2006) is that in mathematics one cannot directly access the 

mathematical objects, as one for instance can in physics through various measuring 

instruments, etc. In principle, one can only access mathematical objects through semiotic 

representations, which makes students’ work with semiotic representations all-important 

in their mathematical activities. In particular, it is the transformations between the 

different semiotic registers that are of importance rather than the representations in 

themselves.  Duval points out that the role played by signs in this regard is not to be 

placeholders for the mathematical objects, but for other signs. This is to say, from this 

perspective, signs and transformations between different semiotic representations are the 

kernel of mathematical activity – as opposed to what is going on in other scientific 

disciplines. From a mathematics education point of view, one question of course becomes: 

If one can use different forms of semiotic representations for every mathematical object, 

how can students then recognize the same represented object through different semiotic 

representations, which are produced within different systems of representations? 

The possibilities of substituting one semiotic representation with another depends on 

the semiotic system, and every system offers specific possibilities. The capacity of a given 

representation does not depend on the individual symbol (or sign), but on the semiotic 

system of which is a part. Natural distinctions are for example language (natural and 

symbolic) versus images (figures, graphs, etc.). But according to Duval such distinctions 

are too general and causes us to overlook an important point; namely that some semiotic 

systems may only be used to perform mathematical processes, while others possess a 

larger variety of functions. Duval (2006) suggests distinguishing between monofunctional 

and multifunctional semiotic registers: “Some semiotic systems can be used for only one 

cognitive function: mathematical processing… within a monofunctional semiotic system 

most processes take the form of algorithms” (p. 109). A multifunctional semiotic system 

“can fulfil a large range of cognitive functions: communication, information processing, 

awareness, imagination, etc.” and “within a multifunctional semiotic system the processes 

can never be converted into algorithms” (p. 109).  

Next, Duval distinguishes between a treatment, which takes place within one semiotic 

register, and conversions which happen between registers. An example of a conversion 

might be the mathematization of the equation story ‘Aya is 3 years older than her brother 

Ali. Together they are 23 years old. How old are they?’ into the equation x+(x+3) = 23, 

which takes place between a multifunctional (natural language) register and a 

monofunctional (symbolic system) register. Solving the resulting equation step by step, 

however, to reveal that x=10, is a treatment, since this takes place within the same register, 

i.e. the symbolic system. So, for conversions, source register and target register are 

different, whereas for treatments they are the same. Duval also notes that there are two 

different types of conversions. A congruent conversion is a straightforward translation – 

or coding – e.g. as the mathematization of the equation story into a symbolic expression 

                                                           
4 HPM is the ICMI affiliated International Study Group on the Relations Between History and Pedagogy of 

Mathematics. 
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above. A non-congruent conversion is, however, much more complicated. For example, 

this could be doing the opposite translation in our example, i.e. going from the symbolic 

expression, 2x+3 = 23, to an equation story, since there are infinitely many stories to be 

told based on this equation. 

Duval also distinguishes between discursive representations resulting from one of the 

three kinds of discursive operations: 

1. Denotation of objects (names, marks...) 

2. Statement of relations of properties 

3. Inference (deduction, computation...) 

and non-discursive representation which consist of 

1. Shape configurations (1D/2D, 2D/2D, 3D/2D) 

Discourse here refers to something like ‘articulation’. It is difficult to articulate 

geometrical representations and transformations through words, hence these are non-

discursive. Together with the distinction between monofunctional and multifunctional, this 

results in four types of semiotic system representation registers. 

 

 Discursive registers Non-discursive registers 

Multifunctional registers 

(non-algorithms) 

Basically the use of natural 

language, spoken or written 

Typically depicting 

drawings, sketches, figures, 

patterns 

Monofunctional registers 

(algorithms) 

Refers to symbol containing 

and symbol using systems 

Diagrams, graphs, etc. 

subject to rules of 

construction 

Figure 2.1: Duval’s classification of registers mobilized through mathematical 

processes. 

In relation to the students’ difficulties with mathematical proof and proving, Duval 

offers the following insights: 

Now we can only mention the important case of language in geometry. We 

can observe a big gap between a valid deductive reasoning using theorems and 

the common use of arguments. The two are quite opposite treatments, even 

though at a surface level the linguistic formulations seem very similar. A valid 

deductive reasoning runs like a verbal computation of propositions while the 

use of arguments in order to convince other people runs like the progressive 

description of a set of beliefs, facts and contradictions. Students can only 

understand what is a proof when they begin to differentiate these two kinds of 

reasoning in natural language. In order to make them get to this level, the use 

of transitional representation activity, such as construction of propositional 

graphs, is needed. (Duval, 2006, p. 120) 

It appears obvious that digital technologies, in the sense of DGS, has a role to play in this 

respect as well. 
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3 Instrumental genesis, instrumental orchestration and instrumental 

distance 

Instrumental genesis involves the process of transforming artefacts, such as digital tools, 

into mathematical instruments (Guin and Trouche, 1999). These instruments then become 

part of a student’s cognitive scheme (Vergnaud, 2009) and can be used epistemically to 

support their learning of mathematical concepts (Guin & Trouche, 1999; Artigue, 2002). 

In more detail, a student can internalise an artefact’s constraints, resources and procedures 

in the process of instrumental genesis (Guin & Trouche 1999). There are two processes 

involved. The process of instrumentation, which is how a digital tool shapes and affects 

the user’s thinking, and the process of instrumentalisation. During the instrumentalisation 

process, students may acquire knowledge that may lead to a different use of the artefact, 

and once achieved, then the student is able to critically reflect upon the activity they are 

engaged in, potentially reinterpret it but also creatively use these artefacts. We do 

recognise of course that this process of transforming digital tools into mathematical 

instruments is lengthy and that instrumental genesis develops over time (Artigue, 2002). 

Moreover, the interrelation between technical knowledge about the artefact, i.e. knowing 

how to use and using the artefact, and knowledge of mathematical concepts can prove 

crucial in succeeding instrumental genesis (Drijvers et al., 2010).  Drijvers and 

Gravemeijer (2005), for example, argued that the apparent technical difficulties students 

had were maybe due to cognitive difficulties with mathematical concepts. It is quite 

crucial therefore to consider how best and why to support students during their 

interactions with a digital tool and achieve the initial step of instrumental genesis 

(instrumentation). Once this step is achieved, we could say that the digital tool has served 

its epistemic purpose, i.e. being used to support students’ understanding and learning 

within their cognitive system (Artigue, 2002; Lagrange, 2005; Trouche, 2005). The 

instrumentalisation process, involving how a student discovers the various functionalities 

of artefacts and transforms them in their own personal way, can then follow and allow a 

digital tool to serve its pragmatic purpose too, i.e. being used to create a difference in the 

world external to the student (ibid.).  

Considering though the instrumental approach and how digital tools can be integrated 

in the mathematics classroom, we should discuss Trouche’s (2004) notion of instrumental 

orchestration. It provides a framework for expressing teachers’ work before and during 

their lessons and interactions with their students. As Drijvers and colleagues (2010) 

described it with reference to Trouche: “An instrumental orchestration is defined as the 

teacher’s intentional and systematic organisation and use of the various artefacts available 

in a – in this case computerised – learning environment in a given mathematical task 

situation, in order to guide students’ instrumental genesis” (pp. 214-215). Trouche (2004) 

distinguishes three elements of the instrumental orchestration framework, namely a 

didactical configuration, an exploitation mode and a didactical performance. A didactical 

configuration describes the arrangement of artefacts in a certain environment and the 

configuration of the teaching setting. For example, in a mathematics classroom, such an 

arrangement would involve a certain orchestration of mathematical discourse. An 

exploitation mode regards the strategies the teacher uses to exploit a didactical 

configuration in order to achieve their teaching objectives. For example, a mathematics 

teacher would need to make decisions on how to introduce and model a mathematical task 

using an artefact, on the possible roles an artefact they use for their own teaching, but also 
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for students to interact with, can have, and on the schemes and techniques students should 

develop and establish. Finally, a didactical performance involves the decisions a teacher 

should take during a lesson and how best to perform in their chosen didactic configuration 

and exploitation mode. For example, a mathematics teacher would consider what the best 

probing questions to use to develop students’ mathematical thinking or understanding of a 

concept are, how to respond to certain students’ comments, shared solutions and answers 

and their justifications, how to improvise and identify the best approach when an 

unexpected aspect of the mathematical task or the technological tool surfaces, or any other 

emerging goals appear in a lesson. 

For digital tools to be integrated in the mathematics classroom, besides looking at 

teachers’ instrumental orchestrations, we need to consider a number of factors. Some of 

these were described by Haspekian’s (2005; 2014) research work and the introduction of 

the notion of instrumental distance. Haspekian explains: 

For a given tool, if the distance to the ‘current school habits’ is too great, 

this acts as a constraint on its integration [...]. On the other hand, the didactical 

potential of technology relies on the distance it introduces with regards to 

paper-pencil mathematics as, for instance, by providing new representations, 

new problems, increasing calculation possibilities, etc. This is the case for the 

dynamic figures in geometry softwares, with respect to the static figures in 

paper-pencil geometry. The didactic potentialities of these dynamic objects and 

their benefits for students’ learning have been evidenced by many research 

studies [...] (Haspekian, 2014, p.246). 

The notion of distance in Haspekian’s work refers to the distance between the 

praxeologies involved in two different environments. There is a distance between praxes 

involved when interacting with a digital environment and the praxes involved when 

interacting with a paper and pencil activity for example. There is also a distance between 

the scope of a digital environment and how it was designed to be used and the culture of a 

mathematics classroom and the school’s policies.  

4 An illustrative case based on the ‘guided reading’ approach 

In this section, we offer a potential teaching scenario for introducing Euclid’s Proposition 

22 with GeoGebra based on the approach of guided reading. The GeoGebra digital tool 

can be used to present this proposition, but also allow students to explore the idea Euclid 

shared with the ultimate goal of proving the proposition. We rely on the approach of 

guided readings of original sources developed by Barnett, Lodder and Pengelley (2014), 

and also used by Jankvist (2013). This approach offers a sensible way of dealing with the 

occasional inaccessibility of primary original sources. The main idea is to supply or 

interrupt the reading of an original source by explanatory comments and illustrative tasks 

along the way as orchestrated by the teacher. One feature of guided reading is, as claimed 

by Barnett, Lodder and Pengelley (2014) that “the primary source is now being used not 

just to introduce the mathematics in an authentically motivated context, but also as a text 

which the student is explicitly challenged to actively “interpret” as part of their personal 

process of making modern mathematics their own. In alignment with this shift, the tasks 

we now write for students increasingly adopt a more active “read, reflect, respond” 

approach to these sources” (p.10).  
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In our teaching scenario below, we will showcase how we also made use of Barnett and 

colleagues’ so-called read-reflect-respond type of tasks. Barnett and colleagues (2014) 

aimed at students achieving “a deep understanding of both the similarities and differences 

between past and present mathematics, not merely the past as a convenient or most natural 

avenue to the present” (p. 23). In our proposed teaching scenario, we focus on two 

resources (or media for acquiring mathematical knowledge), paper and digital 

technologies. “Radical engagement with the disparate discourses of original sources 

selected from various mathematical communities appears to also support student learning 

by providing the scaffolding necessary to become a participant in a new (e.g., modern) 

mathematical discourse” (ibid., p. 24). We focus on how to connect and “unpack” past 

resources using a modern medium, such as the GeoGebra digital tool designed for 

mathematical learning, a tool that is familiar to the student, as already mentioned in the 

introduction. Another goal of Barnett and colleagues was to promote students’ 

mathematical reasoning skills and further develop their ability to create valid 

mathematical arguments, a goal that we did adopt too. 

Euclid’s Proposition 22 states that “To construct a triangle out of three straight lines 

which equal three given straight lines: thus it is necessary that the sum of any two of the 

straight lines should be greater than the remaining one” (source: 

https://mathcs.clarku.edu/~djoyce/elements/bookI/propI22.html). This is the English 

translation from the original source in Ancient Greek, which is presented in Figure 4.1.  In 

Figure 4.2, the same proposition is presented in Latin from the 1482 version of Euclid’s 

Book of Elements. Both sources offer a diagrammatic representation for describing 

Proposition 22. Can you make a comment/argument here about Duval’s registers here? 

 

Figure 4.1: The Euclid proposition 22 in its original presentation in ancient Greek (source: 

http://www.physics.ntua.gr/mourmouras/euclid/book1/postulate22.html) 
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Figure 4.2: The Euclid proposition 22 in its original presentation in Latin from 1482. 

There are attempts at recreating this proposition in GeoGebra. For example, such a 

resource is: https://www.geogebra.org/m/bp2mpZVz. In this construction, the lengths of 

the three sides of the constructed triangle are variable and can be dragged, i.e. dynamically 

moved, while the construction reflects that movement and change of the lengths of the 

three sides. In Figures 4.3 and 4.4, we present how dragging one line segment, CD, 

impacts the construction. 

 

Figure 4.3: GeoGebra construction of Proposition 22 

(source: https://www.geogebra.org/m/bp2mpZVz). 
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Figure 4.4: GeoGebra construction of Proposition 22, after dragging line segment CD 

from its original position presented in Figure 4.3 and making its length shorter than the 

original (source: https://www.geogebra.org/m/bp2mpZVz).  

Considering these resources and with the aim of using GeoGebra as a tool for 

‘unpacking’ Proposition 22 and making it more accessible to students, we have designed 

the following teaching scenario using the guided reading approach, as mentioned earlier. 

Besides taking into account aspects of Duval’s semiotic registers, we considered both the 

instrumentation and instrumentalisation processes a student is expected to go through in 

achieving instrumental genesis, but focused mostly on the teacher’s potential perspective 

and in fact a teacher’s instrumental orchestration processes in achieving their students’ 

instrumental genesis. We also added the analytical lens of instrumental distance. This 

considers the distance between the praxeologies of Euclid’s Proposition 22 original 

resource and potentially how it was intended to be used for the teaching and learning of 

Geometry and the praxes involved when students interact with GeoGebra to interpret 

Proposition 22 and paper and pencil to record their reflective comments and arguments. 

We neither intend to discuss the culture of a mathematics classroom nor any school’s 

policies or how this teaching scenario could be carried out considering such factors, as 

these differ from school to school. 

Students are presented with the following Learning Objectives (LOs). 
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The above LOs should set the scene for the activity sequence that supports in bridging 

the instrumental distance between the paper and pencil medium and GeoGebra. The 

teacher presents Proposition 22 on the board and printed for students, but without any 

diagrams. This strategy is used to exploit the didactical configuration of reading the 

proposition and using a familiar and easy to use medium, that of paper and pencil, as 

preparation for using the digital medium later on (exploitation mode). 

 

Students are expected to read carefully this sentence and interpret its meaning using 

any means available to them (e.g., either mentally or by drawing a diagram on paper), 

before moving on to a paired task, Task 2, (exploitation mode). At this stage, GeoGebra is 

not used as we envisage students need to consider what the proposition states in its paper 

presentation before interacting with the GeoGebra tool to explore its meaning by carrying 

out constructions of triangles. This process could be viewed as the first stage of students’ 

instrumentalisation, as it is planned with the aim of students’ acquiring knowledge that 

may lead to a different use of the GeoGebra tool, e.g. not just as a tool to construct and 

explore, but as an analytical tool for reflecting upon their construction through a dynamic 

exploration (exploitation mode).  

116



 

Students are expected to come up with any diagramatic or symbolic representations on 

paper in their efforts to make sense of the proposition. They are also expected to work as a 

pair and agree upon a statement for what Proposition 22 states using their own words. 

Such a preparatory work is aimed at giving meaning to students’ interactions with 

GeoGebra that follow in Task 3. They should have reached a certain level of 

understanding of what Proposition 22 states and may use GeoGebra as a tool for 

validating their conjectures by constructing a triangle and dynamically manipulating it 

(instrumentalisation process), as opposed to carrying out meaningless actions. 

Students are then presented with the GeoGebra tool. In this scenario, students are 

expected to be familiar with GeoGebra and its main functionalities.  

 

Students could potentially use GeoGebra as a drawing tool and create triangles by 

constructing three line segments of 3cm, 4cm and 5cm respectively, and place them in 

such a way so that each two segments are connected at a corner. Such an approach cannot 

be criticised when considering the instrumental distance between the paper medium, 

which they are used to and are familiar with and their tendency to follow a similar strategy 

in GeoGebra. It could though be considered as students’ initial steps of instrumentation 

since students ‘drawing’ with GeoGebra differs from that of drawing on paper and 

students are ‘forced’ to use GeoGebra’s tools for constructing line segments of given 

lengths as opposed to a ruler and measuring a line segment in order to draw it. The 

rationale for this task 3 is to give students the opportunity to consider how to construct a 

triangle with sides of three different fixed lengths. After a 10-15 minutes exploration of 

how to construct a triangle in GeoGebra when being given the lengths for its three sides, 

the teacher runs a class discussion focusing on the strategies students followed to construct 

their triangles. Such strategies may involve: (a) using the GeoGebra ‘polygon’ feature, 

with which students may form a polygon of 3 sides, or (b) using the GeoGebra ‘segments 

with given length’ feature, with which students could construct three line segments of 

3cm, 4cm and 5cm respectively and join them in such a way so that a triangle is formed. 

These two didactical configurations of course are not general enough and the students 

restrict themselves from using a dynamic tool such as GeoGebra to its full potential; (c) 

Students could construct a ‘segment with given length’, e.g. AB = 5cm, and then construct 

two circles. One circle of centre ‘A’ and radius 3cm and one circle of centre ‘B’ and radius 

4cm. Either of the two points where the circles intersect can be chosen as the third vertex, 

‘C’, of the triangle. This second construction path will be referred to as the ‘triangle 
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construction’ for the rest of the paper. It is also worth considering that students may have 

been taught already how to construct a triangle of given lengths (or not) by using a ruler 

and compass. Such prior knowledge would certainly influence their instrumentalisation 

process as they would potentially use similar strategies of constructing line segments and 

circles to recreate such a construction of a triangle on GeoGebra. On the other hand 

though, such prior knowledge may act as a bridge for the instrumental distance between 

the paper and pencil medium and GeoGebra. Students would look for ways to construct 

line segments and circles in GeoGebra mapping their prior experiences on paper. 

Hovering over the various GeoGebra features, but also the iconic representation of these 

features can support, shape, as well as affect their thinking processes (instrumentation). 

The teacher then refers to the Proposition 22 and asks students to compare their actions 

in Task 3 to what the Proposition states.  

 

The rationale for this discussion is for students to recognise the condition for being able 

“To construct a triangle out of three straight lines which equal three given straight lines”, 

or in other words to construct a triangle when being given three line segments of certain 

lengths. Interacting with and exploring their constructed triangle of fixed side lengths in 

GeoGebra, while bearing in mind the two sentences of Proposition 22 and stating these in 

their own words, should prompt students’ critical reflection on the validity of Proposition 

22. Recognising that their triangle is ‘fixed’ in GeoGebra and none of its corners can be 

dragged in such a way that their triangle changes size and a different triangle is formed, 

should reinforce the idea that any constructed triangle of given lengths for its three sides is 

unique. They should start thinking then about the generalisability of the Proposition. 

Should this proposition be true for any triangle of given lengths for each side? Are there 

any conditions for the proposition to hold true? Such probing questions may be used by 

the teacher to support students’ reflections and their efforts in writing down arguments 

regarding the Proposition. In their written arguments, students are expected to reveal their 

instrumentalisations, as they may exploit GeoGebra’s features and their interactions to 

form arguments and support their claims. Moreover, students are expected to start thinking 

about the value of the second sentence in the Proposition, “thus it is necessary that the sum 

of any two of the straight lines should be greater than the remaining one”. Why is this a 

“necessary” condition to construct a triangle? Students’ written arguments will be valuable 

information as they will reveal the current state of their instrumentation and 

instrumentalisation processes as well as their mathematical reasoning skills. 

Considering Duval’s theory, in Task 1, the representation of the translated to English 

Proposition 22 on paper serves multiple purposes (multifunctional semiotic register). It 

communicates to students Euclid’s original presentation of the proposition and makes 

students aware of the condition for a triangle of given lengths for its three sides to exist. 
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Students are expected to process the shared information and using for example, their 

imagination, creativity and/or visualisation skills to ‘translate’ or convert this proposition 

using different registers, such as a diagram and/or mathematical notation and symbols. 

Such a process can lead to the creation and use of a non-discursive representation and it is 

expected to happen in Task 2. In pairs, students have to argue about their interpretations 

and could potentially ‘move’ between different registers. After articulating their thinking 

using natural language (multifunctional discursive register), they could decide to draw a 

triangle on paper (multifunctional non-discursive register) combined with the use of 

mathematical notation to describe the condition for their triangle to exist (monofunctional 

discursive register). In Task 3, students make shifts between various registers, but these 

occur between the paper medium and GeoGebra and within GeoGebra. They create a 

geometrical figure, i.e. a triangle with sides 3cm, 4cm and 5cm, and interpret the icons 

representing GeoGebra features, which also involve natural language (hovering over them 

shows what they do) and symbolic language (algebraic notation to represent angles, 

points, lengths, etc.). Then, in Task 4, students reflect on what the Proposition states once 

again and are asked to articulate arguments for supporting their claims and convince their 

peers. In this case, we could argue that students should be ready to share their beliefs, facts 

and contradictions, but they are not maybe ready to produce a valid deductive reasoning, 

as per Duval’s (2000) distinction. 

 

 

Figure 4.5(a), (b), (c): Students are expected to drag corner A of the triangle in GeoGebra 

and explore what happens. In (a) the triangle is formed with the longer side as the base. In 

(b) the corner A is dragged towards the left and the base gets longer, while corner B gets 

closer to the base. In (c) the corner A is dragged further to the left and corner B ‘lands’ on 

side AB of the triangle and as a result the triangle ABC ceases to exist and instead a 

longer line segment AC is created. 

The rationale for Task 5 is for students to explore a triangle constructed in GeoGebra 

with non-fixed lengths for its three sides. This didactical configuration should trigger 

students’ instrumentalisation of using GeoGebra as a tool for critically reflecting upon the 

second statement in Proposition 22. Students are expected to recognise that if the corner A 

gets dragged further to the left in such a way that the length AC gets longer than the sum 

of AB and BC, then the triangle ceases to exist. This realisation is key in understanding the 

importance of the condition stated in Proposition 22. We could argue for the benefits of 

using GeoGebra and in fact a triangle of varied lengths for its sides to ‘unpack’ and 

validate Proposition 22.  
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Considering a triangle of no given lengths for their three sides in GeoGebra as a 

didactical configuration can certainly trigger students’ critical reflection of Proposition 22, 

but at the same time some students may still have difficulties thinking in such an abstract 

way and require working with triangles of specific lengths. The teacher could present 

students with a number of sets of 3 lengths for constructing a number of triangles. Such a 

strategy will prompt students to reflect upon sets of lengths that can produce a triangle and 

others that won’t and with some further ‘guided reading’ and the teacher’s intervention, 

students should recognise the condition of having the sum of two lengths being greater 

than the remaining length for a triangle to be created, as stated in Proposition 22, and gain 

a deeper understanding.  

 

In this process, students are expected to recognise that only for (a), (b) and (d), a 

triangle can be constructed. The teacher asks for any instances the students couldn’t make 

a triangle, encouraging them to share their reflections and arguments. What does 

Proposition 22 state in relation to constructing a triangle? Were you all able to construct 

all triangles? Why? Why not? Anything ‘special’ about these lengths?  

The teacher runs a class discussion aiming at supporting students in reaching a 

conclusion about the condition for being able to construct a triangle from three given 

straight lines. Why can’t we have a triangle of lengths [2, 2, 5] and [2, 3, 5]? Why can we 

have a triangle of lengths [2, 2, 2], [2, 3, 4] and [2, 4, 5]? What’s the same and what’s 

different between these sets of lengths? 

All the above probing questions are aimed at supporting students’ development of 

critical thinking regarding Proposition 22. GeoGebra can support them in constructing 

quickly and accurately the different triangles and comparing their constructions to reach 

their conclusions and potentially articulating valid arguments relying upon the specific 

examples.  
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In Task 5, students were presented with the teacher’s constructed triangle of varied 

lengths for its sides, whereas in this Task 7 students are expected to use GeoGebra to test 

the second condition in Proposition 22 by choosing different lengths for a triangle they 

construct. GeoGebra then becomes a validation tool for their own constructions, but also a 

tool that helps them critically reflect upon an original source (instrumentalisation).  

Considering Duval’s (2000) work on registers, working with specific examples could 

also help them in articulating their arguments regarding Proposition 22 and why and when 

a triangle can be created when being given a set of lengths for its three sides. The 

coherency of those arguments though would reveal the type of reasoning students would 

have achieved at this stage in the learning sequence. Students are prompted to use 

multifunctional semiotic registers and discursive representations, such as their verbal 

communications, their strategies for constructing the requested triangles in GeoGebra, and 

non-discursive representations, such as their constructed triangles in GeoGebra. By the 

end of Task 7, students should feel confident about what the Proposition 22 states and 

have a better understanding of the condition. Their arguments may still be based on 

specific examples and certain cases of lengths for the three sides of a triangle and may not 

be general enough. Depending on their confidence with mathematical notation, some 

students may bring algebraic notation into their written statements. In their collaborations, 

some students may go through a valid deductive reasoning process at this stage, where 

they argue about the correctness, truthfulness, or in other words, the proof of Proposition 

22, using their constructions as specific examples. Students’ explorations and arguments 

most likely based on specific examples, though, on paper and in GeoGebra, cannot be 

considered as formal proofs. The next step is for students to be exposed to the proof as 

presented in one of the original sources, but translated into English. 

 

Students are presented with this image taken from 

https://mathcs.clarku.edu/~djoyce/elements/bookI/propI22.html and are asked to use 
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GeoGebra to create the presented construction as described in those steps. Students are 

expected to choose three lengths for their triangle and then recreate the above construction 

in GeoGebra following the given steps. Depending on students’ attainment and other 

factors, such as time or students’ engagement and their characters, these steps could be 

given as individual separate tasks (presented below) as opposed to being presented in one 

figure as a lengthy sequence of steps where students are trusted to follow the steps 

accurately. Such didactical configurations should be decided by the teacher. 

 

By the end of this task, all students should have their triangles constructed provided 

that they chose lengths for the three sides that comply with the triangle inequality 

condition (the sum of the lengths of any two sides is bigger than the length of the 

remaining side). Their construction should be similar to the one they were presented with 

on paper (see Figure within Task 8a above). Students could potentially have difficulties 

with understanding what “Set out a straight-line DE, terminated at D, but of infinite length 

in the direction of E” means. The given diagram can support them with this statement, but 

also the “Ray” feature within the ‘Lines’ GeoGebra tools can help them in ‘unpacking’ 

this statement and constructing such a line (instrumentation).  

 

In this step, we should comment on how a length is represented by a capital letter, A, 

whereas usually students are presented with line segments of given lengths, e.g. AB = 

3cm. Students are expected to interpret and potentially use mathematical notation, which 

is a requirement a teacher can share with their students: 

FD = FK 

FD = A, so FK = A 

Their arguments should involve the fact that FD and FK represent the radius of the 

circle DKL and since the radius of this circle was constructed to be equal to the given 

length of side A of the triangle, then all three lengths are equal, FD = FK = A. 

Using GeoGebra for this step in the proof, students should validate the equalities as 

described in the written statement above by potentially dragging certain points in their 

construction and comparing the lengths of line segments in question. Students could argue 
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about the validity of the statements based on their constructions and in essence argue 

about the validity of the statements by using ‘proof by construction’.  

 

Similarly to Task 8b, students could follow a similar process to derive that: 

GH = GK 

GH = C, so KG = C  

Their arguments should involve the lengths of GH, GK and C, all being equal to the 

radius of the circle LKH and therefore GH = GK = C. Some students may notice in this 

statement the change in the order of the letters for representing the line segment GK. 

As mentioned above regarding Task 8b, GeoGebra can support students’ thinking 

processes and argumentation in interpreting a mathematical statement presented in an 

original source. We believe though that using a combination of representations (i.e. the 

construction in GeoGebra and mathematical notation on paper) is crucial in understanding 

the statement, but also recognising the presentation of a formal proof. Writing down the 

actual equalities (GH = GK, GH + C and GH = GK = C) could be re-enforced by the 

teacher as a valid strategy in developing students’ mathematical thinking. And even 

though GeoGebra is designed to bring together different forms of representations, students 

may not necessarily recognise this feature during their interactions as they are focusing on 

constructing triangles following the steps in the given proof. 

 

Students are expected to justify why: 

KF = A 

FG = B 

GK = C. 

GeoGebra can certainly help them visualise and test why these 3 sides are equal to the 

given length. Students could argue that the above mathematical statements are true by 

construction. But would that be enough? GeoGebra’s power lies in enabling students to 

vary the lengths of the three sides, and if these sides are linked to the constructed triangle, 

then students can see the impact of their dragging and changing the given lengths of the 

triangle. Students could be asked to choose a different set of lengths and go through the 

same process of constructing a triangle in GeoGebra to reflect upon the condition for a 

triangle to be formed.  
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Depending on their constructions and provided that their chosen lengths meet the 

required condition, students should argue about their beliefs on the validity of this proof. 

They are prompted to use GeoGebra to argue about the constructions and instantly see the 

outcome of any action they take, e.g. choosing different lengths for the sides and 

investigating when a triangle ceases to exist. If they were to choose the three lengths and 

place them in a straight line (see Figure 4.6 below), then they would receive instant and 

accurate feedback from GeoGebra showing that the circle with centre G and radius GH is 

not big enough to intersect the circle with centre F and radius DF.  

 

 

Figure 4.6: An attempt to construct a triangle using GeoGebra, when the sum of the 2 

lengths FG and GH is less than the length of DF, i.e. |FG| + |GH| < |DF|.  

Considering students’ possible GeoGebra construction described earlier, students may 

find it easier to ‘see’ why the triangle ceases to exist when the sum of the lengths of the 

two sides is less than the length of the third side. For example, if they were to construct a 

triangle ABC (see Figure 4.7), where |AB| + |B’C| is less than |AC| by constructing the line 

segment AC and then two circles C(A, AB) and C(C, B’C), they could see that the two 

circles never intersect and the third vertex of the triangle cannot be constructed. 

Comparing these two constructions (the proof construction and the triangle construction) 

and how they could be presented and explored in GeoGebra by students, we could argue 

about the different level of difficulty with each one of them and how GeoGebra can make 

them more accessible to students and support students’ valid deductive reasoning, as per 

Duval’s (2000) theory. Considering the triangle construction in GeoGebra, students, for 

example, may keep the length of the sides AC and B’C constant and increase or decrease 

the radius AB. This exploratory process can help students recognise the importance of the 

triangle inequality as a condition for forming a triangle. Even though it cannot be 
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considered as a formal proof, GeoGebra certainly supports students in getting a better 

understanding of Proposition 22 by allowing the creation of interactive diagrams 

(multifunctional registers and discursive and non-discursive representations) and 

promoting students to analyse, evaluate and confirm (or falsify) the derived results by 

carrying out various conversions (discursive representations and multifunctional and 

monofunctional registers) (Duval, 2000). Considering the proof construction in GeoGebra, 

students can compare the lengths while following carefully each step of the proof and 

convincing themselves of the equalities suggested by the formal proof.  

 

 

Figure 4.7: When |AB| + |BC| < |AC|, then no triangle could be formed. 

Going back to the proof presented in the translation of Proposition 22 (see the 

presentations of Task 8 and Task 8e), it is worth referring to the three letters on the bottom 

right, “Q.E.F.”. These represent the Latin phrase “quod erat faciendum”, which means 

“that which was to be done”. In Euclid’s original source, as presented in Figure 4.1, this is 

written as “ὅπερ ἔδει ποιεῖσαι”, and which is commonly presented in other original 

sources as “ὅπερ ἔδει δεῖξαι” and which means “that which was to be shown” and which 

in essence means “that which was to be proved”. This was used at the end of a proof to 

indicate that the proof has been completed.  

5 Concluding discussion 

Through our outlined teaching scenario above, we believe to have shown how a use of 

digital technologies can assist in ‘unpacking’ an original source, and hence make this 

more accessible to potential students. Surely, our example of Euclid’s proposition 22 is 

not a long and comprehensive source, as those described by Barnett and colleagues 

(2014). Yet, the manageability of this limited excerpt from the Elements seems to serve 

well as an illustrative case for our line of argument in this particular paper. While our 

example seconds the claims of the previous studies considering the use of digital 

technologies in relation to history, as first laid out by Isoda (2000a), e.g. the benefits of 

multiple representations, support of students’ reflective thinking and mathematical 

inquiry, or those closer related to students’ concept formation (e.g. Chorlay, 2015), it does 

so by attempting to ground these arguments in the mathematics education literature. More 

precisely, we have attempted to articulate the aspects concerning multiple representations, 

and underlying concept formation, by using Duval’s framework of semiotic 

representations.  
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The aspects concerning proofs and proving in relation to students’ reflective thinking is 

also attempted and articulated through a use of Duval, while that of students’ 

mathematical inquiry is addressed through the rich literature on digital technologies in 

mathematics education. More precisely, we used the theory of instrumental genesis to 

consider and discuss students’ potential instrumentation processes, i.e. how GeoGebra 

shaped and affected their thinking, and instrumentalisation processes, i.e. how their 

acquired knowledge through their preparatory work on paper and then their reflective 

tasks in GeoGebra may lead to a potentially different use of the GeoGebra tool that may 

allow them to critically reflect upon their own interpretations and understanding of 

Proposition 22. We used the theory of instrumental orchestration to analyse the teacher’s 

potential intentions and aims for using GeoGebra for ‘unpacking’ Proposition 22. We 

discussed mainly the chosen didactical configurations and the rationale for those 

decisions, but also a teacher’s strategies for exploiting the chosen didactical configurations 

(exploitation mode). Since this work is preparatory in its nature, we did not discuss the 

‘didactical performance’, as this concerns the various decisions a teacher takes throughout 

a lesson aiming at using the digital tool in question as best and as effectively as possible. 

Finally, we touched upon the notion of instrumental distance (Haspekian, 2005; 2014) that 

allowed us to consider how a teacher through carefully designing a task sequence can take 

into consideration strategies to bridge the gap between students’ learning, classroom and 

culture norms, and the norms involved when interacting with a digital tool, such as 

GeoGebra. 

In terms of the claimed ‘unpacking’ of the original sources through digital technologies 

– or making it more accessible – GeoGebra can enable students to (a) explore statements, 

such as the two sentences in Proposition 22, but also statements shared by their peers 

and/or their teacher; (b) translate or convert the written statements in geometrical figures 

using the various GeoGebra features; (c) validate such statements by creating accurate 

constructions, comparing those constructions and using them as objects to think and test 

conjectures; (d) critically reflect upon mathematical statements through dynamic 

interactions with accurate constructions; (e) consider and prove Proposition 22 by 

construction. 

Duval’s framework of semiotic representations allowed us to take into account in the 

design of the above teaching scenario how students reach a good understanding of 

mathematical ideas, concepts and statements, such as that presented in Proposition 22. 

Students can be presented with and interact with two media, ‘paper and pencil’ and 

GeoGebra, and may be prompted through a task sequence to shift within and between 

registers. For example, for Task 8, students would have to recreate the static diagram 

presented in the original source in GeoGebra and therefore create a ‘dynamic’ construction 

involving line segments, circles, intersection points and of course a triangle (provided that 

the condition was met). They need to consider the mathematical statements presented by 

the original source in combination with the use of some symbolic language (mainly the 

use of letters to refer to certain parts of the diagram) and the static diagram and convert 

these to a dynamic geometrical figure constructed in GeoGebra, also annotated by letters. 

They could also convert from the semi-natural and semi-symbolic language to a series of 

mathematical statements presented in symbolic language, e.g. FD = FK and FD = A, so 

FK = A. Critically reflecting upon these registers and shifting between them could 

certainly enhance students’ understanding of Proposition 22, and support our argument for 
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the value of combining paper and pencil resource with a digital tool to access, explore and 

even prove mathematical statements presented in an original source. 

Although the use of GeoGebra throughout the duration of the teaching scenario serves a 

number of minor pragmatic purposes, the overall purposes are epistemic ones. In 

particular, GeoGebra serves the role of letting the students grasp the nature of the 

construction by dragging the GeoGebra construction (Task 5, Figure 4.5) and by relying 

on GeoGebra in the proof of the proposition (Task 8, Figures 4.6 and 4.7). The digital 

technology is used to more than just solve a mathematical task. It is used to deepen the 

understanding of the mathematical content of the original source. The combination of the 

original source and the digital tool seem to draw the use of the digital tool in an epistemic 

direction. 

So, while digital technologies assist in making the original source more accessible to 

the students, the original source seems to ‘enforce’ upon the students an epistemic use of 

the digital technologies. This indeed appears to be a promising and positive synergy. 

6. Future perspectives and questions to answer 

As for the use of digital technologies in relation to the work with original sources, there 

are still many stones that are left unturned. If we agree to the seemingly large potential in 

this relationship, then several new questions arise: questions which need addressing in 

order to exploit the fruitful interplay between original sources and digital technologies 

further. We shall end this paper with outlining such questions or issues that appear central 

to us. 

Firstly, it should be considered which original sources may benefit from which digital 

technologies. The ‘unpacking potential’ may certainly differ from technology to 

technology in relation to a given source. In our illustrative case a DGS was of course the 

obvious choice, since the source concerns plane geometry, whereas, say, a CAS tool 

would not have provided us with much assistance. 

Secondly, we should ask ourselves which mathematics education frameworks may be 

applicable in our pursuit to describe the interplay between a use of original sources and 

digital technologies. In our illustrative case, we made use of Duval’s framework of 

semiotic registers to articulate potential benefits of register shifts, in particular conversions 

between mono- or multifunctional discursive registers and multifunctional non-discursive 

representations in the form of geometrical figures. But surely there are other mathematics 

education theoretical frameworks that would apply better to a different combination of 

sources and technologies. Say, for instance, we are working with a source where we only 

operate in the monofunctional discursive register, i.e. symbolic systems – this could be 

some symbolic proof in algebra, etc. Then Duval’s framework appears not to be the most 

suitable, since no conversions would take place. Similarly, in relation to the first question 

above, a DGS tool might not be so suitable with such a source, whereas a CAS tool might 

be. 

Thirdly, as argued above, and as claimed in some of the available studies (Balsløv, 

2018; Olsen & Thomsen, 2017), it appears that the combination of original sources not 

only seems to assist the students in their reading of the source, but that the presence of the 

source appears to draw the use of the technology in a more epistemic direction. 

While the two first questions above require a priori theoretical analyses, in line with 

what has been presented in this paper, the third question or hypothesis calls for empirical 
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investigations. Yet, if the hypothesis holds, i.e. if the study of original sources ‘enforces’ 

upon the students an epistemic use of the digital technology, then both knowing that this is 

so and exactly how this is, is not only a result that is of interest to the HPM community. 

While it appears common knowledge that the use of digital technologies in schools most 

often serves pragmatic purposes, it is well known (e.g. Artigue, 2010) that any use which 

is only, or mainly, pragmatic is of little – or even negative – educational value. Hence, if 

indeed a use of original sources fosters a positive educational effect on the use of digital 

technologies, then this would not only be a significant contribution to the field of HPM, 

but to the mathematics education research field at large. 
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ABSTRACT 

Mathematics and logic are subjects of a special kind, which stems from their formal character. Basically, 

mathematics and logic are often viewed as empty formal manipulation of symbols. However, this opinion 

hides the constructive character of the topics. The constructive steps in mathematical and logical reasoning 

bring new information into the reasoning process which allows us to see mathematical and logical reasoning 

as dialog. Connecting this dialogic character to Platonic approach we can understand the dialog as 

foundation of education of mathematics. The approach of the paper is basically philosophical. However, we 

connect philosophical discussion to present-day pedagogical discussion in which dialog is taken seriously. 

We will show that there are interesting interconnection between (formal) mathematical reasoning and proper 

dialog.   

 

1 Introduction  

According to Popper (1979, p. 133), we may be interested in mathematics either by being 

interested in theorems or being interested in proofs. The first viewpoint emphasizes the 

truth or falsity of mathematical statement, and the latter emphasize the existence of proofs. 

Mathematical statements, as with all statements, are either true or false, and this in 

principle, can be listed.
1
 The listing of mathematical truths, or given truths, makes 

mathematics static and, as such, does not teach mathematical reasoning. Reasoning is a 

factual process in time and space. Proofs express the reasoning process, and the search for 

proofs exemplifies mathematical reasoning. Hence, there might be some truth in a 

common opinion that says that we learn mathematical reasoning while learning 

mathematics.  

In logic, mathematical proofs are defined as sequences of statements in which each 

statement is an axiom (or a premise) or is achieved from earlier statements by the 

application of an inference rule.
2
 This kind of “statement view” of mathematical proofs, 

therefore, entails an opinion that mathematics is about manipulation of symbols. This 

opinion is supported by textbooks of mathematics in high school and in elementary 

school. At the same, this opinion hides that mathematical argumentation can be not only 

linguistic, but also visual (or pictorial). Therefore, there is a need to study mathematical 

reasoning more closely.  

Mathematical reasoning is a more general kind of human reasoning, which is a kind of 

human mental process that takes place in someone’s mind or brain. Unfortunately (or 

fortunately), we do not have access to what happens inside someone’s mind or in 

someone’s brain.
3
 Haack (1978, pp. 240–241) specifies the focus of logic as follows: 

                                                           
1
 In principle, a computer can list all the mathematical truths. However, it would take an infinite amount of 

time to do so. Mathematical truth has a complexity of Δ
1
1, which is the logical complexity of the 

mathematical truth that cannot be avoided. For details, see, for example, Mutanen 2004. 
2
 See any textbook of logic to confirm this. 

3
 Of course, present-day study of brain processes has access, but we will not consider this question here. 
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Thoughts that are in someone’s mind are something subjective, and we have no access to 

them. The second possibility is that logic would be concerned with propositions that are 

objective but, as the philosophy of logic shows, they are not accessible and hence cannot 

be the topic of logic. Therefore, the only possibility in logic is to focus on sentences, i.e., 

syntactical expressions that are both objective and accessible. This separates logic from 

psychologism, in which logic was understood as a theory of how human reasoning works. 

The discussion of how logic is related to human reasoning is still reasonable, even if 

psychologism is not a serious possibility. In the philosophy of logic, the relationship 

between logic and reasoning (or thinking) is basically understood in three different ways: 

(i) logic describes mental processes (strong psychologism); (ii) logic prescribes mental 

processes (weak psychologism); or (iii) logic has nothing to do with mental processes 

(anti-psychologism) (Haack 1978, p.238). According to Haack, Kant represents opinion 

(i), Peirce represents (ii), and Frege represents (iii). In fact, in the late nineteenth century, 

especially in Germany, there was strong debate concerning whether logic is descriptive, 

i.e., whether strong psychologism was true. Echoes of the debate can still be recognized in 

our understanding of mathematics and logic. Anti-psychologism can be understood as a 

reaction against strong psychologism. The idea was to develop logic as a formal science. 

For example, Frege understood logic as lingua characteristica and, hence, not formal 

science in a present-day sense. However, this Fregean understanding is a version of anti-

psychologism (Haaparanta 1985). The distinction between strong psychologism and anti-

psychologism is not very fruitful, since it seems to be obvious that strong psychologism is 

not true. However, all the same, it seems evident that logic has something to do with 

human mental processes (reasoning), and hence anti-psychologism also seems to be wrong 

(Haack 1978). The discussion of the nature of logic and mathematics has not been 

restricted to discussion of psychologism and its alternatives; it also includes the 

relationship between logic (and mathematics) and the sciences. For example, Russell 

(1903) said that mathematics is a science like other (experimental) sciences, such as 

zoology; of course, mathematics is more abstract than the other sciences. 

Mathematics is very special kind of science, and hence, mathematical reasoning is not 

easy to characterize. To start, let us take a look at, for example, axioms of Peano 

arithmetic, which contains four sentences and one sentence schema. According to the 

basic idea of axiomatization, they say everything about the topic: Let Ω be a set of axioms 

of Peano arithmetic. Then, the Peano arithmetic (PA) is the set of theorems of the set Ω of 

axioms that can be expressed PA = {φ: Ω ˫ φ}. However, this does not tell us anything 

substantial about mathematical reasoning. Mathematical reasoning is coded into the 

formula “Ω ˫ φ” which means that for a given φ, there is a finite sequence φ1, …, φn such 

that φn = φ and for all i < n, φi ε Ω or is achieved from φ1, …, φi-1 by application of an 

inference rule. This shows the formal character of logical and mathematical inference. 

When Hermann Weyl (1956, p. 1832) says that “mathematicians are no Ku Klux Klan 

with a secret ritual of thinking,” he is intending to denote the fact that mathematical 

reasoning is something public and “objectively” recognizable that can be achieved if 

attention is focused on linguistic expressions. According to Haack (1978, p. 239) “logic is 

primarily concerned with arguments.” Arguments are linguistically expressed formal 

structures whose strength is of logical interest. Arguments have a dual structure: a set of 

premises and conclusions inferred, according to inference rules, from the premises as 
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expressed above. In logic, argumentation is analyzed and evaluated; the strongest 

argument is one in which the relationship between premises and conclusion is deductive. 

Arguments in mathematics and in logic are formal and well-structured, which makes 

them explicit and transparent; from the argument, anyone can see all the information used 

in the argument. However, as formal structures or deductions do not constitute reasoning, 

the explicitness and transparency of argument does not make mathematical reasoning 

similarly explicit and transparent. As Herman Weyl (1956, p. 1832) says, nobody should 

expect him “to describe the mathematical way of thinking much more clearly than one can 

describe, say, the democratic way of life.” We may not mystify mathematical reasoning – 

or the mathematical way of thinking.  

Mathematics and logic must not be confused with empirical research into human 

reasoning, even if there is some (external) connection between the two. Rather, in 

mathematics and logic, the question “What is mathematical reasoning?” seeks a normative 

answer. In the study of mathematics education, the focus is on learning mathematics: 

Questions like “How can one learn mathematics?”, “What kind of learning strategies do 

students have?”, and “How can we teach mathematics effectively?” are important. Hence, 

central problems in mathematics education consider the relationship, for example, 

between mathematical concepts and psychology (Ben-Hur, 2006), or between reasoning 

and communication (Berinderjeet & Toh, 2012). We are here, basically interested in 

mathematical reasoning as part of mathematics and logic itself which has interesting 

consequences to the education of mathematics. 

2 About Logic and Mathematics 

To understand mathematical reasoning better, we will consider more closely some aspects 

of logic. Basically, logic (and mathematics) can be seen from two different points of view: 

Logic and mathematics consist in some factual inferences and calculations, which are the 

everyday practice of mathematicians and logicians. Often, exercises in school mathematics 

are focused on this area. Let us call this “micrologic.” On the other hand, the focus might 

be on the consideration of mathematical and logical reasoning from an “external” 

perspective. Questions like whether mathematics or logic are decidable, i.e., whether 

mathematics or logic have a decision method. It is well known that mathematics (any 

system that contains elementary arithmetic) is not decidable, and it is well known that, for 

example, sentence calculus and elementary geometry are decidable. Another example of 

such an “external” perspective is to consider the kinds of model that theories (i.e., sets of 

sentences) have. The well-known Löwenheim–Skolem theorem says that each theory that 

has an infinite model also has a denumerable model. So, the theory of the reals, which is 

known to be uncountable, has a denumerable model. These are metatheorems that 

characterize mathematics and logic from the “macro level.”   

The internal point of view of logical and mathematical reasoning shows how to do 

mathematics and logic, that is, how to prove mathematical and logical results, which is 

emphasized by Weyl (1956). In school mathematics and logic, this aspect is emphasized. 

For example, Usiskin (2015) shows that this kind of logic has several interesting aspects 

that are essential in understanding mathematics, and in teaching and learning mathematics. 

Unfortunately, formal theorems do not show how to find proofs or how to construct 

proofs. Maybe this is a reason why mathematics remains such a remote and difficult topic 

in schools. 
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Besides mastery of formulating proofs and calculations, we need some general 

understanding of what mathematics as a whole is, which is the subject of 

metamathematics and metalogic. Therefore, it is not enough that one can answer 

mathematical questions, but one has to understand what kinds of questions are 

mathematical. Unfortunately, as Gödel’s incompleteness theorem (1931) shows
4
, not all 

mathematical questions are answerable within mathematics.  

Why it is not enough that one can just answer mathematical questions? It is obvious – 

based on school mathematics – that mathematics means answering given mathematical 

questions, and that all the questions have a correct and true answer. In the case of 

applications of mathematics, like physics in schools, the problem is not to understand 

mathematics but to understand physics; so, in applications, mathematics is just a tool that 

is used. There is no need to understand mathematics or mathematical reasoning. 

The need for metatheoretical logic become evident when we speak about the character 

of mathematical reasoning. Of course, the practice of mathematical reasoning lies in 

proving theorems and single computations, but all this does not characterize the 

foundational character of mathematical reasoning. The metalogic is, by definition, a key to 

understanding the foundations of mathematics, as the famous metalogical results (like the 

theorems of Löwenheim and Skolem, of Gödel, or of Tarski) demonstrate. These 

metalogical results give information about mathematical reasoning, and about 

mathematics more generally.  

Metalogical results, at the same, give important information about the methodology of 

science. In fact, this allows us to see the connection between logic and metalogic 

(Hendricks, 2007; Shapiro, 2002), which deepens our understanding of mathematics and 

mathematical reasoning (Usiskin, 2015). Metalogical knowledge also deepens our 

pedagogical understanding; it helps us to develop the teaching methods of mathematics, 

but also of the natural sciences (Sieg, 2002; Koponen & Kokkonen, 2014). Metalogic is an 

important branch of mathematical study that has great theoretical importance in 

understanding mathematics and methodology of science. For example, the metalogic 

allows us to analyze the reasonability of structuralism in the philosophy of science: in 

structuralism, the intention is to generate a metalogical framework without using explicit 

logic.  

3 Mathematical Reasoning 

Neither the “micrologic” nor “macrologic” characterized above give us a good 

understanding how to reason logically or mathematically. This can be seen if we consider 

more closely how to construct mathematical and logical arguments. Geometry is an 

excellent example in which mathematical reasoning becomes actual, as the presentation by 

“Capone, Del Sorbo, Ninni, Fiore & Adesso” at ESU-8 clearly demonstrated. The very 

idea of geometrical proof is its constructive character, which becomes evident via the 

pictorial nature of the proofs. In geometry, there is a long tradition of using pictures in the 

proofs. The pictures and the auxiliary constructions are essential parts of geometrical 

proofs. The proofs are demonstrative in the sense that the fact to be proved can be seen 

from the picture constructed by the proof. As the presentation referred to showed, there are 

                                                           
4
 Any consistent formal system F within which a certain amount of elementary arithmetic can be carried out 

is incomplete; i.e., there are statements of the language of F that can neither be proved nor disproved in F 
(Raatikainen, 2018). 
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several different constructions that can be created to prove even a very simple geometrical 

statement, like the Pythagorean theorem. 

Geometrical constructions bring new information into the reasoning process. The 

information is formulated in pictorial form. In logic the proofs are constructed 

symbolically (or linguistically). However, the similar increase of information as new 

geometrical constructions do in geometry can be achieved by instantiation of new 

individuals. As Hintikka (1973, pp.188-190) shows there is precise measure for the 

information which can be used to characterize the depth of the given proof. This is 

connected to aesthetic value of the mathematics (Sinclair 2011). Mathematics uses both 

pictorial and symbolic argumentation (De Toffioli, 2017; Hintikka & Remes, 1974), but 

also even bodily argumentation as Sinclair (2011) refers. This shows the importance of 

understanding of the character of mathematical reasoning. To develop education of 

mathematics one need to understand the multiplicity of mathematical reasoning. 

Unfortunately, there are some restrictions in generating the proofs. For example, there 

is no effective procedure to find out the best construction for a given proof. However, as 

Michie (1961) shows, there can also be syntactical proofs for geometrical theorems. 

Michie refers to the fact that a computer discovered a new proof for a simple geometrical 

statement.
5
 Now we know that geometry can be expressed as an axiomatic syntactical 

theory that does not need pictorial arguments (Tarski 1968). 

Frege explicitly separated axioms from rules of inferences, which is one of the first 

explicit formulations of the present-day understanding of logic. The formal way to 

explicate logic (and mathematics) is further developed, for example, by Hilbert. “Hilbert’s 

program” is an overall metalogical approach in which Hilbert tried to explicate the very 

character of mathematical and logical reasoning. The use of formal methods made it 

possible to generate explicit metalogic that studies logic within logic itself, as Gödel’s 

proof (1931) demonstrates. However. metalogic is not only a specific area in mathematics 

and logic; several very common results are, in fact, metalogical. (See Quine, 1981; Kneale 

& Kneale, 1962; Mancosu, 2010.) 

Hilbert distinguishes the following three levels of mathematics: (i) ordinary 

mathematics; (ii) proper mathematics (mathematics in strict sense); and (iii) 

metamathematics. The intention was not to generate different kinds of reasoning, but these 

are, as Hilbert says, “the familiar modes of logical inferences” (Mancosu, 2010). This may 

be a reason why in school mathematics, there is only one kind of reasoning. However, 

metamathematical results tell us about mathematics – what can be done and what cannot 

be done. For example, Gödel’s incompleteness theorem tells us that there cannot be a 

general method to check computer programs (if the programming language is as complex 

as elementary arithmetic). 

4 Argumentation as Computation 

Arguments are basically sequences of sentences. The end point of an argument is called its 

conclusion, and the foundational sentences are called premises. The evaluation is to 

consider the logical relationship between the conclusion and premises. If the conclusion 

logically follows, or if the conclusion can be deduced, from the premises, then the 

                                                           
5
 Michie (1961) said that even if the proof was a new one for them, it had already been generated by a 

human mathematician. 
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argument is valid. Deduction is a syntactical process, and validity, instead, is a semantical 

notion. According to Gödel’s completeness theorem (1930), a given sentence is deducible 

if and only if it is valid. 

To say an argument is valid means that if the premises are true, then the conclusion 

must be true. Therefore, logic preserves truth. The sequence of sentences does not 

presuppose any agent who argues or infers them. Hence, logic is non-personal or 

objective. Therefore, it is interesting that Hodges (1977, p36) gives the following personal 

characterization: 

An argument, in the sense that concerns us here, is what a person produces when he 

or she makes a statement and gives reasons for believing the statement. The 

statement itself is called the conclusion of the argument (through it can perfectly 

well come at the beginning); the stated reasons for believing the conclusion are 

called premises. A person who presents or accepts an argument is said to deduce or 

infer its conclusion from its premises. 

According to Hodges, argument is related to argumentation. However, in logic, the study 

of argument is a study of the logical relationship between premises and conclusion. 

Syntactically, a central problem is to make a deduction from the premises of the 

conclusion. If one can find a deduction, then the deductive relationship is demonstrated, 

but if one does not find a deduction, this does not show that there is no such deduction. In 

fact, Gödel’s (and Turing’s, among others) achievement was to formalize logical inference 

such that it is possible to prove that it is not possible to find a deduction (incompleteness 

theorem). A foundational question behind Turing’s, Gödel’s, and Church’s work was 

“What is an effectively calculable function?” The history of mathematics provides 

excellent examples of algorithms that show how to compute certain functions. Moreover, 

there was a certain consensus about what computability means – the consensus gave an 

“intuitive” notion of computability, which was not well-specified. However, the need for a 

formal definition becomes evident, at least partly because of the search for an answer to 

the famous open problems in mathematics formulated by Hilbert. 

The computational approach and logical approach have different roots. In logic, the 

historic roots are connected to the tradition of a universal language, which had historical 

advocates like Raymond Lull, Leibniz, and Frege (Kneale & Kneale, 1962). The 

computational tradition is connected to the algorithmic tradition, which also has its roots 

in the history of mathematics, Rogers (1967, p. 29) gives examples of well-specified 

algorithms from Ancient Greece.
6
 A specific mathematical study of algorithms was started 

in the ninth century by the Persian mathematician al-Khowrazmi (Russell & Norvig, 1995, 

p. 8). Rogers (1967, p. 1) gives a good intuitive characterization of an algorithm by saying 

that it is “a clerical (i.e., deterministic, book-keeping) procedure”. 

The idea of formalizing the notion of computation was to formalize deduction such that 

it becomes a mechanical process that does not presuppose intellect. Turing, in particular, 

used very attractive language. For example, he suggested to “compare a man in the 

process of computing a real number to a machine.” Turing’s intention was to formulate a 

mechanical computing machine that computes essentially the same way as a human using 

a paper and pen. The resulting notion of computation was of epistemic character. Being 

mechanical, it was also independent of the formalism chosen. This was recognized by 

                                                           
6
 Rogers’s examples are Eratosthenes’s method and the Euclidean algorithm. 
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Gödel (1946) when he said that the importance of the explication of the notion was that it 

had “for the first time succeeded in giving an absolute definition of an interesting 

epistemological notion” (Davis 1965, p. 84). 

The identification of the notion of computability with Turing machine computability is 

known as the Church–Turing thesis (Copeland, 2017). There are several formulations of 

the notion of computation, but they have all been proved to capture the same class of 

functions. Of course, there are formulations of the notion of computation that extend the 

computing power of Turing machines, which are both logically and philosophically 

interesting (Hintikka & Mutanen, 1998; Syropoulos, 2018). 

The theory of computation is very abstract and extremely complex field. Still it has 

deep pedagogical significance. Computational approach emphasizes both agenthood of a 

learner and process of learning (Hendricks, 2007; Hendricks & Symmons, 2015; Mutanen, 

2004). So, there are interesting connections between the computational approach and 

different kinds of constructive approaches. 

In logical reasoning, the intention is to explicate and to make transparent the reasoning. 

The syntactical formulations, as Frege says, bring “to light every axiom, assumption, 

hypothesis or whatever else you want to call it on which a proof rests; in this way we 

obtain a basis for judging the epistemological nature of the theorem” (as quoted in Sieg, 

2002, p. 228). The computational approach emphasizes more explicitly the methodical and 

epistemological aspects of mathematical and logical reasoning that were emphasized by 

Gödel, as the quotation above shows. 

5 Mathematical and Logical Reasoning  

Formal arguments are static; hence they do not give an adequate characterization of 

reasoning. A computational approach brings dynamics into the picture. However, the 

agent is still missing. Computations are nonpersonal, formal algorithmic processes, even 

if, as Turing’s example shows, computations allow us to consider agenthood. We have 

seen that geometrical reasoning is a paradigmatic example of mathematical and logical 

reasoning. First, its strict logical structure is clear. Second, its pictorial character makes 

the reasoning process informative. 

The logical, or arithmetic, approach has a more formal character. It appears as formal 

manipulation of symbols and formulas. However, this is not the whole truth. As we have 

seen, geometry can be seen as a formal syntactical theory, just like any other formal 

logical theory. On the other hand, logical and arithmetical reasoning can be interpreted 

similarly to geometrical reasoning. Kant speaks of intuition in mathematics, referring to 

the use of individuals. According to him, in arithmetical reasoning, the intuitive step is to 

use singular numbers, which is usual in arithmetic (Hintikka, 1973). 

This can be generalized such that the use of the existential instantiation rule is a 

Kantian intuitive step in reasoning. We can further analyses this as separating instantiation 

of the “dummy name” and real name, in which the first is a formal stem and the second is 

a substantial step in the reasoning process that brings ne substantial information into the 

reasoning process (Hintikka, 2007). A similar thing can be seen in mathematics, where we 

have ε-γ-argumentation, which is usually read as “for a given ε > 0, a γ > 0 can be found 

such that …” There, the constructive or substantial step is “can be found,” which shows 

how mathematical reasoning brings new information into the reasoning process by using 

Kantian intuition. 
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This shows that pictures and substantial intuition are part and parcel of mathematical 

and logical reasoning (De Toffoli, 2017; Bråting, 2012). This is an important observation. 

Pictures and other intuitive steps are substantial steps in mathematical reasoning that 

convey the information needed to make the inferences needed to complete the intended 

proof. This is an important observation both because of logic (Hintikka & Remes, 1974) 

and because of pedagogy (Hintikka, 1982; Plato). This shows how important it is to 

analyze logical and mathematical reasoning. 

In Meno, Plato shows how to have a logico-pedagogical dialog. In Meno, the dialog is 

logically strict and pedagogically motivated. The dialog shows the power of logico-

pedagogical dialog. Hintikka has generated this approach in such a way that it can be 

applied to scientific reasoning (Hintikka, 2007), to pedagogy (Hintikka, 1982), and to 

general human reasoning (Hintikka, Halonen, & Mutanen, 2002). The approach has a firm 

logical basis (Hintikka & Remes, 1974; De Toffoli, 2017).  

The logico-pedagogical dialog belongs to a more general dialogical tradition in science, 

which can be contrasted with the formal-scientific tradition in science. These two 

traditions have different roots: the first is connected to the Platonic tradition, and the 

second is connected to the Parmenidean tradition (Mutanen, 2018). The present-day 

science and pedagogy are basically seen as separate approaches, which is connected to the 

Parmenidean tradition. In the Platonic tradition, science and pedagogy are essentially 

connected, which entails that scientific research, as such, is a dialogical process, which is 

exemplified in Meno. The Parmenidean tradition emphasizes that truth, as such, is the goal 

of scientific research. The pedagogical understanding is something external to the 

scientific research.   

Dialog has been used more generally in pedagogical literature, which enriches 

pedagogical and scientific understanding. Dialog may be connected to science and 

pedagogy in different ways. On one hand, dialog has been connected to the methodology 

of science and mathematics, as in the works of Hintikka and De Toffioli referred to above. 

On the other hand, dialog has been understood more generally and the dialog has been 

connected to dialog within a classroom (Bråting, 2012) or to more general dialog 

(Radford, 2011). Both enrich our understanding of science and the pedagogy of science. 

We have considered dialog from two different points of views. First, we looked at the 

language and recognized that in mathematics argumentation is based on different kinds of 

notions (symbolic (or linguistic), pictorial, and bodily). Dialog is based on these different 

kinds of notions. Proofs are formal expressions of the dialog in this sense which De 

Toffoli (2017) shows. Second, dialog can be understood as part of general narration as, for 

example, Burton (2012) and Radford (2011) show. However, to develop education of 

mathematics these two must be unified which can be done using different kinds of 

approaches. The notions of information and especially, understanding play central role. 

The most clear-cut example of the unification is Plato’s Meno. However, this can be done 

also within context of modern (formal) logic (Hintikka, 1982).   

6 Closing Words 

We have seen that mathematics and logic can be, and usually have been, understood as 

formal sciences, which is well justified: mathematics and logic are formal sciences. 

Metaresults give some formal restrictions that must be recognized. However, the formal 

character of mathematics and logic does not entail that there is nothing to be understood in 
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mathematics and logic. The formal character entails that the content is “thin.” However, 

mathematics and logic are constructive sciences in a proper sense, which entails that the 

proofs, as such, provide the keys to understanding. However, we must emphasize the 

pedagogical role of the construction of proofs. This can be done by dialogical methods, 

which has been increasing in the present-day study of pedagogy of mathematics and logic. 

This pedagogical approach opens new ways to understand mathematics and logic, and 

their pedagogy.  
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ABSTRACT 

The reflection on the long persistence of unsatisfactory results, has led us to upset the most common idea of 

fraction: fraction-of-something. To this, we have: (a) corrected the “primitive intuition” of fraction by 

constructing an “intuitive representation”, (b) set the familiarization of children with fractions as a goal, and 

(c) practiced the idea of fraction as megaconcept. In our enquiring we have focused on the Pythagorean 

statement: the comparison is a logos. This latter is like a modern act of mathematisation of the comparison 

and it is the starting point of our didactic practice. It has the following features: (a) it is imposed, (b) it is a 

leap, (c) it is elementary, (d) it is an axios, (e) it has the characteristic of presence/absence along the path 

towards the megaconcept.  

 

KEY WORDS: Familiarization – Megaconcept – Trace – Icon – Plurality of truth. 

1 Introduction 

This reflection concerns the didactics of fractions in primary school. Our attention to this 

topic has been attracted by the observation of the long persistence of unsatisfactory results 

in the teaching and learning fractions; persistence that is widely recalled in the scientific 

literature and which continues, notwithstanding the efforts over decades both in research 

and in practice.
1
 

“One reaction to the prolonged history of poor results in rational number instruction is 

that … instruction in rational-numbers should be postponed ...” [Kieren, 1980]. In addition 

to the question of postponing, the long persistence of unsatisfactory results also generates 

social considerations: although Western knowledge on the didactics of fractions is wide 

and deep, teaching is ineffective; a discrepancy between knowledge and effectiveness that 

raises ethical and democratic issues.  

These considerations constituted the foundation on which our activity related to the 

fractions arose. Reflecting on them, we have obtained the following indications: (a) It is 

important to start teaching fractions already in primary school; this requires adjustments 

both in some didactic principles and in structuring of the content. (b) We have abandoned 

the common teaching and learning practice, pursuing a higher level of mathematisation 

without introducing a higher level of difficulty and opening a wider horizon of potentiality 

toward the formation of critical citizenship.  

 

                                                           
1
 “The concept of fraction has manifested itself in education as a refractory one.” [Streefland, 1978].  “As 

investigated in a variety of research and demonstrated with standardized tests, learning fractions is difficult 

across countries” [Tunç-Pekkan, 2015].  
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2.1 Two distinct groups of practice 

Our teaching practice has had the particular characteristic of proceeding through the 

interaction of two distinct groups of practice: a group of teaching practice and a group 

of “reflective philosophical practice”. The first group has carried out an enquiring 

activity, practicing directly in the classes, from the third to the fifth of the primary 

school. The second group has carried out both a process of exploration and a process 

of reflection on the progress of the dialogical interaction
2
 that involves teacher, 

children and the proposed idea of fraction.  

The interaction between the two groups of practice involves a double aspect of the 

report on our activity: one concerns the way of designing the curriculum and practicing it 

in the classroom
3
; the other concerns the historical and philosophical reflections and 

discussions that have accompanied its planning and practice. In this conference we give 

priority to historical and philosophical considerations.  

1.2 Fraction as fraction-of-something 

Our practice and considerations upset the most common idea of fraction that pervades 

the ordinary curricula for primary school: the fraction as fraction-of-something. This 

idea is excellently summarized in Bobos and Sierpinska. “Fraction of a quantity is a 

mathematical theorization of the visual and intuitive idea of fraction of something. … 

The idea of fraction-of-something stays in its primitive, intuitive state and functions as 

an obstacle to the construction of a systemically connected knowledge about 

fractions.” The fraction-of-something remains the primitive and intuitive 

representation on which the knowledge of fractions of nearly all people is built. 

The idea of fraction as fraction-of-something constrains the way of thinking fractions 

and practicing with them, favoring situations of division associated with the part-whole 

subconstruct [Kieren, 1980].
4
 In this way, the subconstruct part-whole becomes the only 

scheme of action that innervates the entire teaching process. Scientific literature has now 

largely confirmed that these situations have limited teaching effectiveness.  

Our alternative proposal to the idea of fraction-of-something is based on two basic 

believes that we here present as reaction to the statement of Bobos and Sierpinska : (a) we 

believe that the “primitive, intuitive state” of fraction can be corrected by constructing an 

“intuitive representation” that does not function as an obstacle; (b) the construction of a 

systemically connected knowledge about fractions is not a primary school goal; the goal is 

rather to come up with a process of familiarization aimed to the cohesion of the different 

subconstructs. 

1.3 Intuitive representations versus primitive intuition 

We have mentioned the possibility, according to some authors, of postponing the 

instruction concerning the fractions to when the students have reached the stage of 

formal operations. We have instead tried to find alternatives to the hypothesis of 

                                                           
2
 We have derived the term "dialogical interaction" from the presentation by D. Guillemette at ESU-8 (ch. 1-

8 in this volume). 
3
 The curriculum has been presented and discussed at ICMI  Study 24. 

4
 Kieren identifies five “subconstructs of the rational number construct”: part-whole, quotients, measure, 

ratios, and operators; but there are other possible subconstructs: proportionality, point on the number line, 

decimal number and so on. 
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postponement, involving the idea itself of intuition. If primitive intuition works as an 

obstacle, it is necessary to proceed already in primary school to the construction of an 

intuitive representation that elaborates a larger and more effective idea of fraction. 

The distinction between primitive intuition, understood as “commonsense 

representation”, and intuitive representation, has been proposed by Fishbein, who 

contrasts to the intuitions firmly correlated with the primitive feeling, with the idea 

that “intuitions are deeply rooted in our previous, practical and mental, experience”. 

Proper practice with fractions must start in primary school, in order to construct 

intuitive representations, and to avoid the formation of those obstacles that 

accompany the idea of fraction-of-something. 

1.4 Familiarization 

Our teaching proposal is characterized by the choice to avoid, in primary school, to set the 

aim of constructing a systemically connected knowledge about fractions; we have instead 

set the familiarization of children with fractions as a goal. The term familiarization was 

derived from Davydov, and requires an explicit specification when referring to the 

teaching fractions in primary school. 

Practices. To clarify the main features of the practice of familiarization with fractions 

in primary school, we refer to the following classification of practices: conceptual, 

algorithmic or executive, strategic or resolutive, semiotic, communicative [D’Amore & 

Radford, 2017]. The process of familiarization with fractions differs from the usual 

process of teaching and learning with regard to some of these.  

(a) Conceptual practices. Familiarization is not directly aimed at the cognitive 

construction of mathematical concepts; it is rather aimed at shaping the learning 

environment; cognitive construction will start in the following years.  

(b) Algorithmic or executive practices. Speaking of familiarization means “freeing 

children from reliance on schooled algorithms” [Erlwangers, 1973], and carrying on the 

practice “without using pre-established formal rules” [Pitkethly & Hunting, 1996].  

(c) Semiotic practices. The practice of familiarization with fractions is aimed at the 

construction of the “forms”, that is, of those mental structures that precede the concept and 

the formula.  

(d) The other practices, strategic or resolutive, and communicative, develop in the 

dialogical interaction among teacher, children and the proposed idea of fraction. 

Teaching principles. The difference between the familiarization with fractions in 

primary school and the usual process of teaching and learning also manifests itself in 

innovations with respect to the indications contained in the usual teaching principles.  

Here are some examples. (a) The process of familiarization proposed by us, introduces 

a fracture in the historical process of development of the concept of fraction, 

rediscovering, thanks to a historical/philosophical reflection, an initial act of 

mathematisation that had been put aside by science; this fact suggests to critically take 

into account the principle of scientificity [Blažková, 2013], according to which a school 

subject is based on scientific math. (b) Moreover, the initial act of mathematisation 

constitutes a leap into the didactic process, interrupting systematicity and gradualness and 

introducing “a form of reflection qualitatively different from the previous one” [Davydov, 

1990]. This does not entirely agree with the principles of systematicity (the Math 

curriculum is organized systematically in a logical succession which is necessary to 
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respect), and gradualness (“step by step”, Skinner; “natura non facit saltum, gradatim 

procedit”, Comenio). (c) The initial act of mathematisation is not obtained by 

generalization and abstraction but it is imposed. This does not tune with the principle of 

the concrete operativeness, according to which all mathematical concepts arise from 

problems, so ... the rules, the formulas ..., are not imposed by the teacher but naturally 

conquered by the students [Faggiano, 2008]. (d) The idea of a trace, which, with its 

presence/absence, is central to our teaching proposal, partially puts into question the 

principle of purposefulness. According to this principle “the aims of each lesson should be 

formulated in the way to be concrete, achievable, and checkable; in our teaching proposal, 

the focus is instead on the centrality of dialogical interaction. (e) Finally, the very fact that 

the aim of our teaching proposal is the familiarization, redefines the content of the 

principles of adequacy and verification, enhancing, in particular, the role of lightness and 

flexibility. The dialogical interaction, that involves the teacher, the children and the 

contents, is finalized to guide the children in practicing with “leggerezza” (lightness); that 

is with serenity, quiet and confidence, achieving adequate results despite the complexity 

of the theme. Flexibility in practicing has to be favored: in choosing the most appropriate 

manipulative; in varying the conditions under which the practice is developed; in making 

stronger the link with real demands; in outlining how some concepts find different 

realizations in different contexts.  

1.5 A different “base of belief”: Fraction as megaconcept 

In constructing an intuitive representation that allows avoiding the a priori formation 

of obstacles, we have explored and practiced the idea of fraction as megaconcept. This 

idea is suggested by Wagner (1976): “... for the person rational numbers should be a 

megaconcept involving many interwoven strands” [in Kieren, 1980]. It contrasts with 

the idea of fraction-of-something exposed by Bobos and Sierpinska and corresponds 

to a different “base of belief” [Bell in Fischbein, 1982]. 

Megaconcept demands that all strands/subconstructs contribute to the determination of 

its nature, and constitute its structural elements. In the megaconcept, the subconstructs 

find cohesion: they tune in to each other, so that the practice can naturally switch among 

them.  

Developing the path towards the cohesion of the megaconcept, we have started from a 

fundamental strand and then we proceeded at an appropriate “interweaving rhythm”, 

assuming the times and the ways of involving the different strands: (a) The subconstruct 

ratio is the first to be practiced, taking advantage of a meaning of the fraction hidden in 

Pythagorean mathematics; this meaning is brought to light in the form of an initial act of 

mathematisation. (b) The appropriate choice of the manipulative allows developing the 

subconstruct ratio in the subconstruct measure. (c) The practice with appropriate 

manipulative also allows to support children in discovering the link with the division by 

themselves; the teacher reinforces this link and proposes activities that lead pupils to 

practice the Euclidean division. The interweaving of the subconstructs ratio, measure and 

division is so achieved; these subconstructs attune in the Euclidean division. (d) In our 

practice, the part-whole scheme is no longer a subconstruct but rather it is an important 

instance; moreover, the choice of familiarization minimizes the role of the subconstruct 

operator. (e) The Euclidean division becomes the core of the subsequent interweaving 

process that involves other subconstructs: point on the number line, decimal number and 
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so on. These practices have taken into account the specificity of the enacting process and 

the peculiarities of the context. 

1 Historical and philosophical considerations   

The central part of our presentation concerns the historical and philosophical 

reflections and the discussions that have accompanied the planning and the practice of 

our proposal. In the planning, two have been the main authors of reference: Davydov 

and Toth. 

2.1 Davydov 

Our exploration of fractions is started by practicing in classroom the situations 

proposed by Davydov; many of the activities enacted by us, resume the activities 

indicated by him. Two fundamental ideas have been taken from Davydov and have 

become the object of our reflection: the ideas of familiarization and of essence of the 

concept of fraction. 

The research of the essence of a concept, central to Davydov’s philosophy, and in 

particular, his research for the “objective content of the concept of fraction” deserve 

separate reflection. This research suggests two considerations: a) To speak of “essence” 

obliges to deal also with the “violence of the ontology”, treated by Levinas, and to ask 

ourselves in what form and to what extent the concept of essence has a role in 

contemporary culture. In the continuation of the presentation we will discuss some 

considerations on this point. B) Davydov’s direction of research raises the question “What 

to teach?” before the question “How to teach?”. This has strongly influenced our 

investigation and has directed us towards the search for the “originary”
5
 content of the 

concept of fraction.  

2.2 Toth 

In the course of our investigation we met Imre Toth and we were fascinated by his 

suggestion to listen to hidden meanings that could still be kept in the Pythagorean 

mathematics. This indication harmonizes with his basic conviction of the plurality of 

truth; an idea strongly linked to his discovery of non-Euclidean affirmations in the 

text of Aristotle. In the pre-Euclidean debate, the Euclidean hypothesis has been 

successful, certainly due to its effectiveness, but possibly due to philosophical 

reasons, too: the fourth postulate of Euclid, "all the right angles are equal", is justified, 

according to some authors, if completed in the form "all the right angles are equal, 

while the acute and obtuse angles are multiple"; it’s the One of Parmenides that has 

imposed its primacy. Koiré's statement that the birth of science took place with an act 

of purely philosophical-metaphysical foundation, finds in Euclidean truth a place of 

implementation. The birth and development of Euclidean geometry have kept hidden 

non-Euclidean hypotheses for thousands of years. Only during the nineteenth century 

these hypotheses were unveiled and became "truths", alongside the Euclidean truth; 

here is the plurality of truth. It is therefore possible to hypothesize similar occurrences 

for other truths: there are still hidden truths that could be brought to light alongside 
                                                           
5
 The word “originary” is not an English word. Nevertheless, some authors [Roth & Radford, 2011] are 

beginning to use it. In this way the wealth of meaning possessed by the corresponding term 

“originario/originaire” that is used in continental philosophy, is recovered. 
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the known truth. It is this hypothesis that underlies Toth's suggestion to listen to 

hidden meanings. 

The meeting between the searching for the essence of the concept (Davydov) and the 

listening to hidden meanings (Toth) has become the source of our proposal concerning 

fractions. History has become “the site” where our project has found its structure; in this 

site we have looked for the “originary” meaning of the concept of fraction and we have 

found some foundational aspects that allow rethinking its didactics. At the same time, the 

plurality of truth, generated by the disclosure of hidden meanings, responds to the need, 

according to Lévinas, to dissolve the violence associated with the search for the essence of 

a concept. 

2.3 Anthyphairesis 

After hearing Toth at the conference held in Bergamo,
6
 while he was exhorting to 

listen to hidden meanings, we discovered, thanks to the reading of the Menone 

proposed by him, the anthyphairesis, the Pythagorean procedure of comparison. The 

practice with anthyphairesis provided us the “ladder” (Wittgenstein) to climb to a 

higher level and from here to look at fractions. However, we do not present here the 

anthyphairesis, due to the fact that there is no need for teachers and children to know 

and practice it.
7
 

Walking step by step the concrete actions of the anthyphairetic process, we have met 

some indications stored in it and still potentially significant: a) indications of historical 

type, as this walking allows to listen again to not secondary aspects of Greek philosophy; 

b) indications of mathematical type, as it highlights a “physical” language for rational 

numbers and it enables an unusual outlook on the intrinsic reciprocity of a primitive 

concept of measure; c) indications of pedagogical type, which have moved our project. 

2.4 The mathematisation of the comparison 

The reflection of historical type and the practice of anthyphairesis have led us to focus 

on the Pythagorean statement: “The comparison is a logos (ratio)”. This statement, in 

its flatter formulation: “The comparison is a pair of natural numbers”, turns out to be 

extraordinarily modern. If we compare it with Eddigton's statement that a relativistic 

event is a quadruplet of numbers,
8
 it becomes an act of mathematisation that operates 

an universal synthesis concerning the concept of comparison.  

The method of anthyphairetic comparison did not last long. Already at the time of 

Euclid it had been forgotten; its crisis came with the discovery of incommensurable 

quantities and its difficulties were contrasted by the effectiveness of the Euclidean 

algorithm. This latter overshadowed the anthyphairetic comparison, which was 

consequently forgotten. But with the anthyphairesis, even the act of mathematisation of 

the comparison has been forgotten: scientific practice and teaching have put it aside.  

Our enquiring led us to conclude that the ‘originary’ content of the concept of fraction 

is ascribable to the comparison of quantities. So we have recovered the forgotten act of 

mathematisation: “the comparison between two quantities is a pair of numbers”. This act 

                                                           
6
 “Matematica, Storia e Filosofia: quale dialogo nella cultura e nella didattica?” Bergamo, 1999, May 19. 

7
 We briefly presented the procedure of antyphairetic comparison at HPM 2016, in Montpellier. 

8
 “An event in its customary meaning would be the physical happening which occurs at and identifies a 

particular place and time.” (Eddington, p. 45)  
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has therefore become the starting point of our didactic practice. Two considerations: (a) 

Our choice corresponds to placing the subconstruct “ratio” as starting point of our 

classroom activity. But, while usually “Ratio is a complex concept, which demands a 

long-lasting learning process” [Streefland, 1984], historical reflection allowed us, instead, 

to make it elementary; elementary because turned to “the originary elements”, but also by 

reason of the "lightness" with which the children have lived the proposed acts: their 

answer has been quiet, serene, with adequate results. (b) Furthermore, while the analysis 

and the study of comparison are central in psychology and in teaching, its mathematisation 

is not part of the common way of considering it. So the mathematisation of the 

comparison is a “new” way of looking at the world. 

2.5 The new universe of fractions 

Our approach to fractions is diversified from that of Davydov: Davydov considers the 

measure as a juxtaposition and “The relationship between one quantity and any other 

that is taken as a measure is recorded in the form of a number”; the historical - 

philosophical practice instead leads us to consider measure as comparison; then 

measure is an ordered pair of numbers. 

This implies a substantial difference in the didactics of numbers in primary school. 

While in Davydov the teaching of numbers proceeds through “extension, intensification, 

and expansion” starting from natural numbers, in our approach there is a split: the initial 

acts concerning the concept of number are two: a) counting is a number, b) comparing is a 

pair of numbers. This splitting breaks the categorical framing in which acts concerning the 

number teaching are usually blocked. 

In our approach, the universe of fractions is not obtained as an extension of the 

universe of natural numbers; it is new universe, with its own rules and properties.  

2.6 Reflections about the act of mathematisation 

In this presentation we do not describe the classroom practice to introduce the act of 

mathematisation of the comparison. We show instead some features of this act. 

a) The mathematisation of the comparison is imposed. This act of mathematisation is not 

present in Western culture, and in some workshops we have kept (in Milan Bicocca 

and at CIEAEM 66, Lyon), no one spontaneously has hinted at it. Despite its 

simplicity it is not a spontaneous consequence of the common observing and acting. 

Then it cannot be discovered by the children. 

b) The mathematisation of the comparison is a leap. Another form of recording of 

activities in the exercise book, the representation by segments, is a form of 

mathematisation obtained through generalization and abstraction from concrete 

experiences. The representation of the comparison by a pair of numbers is instead a 

leap: the special symbolic representation A;B = 9;5 (“the comparison between A and B 

is the pair of numbers 9;5) is non-spontaneous; it consists “in an “interruption in the 

gradualness,” in a “leap,” in the appearance of a new form of reflection that is 

qualitatively different from the preceding stage in knowing. …” (Davydov).  

c) The mathematisation of the comparison is elementary. There are no difficulties for 

children. Children have lived these activities with "lightness – leggerezza" (Calvino). 

d) The mathematisation of the comparison is an “axios”, “dignum”, worthy, because it 

keeps and opens the trace of the didactic process. 
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e) Trace: the mathematisation of the comparison is “pregnant with significance”. To 

affirm that the act of mathematisation of the comparison keeps and opens the trace of 

the didactic process, means two things: first, the process of interweaving that 

articulates the different strands of the megaconcept into a cohesive and effective 

structure, begins from this act; second, this act enacts a presence that directs the 

subsequent didactic path;  this  presence is due to inescapable indications that this act 

keeps; indications that orientates in assuming the times and the ways of involving the 

different strands. However, the fact that the indications find different realities in 

specific actualization, causes an absence to be breathed, while seeking the most 

effective enacting in the particular context. Teacher is forced to “suspend” [Bobos & 

Sierpinska, 2017] his knowledge on fractions and to carry on a process of dialogical 

interaction with children, in order to unveil the path that the initial act indicates. This 

presence/absence has prompted us to make use of the name “trace”, echoing the 

philosopher Lévinas.  

2.7 Inescapable indications 

In order to highlight inescapable indications imposed by the initial act, let us briefly 

retrace the whole path of mathematisation we have practiced. (a) The act of 

mathematisation of the comparison leads the children to practice the concept of 

common unit. (b) Practicing with common unit, children arrive to measure as ordered 

pair of numbers, and to fraction as measure. (c) The idea of common unit guides 

towards the rethinking of the usual language related to the concept of measure. This 

compels a reconceptualisation that involves the names “whole”, “unit”, and “quantity” 

in a linguistic mathematisation. Their corresponding formulas are a safe reference for 

didactic activities but are not directly used; children do not know them but they grasp 

the corresponding “forms”. (d) Practice with appropriate manipulative brings children 

to discover the link with the division by themselves. (e) The teacher reinforces this 

link and proposes activities that lead children to practice the Euclidean division.  

2.8 Euclidean division: an icon 

The mathematisation process comes realized in the Euclidean division.  

 

This latter is the historical milestone that has created confidence in our approach.  

In our didactics, the Euclidean division is not lived by children as a formula to 

memorize; it is rather the "icon" of their active process of learning. The evocative value 

we ascribe to the word "icon", refers to art history, to which we have recourse to highlight 

and enhance deeper meanings that this word has in the context of our cultural training. 

So the word "icon" houses many "indications": 

a) icon as “memorative (mnemonic) synthesis” of own history of active learning;  

b) icon as target towards which the enacting steps attune; 

c) icon as opening meanings and then making the “trace” to the future activity;  

d) icon as medium between teacher and pupil, as it allows the understanding between 

the two. 
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3 Concluding observations and perspectives 

We conclude our presentation with two types of considerations: about the role of 

history in our enquiring on fractions, and about some key words. 

3.1 Role of history 

In this conference we have given priority to historical and philosophical 

considerations. In particular, the reference to history is characterized by three features: 

a) Break in the historical process of development. The most widespread idea of 

fraction is that of “fraction-of-something”. This idea is the result of the "historical 

process of development" of the concept of fraction. Reflecting on history has 

allowed us to create a break in the historical process of development, 

rediscovering an act of mathematisation put aside.  

b) Wittgenstein’s ladder. “... He must, so to speak, throw away the ladder after he has 

climbed up it.” Practice with anthyphairesis provided us the ladder to rise to a 

higher level and from here to design our teaching proposal. 

c) Clues of history. Different actualizations of the teaching path regain unity in the 

Euclidean division. So the Euclidean division is the clue left behind by history, 

and the milestone that has created confidence in our approach. 

3.2 Key words 

We now recall some key words, trying to briefly indicate any prospects. 

Long persistence of unsatisfactory results. Our enquiring try to react to the long 

persistence of unsatisfactory results in teaching and learning fractions: although Western 

knowledge on the didactics of fractions is wide and deep, teaching is ineffective. The 

discrepancy between knowledge and effectiveness requires reflections on the 

responsibility of knowledge in today's society. 

Familiarization. In our teaching proposal about fractions in primary school, the 

familiarization is opposed to the usual teaching/learning process: familiarization as 

shaping the learning environment precedes the proper cognitive construction. In our 

classroom practice we have tried to clarify how the familiarization with the fractions in 

primary school works. This opens topics of investigation and discussion: (a) how do the 

ordinary teaching principles change in the presence of a process of familiarization? (b) 

Does the familiarization work with other subjects in primary school?  

Megaconcept – Cohesion. The idea of fraction as a megaconcept that we have 

practiced in our classroom activities, requires the search for cohesion between the 

different subconstructs. Cohesion acquires a fundamental role because it gives unity to the 

interweaving of the strands that integrate into the megaconcept. It depends on the 

dialogical interaction between teacher, pupil and content, and the nature and quality of the 

teaching proposal, rely on it. Therefore cohesion must be subject to a constant process of 

investigation.  

Trace. To bring the construction of the new didactic universe of fractions to the initial 

act of mathematisation of the comparison reveals an attitude to think of a principle 

pervading that universe. Fragmentation9 and singularity10 prevail today in enacting 

                                                           
9
 “Modeling is the application of a fragment of mathematics to a fragment of reality” [Israel, 2002] 

10
 “The singular as knowledge actualized in activity” [Radford & Sabena, 2015] 
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mathematics. However, there is also something else that deserves to be investigated. To 

talk about the trace, about of the presence/absence that it brings within itself, means 

believing in the presence of a principle that indicates, and comes back continuously 

throughout the path of enacting.  

Icon. We resort to the word “icon” to denote the Euclidean division. This choice finds 

justification in the reference we make to art history and to deeper meanings that this word 

has in the context of our cultural training. The word icon highlights the roles of evocation 

(memorative synthesis), indication (trace), and mediation (medium between teacher and 

children) that the Euclidean division possesses. These roles make Euclidean division the 

core of the didactic process of fractions. This interpretation of the word icon raises the 

question of the possibility that icons are also identified for didactic processes related to 

other topics. 

Plurality of truth. Following the indications of Toth, we have discovered a hidden 

meaning in Pythagorean mathematics, in the form of a modern principle of 

mathematisation: the mathematisation of the comparison. This allowed us to highlight an 

"other" concept of measure, more primitive, with reciprocity, different from the usual one. 

The bringing to light another definition of measure, recalls the plurality of truth, so dear to 

Toth, and echoes the freedom (Cantor) of mathematics: mathematics can progress not only 

by “extension, intensification, and expansion”, but also by working up an unveiled, 

originary meaning. This make sure that universality replaces totality, plurality of truth 

replaces uniqueness, the violence of ontology fades away, while the power of truth is 

preserved. This makes mathematics the paradigm on which to rebuild critical citizenship.  
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ABSTRACT 

The study ÜberLeGMa examined the beliefs of 141 mathematics pre-service teachers on the structure of 

mathematics, the history of mathematics, and the teaching and learning of the history of mathematics. The 

paper presents the key findings of the study, including statements on the structure and distribution of these 

beliefs and their relationships. The aim of the paper is to provide empirical foundations for studying higher 

education learning opportunities in this area and to formulate recommendations for incorporating appropri-

ate learning arrangements into teacher education. 

1 Introduction 

At many universities, mathematics pre-service teachers study the history of mathematics 

in addition to subject-related, didactic and pedagogical learning content during their study. 

In their overview, Clark, Kjeldsen, Schorcht, & Tzanakis (2018) highlight the benefits of 

the so-called HPM perspective not only for the learning of mathematics, but also for 

teacher education. There is widespread consent among mathematicians and mathematics 

educators that the inclusion of the historical, philosophical, and developmental context of 

mathematics in the university curriculum provides prospective teachers with learning op-

portunities that can enrich the teachers’ future pedagogical practice (Mosvold, Jakobsen, 

& Jankvist, 2014; Burns, 2010; Smestad, 2011). For example, the AMTE recommend in 

its standards for teacher education in mathematics (2017, p. 38): “Well-prepared begin-

ning teachers of mathematics realize that the social, historical, and institutional contexts of 

mathematics affect teaching and learning and know about and are committed to their criti-

cal roles as advocates for each and every student.” 

Universities offer different ways of dealing with mathematical-historical content during 

teacher education. Study content can be anchored in seminars or lectures in the mathemat-

ics teacher education program for primary and secondary level as well as for upper secon-

dary level.  

From the perspective of evidence-based teacher education, however, the question of 

impact of these learning opportunities remains open. It has not yet been sufficiently clari-

fied how pre-service teachers perceive these study contents and to what extent the univer-

sity learning opportunities contribute to professionalization processes of the teachers. Spe-

cifically, the question arises as to whether pre-service teachers later refer to mathematics 

historical references in their pedagogical practice and are prepared to address them explic-

itly in the classroom, or whether the study content as a whole has only little sustainability. 

Previous research into the integration of historical references in mathematics education 

and in mathematics teacher education is mainly concerned normatively with the questions 
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of why historical references are meaningful and how these references can be addressed in 

teaching (Clark, Kjeldsen, Schorcht & Tzanakis, 2018; Clark, Kjeldsen, Schorcht, 

Tzanakis & Wang, 2016; Fauvel & van Maanen, 2002). With regard to empirical work, 

empirical task analyzes by Schulte (2016) or Schorcht (2018) at the level of textbooks 

used in practice have been able to identify various types of tasks that allow for the integra-

tion of historical references into mathematics education. A wide range of international 

empirical studies also address teachers' perceptions of mathematics history in the class-

room (Alpaslan, Işıksal, & Çiğdem, 2014; Bütüner, 2018; Burns, 2010; Charalambous, 

Panaoura, & Philippou 2009; Furinghetti, 2007; Goodwin, 2007; Ho, 2008; Jankvist, 

2010; Philippou & Christou 1998; Smestad, 2011). Although the empirical research on the 

history of mathematics in the classroom suggests that the embedding of historical refer-

ences has advantages (Furinghetti, 2007; Glaubitz, 2011), the meaning and significance of 

the content of history of mathematics depends on how mathematics teacher’s education 

are developed (Nickel, 2013). Due to the fact that only little is known about how and if 

respective measures in teacher education can influence pre-service teachers’ attitude to-

wards the history of mathematics, there are diverse implementations of history of mathe-

matics in teacher’s education. 

Against the backdrop of the issue of impact, the aim of our article is to create empirical 

foundations for a discussion of study content on the history of mathematics and to create 

opportunities for researchers to empirically analyzing the impact of university learning 

arrangements in this area. As part of our study ÜberLeGMa (“Überzeugungen von Le-

hramtsstudierenden zur Geschichte der Mathematik” – “Beliefs of pre-service teachers on 

the history of mathematics”, Schorcht & Buchholtz, 2015), we have developed an instru-

ment to analyze pre-service teachers’ beliefs on the history of mathematics and the teach-

ing and learning of history of mathematics. With the help of this instrument, we have col-

lected the beliefs of 141 pre-service teachers and examined their connection to further be-

liefs. 

We hope that colleagues working in teacher education in the history of mathematics 

will use this instrument to examine the impact of seminars or learning activities in history 

of mathematics. Ideally, we hope that whatever university learning opportunity in the his-

tory of mathematics will result in pre-service teachers becoming open to this study content 

and willing to address it later in the classroom. In the ongoing didactic discussion, norma-

tive ideas and demands can thus be systematically substantiated with empirical results – at 

least on the level of beliefs of pre-service teachers. 

2 Theoretical Framework 

2.1 Strategies for addressing mathematics history in the classroom  

In terms of dealing with history of mathematics, teachers use two perspectives on mathe-

matics: on the one hand, developments of mathematics can be focused as a product and, 

on the other hand, as a process of changes.  

Furinghetti (2007) states in her study that prospective teachers (15) used two different 

modes during a course of 42 hours in a teacher program to integrate historical sources into 

mathematics teaching. In the first mode, prospective teachers pursued the goal of clarify-

ing mathematical concepts through their genesis over time. Hereby, the product of the 

concepts at the end of this process is used as a starting point to create a path of develop-
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ment. Furinghetti (2007, p. 137) calls this mode “evolutionary”. In the second mode, the 

prospective teachers used selected original sources of history of mathematics from a writer 

or author to situate the foundations of a concept in its particular historical situation. Thus, 

the cognitive origins are traced back to historical roots and thus prevent adherence to the 

product of a completed genesis of a concept. This mode is called “situated” (Furinghetti, 

2007, p. 137). Prospective teachers therefore use the history of mathematics to either pre-

sent a current process in its historical genesis or to introduce students to mathematical 

thinking based on a mathematical-historical example. These two perspectives can also be 

related to the distinction of "history" and "heritage" proposed by Grattan-Guiness (2004a, 

b), with evolutionary mode rather emphasizing an emphasis on "heritage" in the class-

room, and situated mode rather emphasizing the "history" aspect. Similar conclusions 

states Lakoma (2002, p. 28ff) for Polish textbooks, but calls these two modes “discursive 

style” or “dogmatic style”. She argues that the choice of mode dependents on authors’ be-

liefs about teaching and learning mathematics. Depending on which goals are pursued in 

lessons contains the history of mathematics, tasks can contribute to the mediation of a 

mathematical discourse culture or emerge as a “set of curious details” for the purpose of 

motivating the learners. Summarizing this might lead us to the assumption that pre-service 

teachers therefore might use history of mathematics to either present a current process in 

its historical genesis or to introduce students to mathematical thinking based on a mathe-

matical-historical example. From this and other empirical studies on the beliefs of teachers 

and pre-service teachers of mathematics, it is known that mathematics teachers either un-

derstand mathematics as a static, rather un-changeable product or understand mathematics 

as a dynamic, continuous process of change initiated by human mathematical activities 

(Blömeke, Kaiser, & Lehmann, 2010; Voss, Kleickmann, Kunter, & Hachfeld, 2013). The 

exciting question that emerges from this finding is how different views on mathematics 

are related to different attitudes towards the use of history of mathematics in education. 

Previous studies on the history of mathematics in teaching do not fully address this no-

tion and focus, e.g. rather on the relations between teachers’ worldviews and different me-

thodical ways to use mathematics history or the interaction in the classroom (Alpaslan et 

al., 2014; Furinghetti 2007; Goodwin, 2007). Studies by Buehl, Alexander, and Murphy 

(2002) or Hofer and Pintrich (1997) for example show a dependency between epistemo-

logical beliefs and teacher-student interaction in the classroom. 

2.2 Reasons for and against mathematics history in the classroom  

There are various reasons for the use of history of mathematics in the education. Bütüner 

(2018, p. 9) presents a list of these justifications as a synopsis of his literature research, 

which is briefly described below. This is to demonstrate the possible intentions of teachers 

to use history of mathematics in the classroom (see Fried, 2001; Liu, 2003; Tzanakis et al 

2000). Mathematics history should accordingly 

(1) make students clear that mathematics is a human activity and a human product, 

(2) increase motivation and positive attitude towards mathematics, 

(3) open up perspectives on the nature of mathematics to students and broaden the 

subject-didactic repertoire of teachers, 

(4) provide a deeper understanding of mathematical concepts, problems and solu-

tions. 
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This list includes cognitive, affective, and evolutionary justifications. The students 

should be cognitively challenged with regard to mathematical or mathematical-historical 

content in order to expand their mathematical discourse skills. Likewise, they should be 

motivated by the history of mathematics to deal with a specific subject area, and thus to 

understand the fundamental change processes of mathematics influenced by protagonists, 

culture, or social environment. 

On the other side, studies by Ho (2008) or Panasuk and Horton (2012) revealed barriers 

of teachers to using history of mathematics. The teachers interviewed in both studies most 

often cited insufficient training in dealing with the history of mathematics as an obstacle 

to the integration of mathematical-historical topics. Likewise, teachers do not use mathe-

matics history because they try to use the available time in class for other content. Teach-

ers also report that mathematics history can confuse students. In the end, mathematics his-

tory can be considered history and therefore is not content of mathematics education. In 

addition to these critical arguments, some teachers also mentioned inadequate opportuni-

ties for assessment or a lack of teaching materials. 

In their articles, Tzanakis et al (2000) and Siu (2006) put together lists of obstacles that 

teachers encounter in the classroom if they want to integrate the history of mathematics. 

Tzanakis et al distinguish philosophical and practical objections. They add to philosophi-

cal objections the ontological distinction between mathematics and history, which leads to 

a prioritization of mathematical learning content by teachers, insufficient historical prior 

knowledge of students and their lack of motivation, as well as the danger of having history 

can help cultivate cultural chauvinism and narrow-minded nationalism. As a practical ob-

jection, Tzanakis et al add the inadequate expertise of teachers, which is related to a lesser 

self-concept with regard to mathematical-historical content (Tzanakis et al 2000, p. 203). 

Siu (2006) describes a similar list, but differentiates it further. He additionally refers to 

teachers’ doubts about the value of mathematics history for mathematics education. Over-

all, the discussion on the use of mathematics history involves affirmative and negative be-

liefs. Affirmative beliefs are based on affective, cognitive, or evolutionary benefits, while 

negative beliefs include practical or philosophical objections. Following the findings of 

Buehl et al. (2002), Furinghetti (2007), Goodwin (2007), Hofer and Pintrich (1997) or La-

koma (2002), these reasons show this two-fold nature, depending on the epistemological 

beliefs teachers have in their field. 

2.3 Research on Teachers Beliefs 

The prospect that study content on the history of mathematics is used in the classroom ties 

in with the hope that university learning opportunities can change the beliefs of pre-

service teachers in such a way that they thematize mathematics history in teaching. This 

hope is supported by the existing assumption for the field of research on teacher actions 

that the application of professional knowledge in context situations is only successful if 

there are corresponding subjective beliefs among the teachers. Beliefs are given an orient-

ing and action-guiding function for the application of learned content (Ernest, 1989; 

Schmotz, Felbrich, & Kaiser, 2010; Schoenfeld, 1998, 2010; Thompson, 1992). 

Despite intensive research into beliefs of teachers, especially in the context of peda-

gogical-psychological research, there is yet no clear and precise definition of the concept 

of beliefs (see, for example, Pajares, 1992). Richardson (1996) therefore proposes an area-

unspecific definition of beliefs, based on a broader understanding. He understands beliefs 
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as “psychologically held understandings, premises, or propositions about the world that 

are felt to be true” (Richardson, 1996, p. 103). Following Richardson, we also understand 

beliefs as subjective opinions and attitudes of a person to an object, which also include 

affective stances and the willingness to act (see Grigutsch, Raatz, & Törner, 1998). With 

regard to the long-term development of beliefs, it can be assumed that they are relatively 

stable to restructuring and, to a certain extent, can act as psychological “filters” and / or 

“barriers” (Reusser, Pauli, & Elmer, 2011). On the other hand, however, justifications for 

beliefs may change in the professional development of teachers (Eichler & Erens, 2015). 

For mathematics teachers, however, despite the blurring of the term, there is a broad con-

sensus on the differentiation of professional beliefs (Ernest, 1989). It is assumed that be-

liefs can be domain-specific (Eichler & Erens, 2015; Törner, 2002) or even situation-

specific (Kuntze, 2011; Schoenfeld, 2010). In addition to epistemological beliefs on the 

structure of mathematics (see, Grigutsch et al., 1998), beliefs on the acquisition of mathe-

matical knowledge or on the teaching and learning of mathematics (Buchholtz & Kaiser, 

2017; Handal, 2003; Kuntze, 2011; Staub & Stern, 2002) are other important dimensions 

of epistemological beliefs. 

For the study of beliefs on the history of mathematics, it made sense to expand these 

existing dimensions by further specific beliefs. To this end, in the present study, based on 

the above-described theoretical framework on the history of mathematics and its use in the 

classroom, tools have been developed that specifically capture beliefs about the history of 

mathematics and the teaching and learning of history of mathematics. Similar to the be-

liefs on the structure of mathematics, the beliefs on the history of mathematics include 

both static and dynamic perspectives (Buehl et al., 2002; Furinghetti, 2007; Goodwin, 

2007; Hofer & Pintrich 1997; Lakoma, 2002). 

Static perspectives include, for example, the assumption that mathematical findings are 

axiomatic and therefore have ideal or eternal existence. Mathematics is understood as a 

perfect logical and consistent system. This view can also suggest an anecdotal understand-

ing of the history of mathematics, limited to the narrative of the work of eminent person-

alities or their biographies. However, the perspective frequently neglects that mathemati-

cal findings are often the subject of disputes, and without questioning mathematical theo-

rems, it would hardly be possible to uncover contradictions and initiate further develop-

ments. 

Dynamic perspectives on the history of mathematics emphasize this aspect in particu-

lar. They have a critical attitude to mathematical findings and do not exclude that today's 

mathematics can be questioned and further developed. On the other hand, they regard 

mathematics as an intellectual creation of humans in their respective historical and cultural 

context and see the origins of mathematical thinking in a strong reference of the discipline 

to every day’s life. 

The beliefs on the teaching and learning of history of mathematics pick up the different 

justifications described above (see Bütüner, 2018; Siu, 2006; Tzanakis et al, 2000). 

Affirmative beliefs are fed by affective, cognitive or evolutionary reasons, emphasizing 

the motivational nature of mathematics history in the classroom, the cognitive added value 

of using the history of mathematics in class, or overall a processual image of mathematics. 

Teachers who share these benefits use mathematics history to engage students in a 

mathematical subject area and get to know the genesis of and relations between mathe-

matical content. Here, especially historical references, which can motivate the students, 
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play a role. Mathematics should be understood as a human product and provide a specific 

perspective on the nature of mathematics. Overall, these references should favor a positive 

attitude towards mathematics. 

Negative beliefs refer to philosophical or practical objections. Teachers who share these 

reasons tend to reject mathematics history in the classroom. They see the high complexity, 

the low motivation and the lack of learning prerequisites of the students as well as the high 

time pressure as obstacles to thematize relevant content in the classroom. It can be as-

sumed that dynamic beliefs about mathematics and constructivist teaching-learning beliefs 

are related to a more strongly emphasis of a process-based, iterative operation with 

mathematics in lesson design (Reusser et al., 2011). For this reason, we suspect that open-

mindedness to incorporating historical aspects in mathematics education is most likely to 

be found among teachers with appropriate dynamic beliefs. Conversely, in the field of 

mathematics history, however, one could argue, that teachers with a more static belief of 

mathematics might also be open to historical references in mathematics teaching, because 

these put the spotlight on the universal and eternal validity of mathematical theorems. 

Ultimately, this raises the empirical question of how teachers' different facets of beliefs 

are interrelated and whether convergent or more differentiated structures can be identified 

between beliefs on the structure of mathematics, the history of mathematics, and the teach-

ing and learning of history of mathematics. In the present study, these structures could be 

examined empirically, at least at the level of pre-service teachers. 

2.4 Research questions 

Existing research on the beliefs of teachers refers to a differentiated image of beliefs in the 

field of mathematics and mathematics as a school subject. For instance, research describes 

beliefs on the origin of mathematical knowledge and the nature of mathematical problems 

(Grigutsch et al.; 1998, Törner, 2002). Empirical studies highlight the importance of such 

beliefs in teaching (Buehl et al., 2002; Hofer & Pintrich, 1997; Staub & Stern, 2002). De-

spite this research background, the research discussion lacks of empirical findings in the 

area of teachers’ beliefs on history of mathematics. Most of studies in this area are either 

normative studies on the epistemological foundations of teachers’ beliefs on history of 

mathematics (e.g, Siu, 2006; Tzanakis et al, 2000). Other, more qualitative case studies 

engage with students’ learning processes in classroom contexts about history of mathemat-

ics (e.g, Chorlay, 2016; Glaubitz, 2011; Jankvist, 2009). A third kind of studies analyses 

historical documents, textbooks and teacher materials for didactical implications (e.g. 

Biegel, Reich & Sonar, 2008; Clark, et al., 2018; Clark et al., 2016;, Fauvel & van 

Maanen, 2000). The aim of our study, and thus of this article is therefore, to deepen the 

research findings on teachers’ beliefs on history of mathematics in education and to sup-

port the discussion with empirical results. Our research questions are: 

1) What kind of beliefs on mathematics, on history of mathematics and on teaching and 

learning of history of mathematics have pre-service teachers? 

2) How are their beliefs on the history of mathematics related to their epistemological 

beliefs about mathematics, and what relations exist to their beliefs on teaching and 

learning of history of mathematics? 
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3 Methodology 

The following section outlines the method of data collection. The instrument is further 

provided as a whole in the appendix. 

3.1 Sample 

By means of an online survey in the summer term 2015 and in the winter term 2015/2016, 

the study examined the beliefs of 159 German mathematics pre-service teachers studying 

both for primary and secondary level. For the administration of the survey, pre-service 

teachers at various universities received a link via email. We asked colleagues at the re-

spective universities working in the field of history of mathematics and mathematics edu-

cation to administer the link to their respective groups of pre-service teachers, aiming for a 

convenient sample. As is it the case with studies in tertiary education, it is not uncommon 

to gather different sized subsamples at individual universities due to limited access to the 

field (for example, we had no insight in how many pre-service students were informed). 

Participation in the study was voluntary and the data was collected anonymously, so that 

we have to assume a positively selected sample. Eighteen pre-service teachers had to be 

excluded from our analysis due to missing values or unfinished surveys. Overall, the study 

is based on a sample of 141 pre-service teachers from nine universities, the numbers in 

brackets indicate the sample size at the respective university: University of Hamburg (6), 

Justus Liebig University Giessen (12), University of Siegen (11), University of Wuppertal 

(37), Technical University Dresden (28), University of Kassel (6), University of Vechta 

(1), University of Bielefeld (1), Technical University of Dortmund (39). No comparisons 

between universities were foreseen, however, the different sample sizes at the universities 

may affect the results of our study. On average, the pre-service teachers were about 24 

years old with a standard deviation of slightly more than 4 years, studying mostly in the 

6th semester (with a relatively large span from the 1st to the 33rd semester) and predomi-

nantly female (111 pre-service teachers, 79%). The evaluation of the study degree of the 

pre-service teachers showed a differentiated picture of the sample. The vast majority of 

pre-service teachers (108, 77%) were studying for primary or lower secondary level. 23 

pre-service teachers (16%) studied for upper secondary or vocational level and 10 students 

(7%) studied for special needs education. 

3.2 Instrument 

Pre-service teachers’ beliefs about mathematics, the history of mathematics, and the teach-

ing and learning of history of mathematics were collected in a survey using three scales. 

With reference to empirical research on attitudes and beliefs (Grigutsch et al., 1998), and 

empirical and theoretical work on beliefs on the history of mathematic (Alpaslan et al., 

2014; Siu, 2006; Tzanakis et al, 2000), we developed scales on the history of mathematics 

(26 items) and the teaching and learning of the history of mathematics (21 items) as part 

of the piloting of the study (Schorcht & Buchholtz, 2015). Appendix A and B shows the 

developed scales. An already existing 12-item component of the instrument included ques-

tions on beliefs about mathematics, which included both static (formalism aspect, schema 

orientation) and dynamic beliefs (process orientation, application aspect) (Grigutsch et al., 

1998).  For all scales, pre-service teachers should indicate their agreement on a five-point 

Likert scale (1 = “strongly disagree” to 5 = “strongly agree”). The instrument was imple-
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mented in the form of an online survey for the main study in the software Questback Table 

4.1 gives an overview of the descriptive statistics and reliabilities of the developed scales 

and illustrates them with example items.  

3.3 Data analysis 

With the help of confirmatory factor analyses (CFA), the assumed factor structure from 

the piloting of the study was empirically tested individually for each facet of the beliefs. 

The models were specified in the form of structural equation models for each belief facet 

in mplus (Mplus, Muthén & Muthén, 1998-2012). For model evaluation, the statistical 

significance was tested using the likelihood ratio χ
2
 fit test, and other global fit indices 

were used to describe the quality of the model (RMSEA, CFI, SRMR). RMSEA values 

less than .05, CFI values greater than .90, and SRMR values less than .08 indicate a good 

model fit (Hu & Bentler, 1999). For all inference statistical tests p <.05 was set as the sig-

nificance level. For the scale of beliefs on the history of mathematics, 6 items had to be 

excluded due to bad item-fit. The results of the CFAs provide a measure of the relation-

ship between the individual dimensions of the different scales at latent level (latent corre-

lations) and the descriptive statistics that provide us with information about the distribu-

tion of beliefs within the sample. For the subsequent correlation analyzes between differ-

ent belief facets, factor scores were exported from mplus for all 141 pre-service teachers, 

which are estimated there and output as standard. These numerical variables are weighted 

scores that reflect the individual's latent standing on a factor based on their agreement to 

the items. The further correlation analyzes were based on the consideration of the manifest 

correlations of these factor scores. 

4 Results 

4.1 Beliefs on the structure of mathematics 

In essence, we were able to replicate the four-factor solution of beliefs about the structure 

of mathematics based on the work of Grigutsch et al. (1998). We identified the factors 

formalism, application, process, and scheme orientation (see Table 1), where formalism 

and scheme orientation represent static perspectives and application and process dynamic 

perspectives. The model had an acceptable to good fit (χ
2
/df = 1.85, RMSEA = 0.07, CFI = 

0.91, SRMR = 0.06). In addition, we identified significant correlations (Figure 4.1) be-

tween the factors already revealed by Grigutsch et al. (1998). Since these are correlations 

at the latent level, the correlation coefficients were correspondingly a bit higher. Figure 

4.1 shows how static beliefs, such as the formalism aspect and scheme orientation, are 

positively related and distinct from other related dynamic beliefs, such as the application 

and process aspects. Despite the fact that there were clear correlations between the factors, 

not all correlations between the individual factors were significant.  

From Table 4.1 it can be seen that the pre-service teachers on average agree slightly 

more with the dynamic beliefs than with the static beliefs, with the highest, average value 

(4.31) in the process-view, but the agreement with static beliefs is relatively high (> 3.38). 
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 Figure 4.1: Model for the beliefs on the nature of mathematics 

4.2 Beliefs on the history of mathematics 

For the beliefs on the history of mathematics, a five-factor solution of different perspec-

tives on the history of mathematics based on the assumptions could empirically be con-

firmed (see Figure 4.2). 

The protagonist view includes items that focus on the work of mathematicians or show 

how people have used mathematics in the past. 

With the perfectionist view, pre-service teachers agreed with the statements that formu-

las have always played a significant role in mathematics, and that mathematics history de-

scribes a move toward perfect mathematics. 

On the other hand, the real-life view focuses on the high everyday value of mathematics 

for humans. This includes the cultural significance of mathematics and application prob-

lems that arise within mathematical development. 

With a process-oriented view, pre-service teachers see mathematics undergoing con-

stant change. They would accept the refutation of todays’ valid mathematical knowledge, 

if it is proven wrong. Mathematics history shows accordingly that mathematical 

knowledge must constantly be questioned. 

 

Figure 4.2: Model for the beliefs on the history of mathematics 
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Within the static view, items are summed up that no longer give mathematics any 

meaningful insights in the future. The pre-service teachers agreed with the statements that 

there is only one “right” mathematics that has not changed over time. This view under-

stands mathematics history essentially also as a collection of biographies. 

The model in Figure 4.2 fits well (χ
2
/df = 1.33, RMSEA = 0.05, CFI = 0.91, SRMR = 

0.07). While the static view correlates negatively with the process-oriented view, this neg-

ative correlation does not apply to all dynamic beliefs – such as the real-life view. 

There were still no significant relations between the protagonist view and the static 

view. Rather, the protagonist viewpoint is associated with both the beliefs of the perfec-

tionist view and the real-life and process-oriented view of the history of mathematics. In-

terpreting these correlations, this could mean that the work of important personalities in 

mathematics is more strongly associated with the dynamic development of the discipline 

than with the creation of eternally valid theorems. The perfectionist view, on the other 

hand, correlates both with the protagonist view and the real-life view, as well as with the 

static view. All in all, it was thus possible to identify a much more differentiated structure 

of the beliefs on the history of mathematics, which cannot simply be attributed to the dis-

tinction between static and dynamic beliefs. 

 

Scale Items M SD Cronbach’s α Example Items 

Beliefs on the structure of mathematics (Grigutsch et al. 1998) 

Formalism 4 3,67 ,62 .77 
Fundamental to mathematics is its logi-

cal rigor and precision. 

Application 2 3,88 ,61 .63 
Many aspects of mathematics have 

practical relevance. 

Process  4 4,31 ,49 .70 
Mathematical problems can be solved 

correctly in many ways. 

Scheme  2 3,38 ,80 .68 

When solving mathematical tasks, you 

need to know the correct procedure, 

else you would be lost. 

Beliefs on the history of mathematics (Schorcht & Buchholtz, 2015) 

Process-oriented 

View 
5 3,63 ,62 .78 

The history of mathematics shows us 

that mathematical knowledge must 

constantly be scrutinized. 

Real-Life View 4 3,96 ,53 .67 

The history of mathematics shows how 

people solved everyday problems with 

mathematics 

Protagonist 

View 
4 3,64 ,48 .54 

The history of mathematics shows us 

the work of outstanding personalities. 

Static View 5 2,02 ,58 .71 

The history of mathematics shows that 

there is nothing new to explore in 

mathematics. 

Perfectionist 

View 
2 2,99 ,76 .54 

The history of mathematics describes 

the path of mathematics towards a con-

sistent system without contradictions. 

Beliefs on the teaching and learning of history of mathematics 

Application 

reasons 
4 3,65 ,68 .76 

Historical references in mathematics 

lessons teach students the practical 

applicability of mathematical concepts. 

Deepening 

reasons 
4 3,50 ,73 .81 

Historical references in mathematics 

lessons help students recognize inter-

connections between mathematical 
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concepts. 

Motivation 

reasons 
3 3,59 ,77 .75 

Students should learn historical refer-

ences in mathematics education, be-

cause it also allows mathematically less 

interested students to learn mathemat-

ics. 

Critical stance 

reasons 
2 3,59 ,66 .37 

In dealing with the erroneous paths of 

mathematics, students can develop a 

critical attitude towards mathematical 

insights. 

Time reasons 3 2,74 ,80 .78 

Historical references depend on many 

interpretations and require too much 

time in mathematics lessons. 

Relevance 

reasons 
3 2,50 ,76 .76 

Students do not need to learn historical 

references in mathematics lessons be-

cause they usually are not subject to 

exams. 

Complexity 

reasons 
2 2,44 ,80 .70 

Historical references to earlier errors 

and fallacies of mathematics only con-

fuse students. 

Table 4.1 : Scales and descriptive statistics 

 

However, the relationships are only very cautiously interpretable, since some scales 

showed poor reliability (see Table 4.1). We attribute this to the difficulty of develop-

ing scales of very heterogeneous and nuanced content. Table 4.1 shows that the pre-

service teachers agreed least on the history of mathematics in the static (2.02) and the 

perfectionist (2.99) view-points, while the agreement on the real-life view (3.96) is 

much higher. 

4.3 Beliefs on the teaching and learning of history of mathematics 

For the beliefs on the teaching and learning of history of mathematics, we here present 

a seven-factor solution that showed satisfying model fit (χ
2
/df = 1.53, RMSEA = 0.06, 

CFI = 0.93, SRMR = 0.05). Although the model had a good fit, very high correlations 

could be identified between the factors (multicollinearities), which makes it difficult 

to distinguish between individual belief facets. There was a clear correlation pattern 

between the three objections (time, relevance and complexity) and the four affirma-

tive belief facets (application, deepening, motivation and critical stance). This sug-

gests an underlying structure of higher order (Byrne, 2012), which we elaborated on 

elsewhere (Buchholtz & Schorcht, submitted). Note that the factor critical stance also 

showed unsatisfactorily reliability (see Table 4.1). However, we decided to take up 

this factor here and to present the whole seven-factor model in order to present our 

findings to a higher degree of detail and to better map the theoretical anchoring of the 

instrument (see Figure 4.3). 

Affirmative beliefs therefore contain four justification patterns: deepening reasons, mo-

tivation reasons, application reasons and critical stance reasons. 
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Figure 4.3: Model for the beliefs on the teaching and learning of history of mathematics 

 

Deepening reasons are a collection of beliefs that aim to help students understand the 

genesis and inter-connectedness of mathematical terminology in the classroom. 

Reasons for justification, which are more likely to be attributed to motivation, point to 

the functional role of mathematics history in mathematics teaching like when used in 

problem-posing for a lesson or the motivation of less interested students. 

The application reasons focus on the training of problem-solving skills. Pre-service 

teachers who agreed with these statements would claim to use mathematics history to clar-

ify the applicability of mathematical concepts. The students would thereby better recog-

nize a sense of their own learning. 

Other reasons point to the evolution of a critical stance towards mathematics and the 

development of an inquiry-oriented mind-set. 

Beliefs about objections also have three justification patterns: time reasons, relevance 

reasons, and complexity reasons. 

Under time reasons, we find beliefs, which attach too much time to the treatment of 

mathematical historical references, which is therefore not available when teaching. At 

best, mathematics history is seen as a digression in the lesson and is considered time-

consuming due to its complexity. 

The relevance factor includes statements that assume that the history of mathematics is 

boring students and that the content of mathematical-historical references is not relevant to 

tests and exams. The knowledge of the historical development of a mathematical concept 

is therefore of little relevance as long as one knows the definition of the concept. 

Under the complexity factor, pre-service teachers also regard mathematics history as 

too complex to handle in class. Especially, they agree on the statement that mathematical 

errors and fallacies, often mentioned in mathematics historical content, could rather con-

fuse the learners than help to build up mathematical understanding.  
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In the seven-factor model, the very high significant correlations between all affirmative 

factors and between all factors of objections and the very high negative correlations be-

tween the four affirmative and the three factors of objections are striking. This belief pat-

tern indicates that affirmative reasoning as well as objections patterns are closely related, 

but pre-service teachers tend to emphasize one or the other aspect of their beliefs in a 

complementary manner. Interestingly, the correlations between the time factor and the af-

firmative factors in the range of -.54 to -.60 are somewhat smaller than between the other 

two negative factors and the affirmative factors (-.68 to -.90). This may suggest that even 

though pre-service teachers see a benefit in the thematization of mathematics-historical 

content in the classroom, concerns about lack of time cannot be completely dispelled. 

However, particularly in the case of objections, to interpret this as a dichotomy between 

the different reasons is supported by the descriptive statistics (see Table 4.1). For all facets 

without the exception of the critical stance factor we achieved good reliability, which 

could be because the factor only consists of two items. Interestingly, the factors of objec-

tions consistently averaged less agreement and a higher standard deviation, suggesting a 

larger divergence of pre-service teachers' answers. The lowest agreement could be identi-

fied in the complexity (2.44) and relevance aspect (2.50), and the application aspect (3.65) 

received the strongest agreement.  

4.4 Relations between different dimensions of beliefs 

In analyzing the relations of beliefs on the history of mathematics and beliefs on the 

structure of mathematics, we find significant correlations between the different facets, 

but with the exception of a mid-high correlation between real life view and applica-

tion orientation (.49) all other significant correlations are relatively low (see Table 

4.2). 

 

 Process-

oriented View 

Real-life 

View 

Protagonist 

View 
Static View 

Perfectionist 

View 

Formalism n.s. n.s. .23** n.s. .32** 

Application .18* .49** .23** -.22** n.s. 

Process .22** .41** .27** -.25** .18* 

Scheme  n.s. n.s .23** n.s. n.s. 

Table 4.2: Relations between beliefs about the history of mathematics and the structure of 

mathematics 

Between the dynamic beliefs on mathematics - application and process - and the proc-

ess-oriented view and the real-life view on the history of mathematics we find relation-

ships as expected. This also applies to the negative relations between the static view on the 

history of mathematics and the dynamic beliefs on mathematics. Interestingly, the pro-

tagonist view correlates significantly with all beliefs on the structure of mathematics, 

which can be taken as an indication that (anecdotal) beliefs about outstanding personalities 

and their work in the development of mathematics may be overarching beliefs that are in-

dependent from whether mathematics is perceived as a more logical-deductively ordered 

structure or as applied science. However, these relationships are only carefully interpret-

able here due to the poor reliability of the scale. Another interpretable result is that the be-
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lief that the history of mathematics witnesses the evolution of mathematics toward a per-

fect system is related to structural beliefs about formalism. Epistemological similarities 

such as the orientation towards (the development of) universal formulas and logical state-

ments, which contain both facets of beliefs, are likely to be decisive here. Interestingly, 

however, formalistic beliefs and  

 

 
Process-

oriented view 

Real-life 

view 

Protagonist 

view 

Static View Perfectionist 

View 

Application .23** .45** .29** -.24** .18* 

Deepening .27** .41** .29** -.26** n.s. 

Motivation .21* .41** .29** -.22** .17* 

Critical 

Stance 
.25** .35** .26** -.25** n.s. 

Time n.s -.24** n.s. .26** n.s. 

Relevance n.s. -.29** -.16(*) .26** n.s. 

Complexity n.s. -.28** -.15(*) .29** n.s. 

Table 4.3: Relations between the beliefs on history of mathematics and the teaching and 

learning of history of mathematics 

static beliefs on the history of mathematics (including the belief that mathematics 

does not change over time) are not related. 

The analysis of the relations between beliefs on the history of mathematics and the be-

liefs on the teaching and learning of history of mathematics initially revealed a clear pat-

tern (see Table 4.3). 

The process-oriented view, the real-life view and the protagonist view (and at 10% sig-

nificance level also the perfectionist view for some instances) are weakly to medium 

highly positively correlated to affirmative beliefs on the teaching and learning of history 

of mathematics (see Table 4.3). 

Partly - as in the real-life view and in the protagonist view - the beliefs on the histo-

ry of mathematics are also negatively correlated with the negative beliefs about teach-

ing and learning. On the other hand, the static perspective is positively related to the 

rather negative beliefs, although the size of the relation-ship does not differentiate be-

tween the aspects of justification. Overall, however, the correlations are only low to 

medium high here. 

5 Discussion 

Using confirmatory factor analyzes, our study has elucidated pre-service teachers’ various 

beliefs about the structure of mathematics, as well as various views and justifications in 

the beliefs of history of mathematics and in the teaching and learning of the history of 

mathematics. 

The results on the beliefs on the structure of mathematics (see section 4.1) have al-

ready replicated well-known structural results with regard to static and dynamic be-

liefs of (pre-)service teachers on mathematics (Blömeke et al., 2010; Voss et al., 

2013). However, static or dynamic beliefs on the structure mathematics do not trans-

late clearly into beliefs on the history of mathematics. With regard to the beliefs on 
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the history of mathematics, a more differentiated picture of different static and dy-

namic points of view was found, which are however interrelated. A process-oriented 

view of the history of mathematics, a real-life view, a protagonist view, a perfectionist 

view and a static view could be distinguished (see section 4.2).  

Our first research question asked for what beliefs could be identified for the pre-

service teachers in our sample. For the beliefs on mathematics we could identify static 

as well as dynamic beliefs among our pre-service teachers. However, for the beliefs 

on the history of mathematics we might see the impact of the positively selected sam-

ple. The majority of the pre-service teachers in the sample clearly agreed with the 

process-oriented and the real-life view on the history of mathematics, the static view 

of the history of mathematics received the lowest approval. Among the reasons in fa-

vour or against the use of mathematics history in the classroom were affirmative as 

well as negative beliefs among the pre-service teachers. The affirmative beliefs for the 

teaching and learning of history of mathematics (see section 4.3) included various jus-

tification patterns, such as application, motivation, deepening and critical stance rea-

sons. The beliefs of objections were captured in three typical justification patterns: 

timing, relevance and complexity reasons. 

Our second research question asked for the relations between different facets of be-

liefs. Correlation analyzes of the different beliefs provided interesting insights into the 

structural relationships of the various facets. Overall, the majority of pre-service 

teachers in our sample supported the use of the history of mathematics in the class-

room. Our convergent findings show that the affirmative justifications for this advo-

cacy are also related to dynamic views on the history of mathematics, which in turn 

are linked to dynamic views of the structure of mathematics. For the inclusion of the 

history of mathematics in the classroom, this means that in this case, pre-service 

teachers will use the history of mathematics in the classroom to emphasize the dy-

namic aspects of mathematics and its history, and to provide a deeper understanding 

of mathematics. On the other hand, if pre-service teachers increasingly take a static 

view on the history of mathematics, this relates to their greater rejection of the use of 

mathematics history in teaching. However, this relationship seems to be independent 

of static beliefs about the structure of mathematics, such as the formalism aspect or 

schema orientation. Pre-service teachers with a static view reject mathematics history 

in the classroom because they think it is too complex for the students. In addition, 

they see the available time in the classroom as too tight, as that mathematics history 

could be integrated in addition. Also, the lack of relevance for exams is a justification 

for not using mathematics history. 

Interestingly, we were able to identify differentiated relationships between static 

beliefs about the structure of mathematics and dynamic beliefs on the history of 

mathematics. Thus, beliefs on the formalism aspect and scheme orientation are re-

lated, albeit only weakly, to the protagonist view and the perfectionist view of the his-

tory of mathematics, but not to the static view of the history of mathematics. All in all, 

we infer from our results that prospective teachers specifically locate the reflection 

about people and outstanding figures in the history of mathematics within two differ-

ent views on the history of mathematics, which are related differently to beliefs on the 

teaching and learning of history of mathematics and the structure of mathematics. On 

the one hand, people and their influence on mathematics are reflected within the pro-
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tagonist view, with the focus then being on the mathematical work of the persons in 

their time. Appropriate beliefs are agreed on by pre-service teachers with all sorts of 

structural beliefs and are positively associated with affirmative beliefs about teaching 

and learning about the history of mathematics. On the other hand, pre-service teachers 

with a static view perceive mathematics history also as a pure collection of biogra-

phies (which may have anecdotal value for teaching at best). These pre-service teach-

ers may not regard the knowledge of human achievements in the development of 

mathematics as very relevant, and accordingly, they might assess the importance of 

this knowledge as less important for teaching and learning of mathematics. 

Overall, however, the results of the study ÜberLeGMa can only be interpreted with 

caution. Some scales showed poor reliability, so it seems appropriate to replicate the 

findings in further studies. Moreover, the small sample of pre-service teachers does 

not allow a generalization of the results. Since we did not forge any direct compari-

sons between universities, we refrained from displaying a site-specific presentation of 

the individual sub-samples, but it cannot be ruled out that results are distorted by the 

influence of locations with high numbers of pre-service teachers. In further follow-up 

studies our quantitative findings could be extended by additional qualitative studies. 

For example, new research questions arise about the relationships of beliefs or the im-

pact of courses in history of mathematics on respective beliefs.  
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APPENDIX A 

26 Items: “Beliefs on the history of mathematics” 

The history of mathematics shows that the basic mathematical findings are centuries old and have sur-

vived the time. 

The history of mathematics shows us the work of outstanding personalities. 

The history of mathematics for me is a collection of interesting anecdotes. 

The history of mathematics testifies that formulas have always played a significant role in mathemat-

ics. 

The history of mathematics shows us that mathematical knowledge must constantly be scrutinized. 

The history of mathematics shows that mathematics has its origins in application problems. 

How people used mathematics at their own time is shown by the history of mathematics. 

Mathematics has also gone astray in the course of its development. 

Mathematics history shows that mathematics is undergoing constant change. 

The history of mathematics testifies to the development of mathematical ideas towards a perfect  

mathematics. 

In the future, no fundamentally new mathematical findings will be discovered. 

The history of mathematics shows us that you have to deal critically with mathematical findings. 

History of mathematics is essentially a collection of biographies. 

The history of mathematics shows the constant elimination of mathematical inconsistencies. 

The history of mathematics shows that there is nothing new to explore in mathematics. 

The history of mathematics shows that mathematics does not change over time. 

The history of mathematics testifies that there is only one "correct" mathematics. 

The history of mathematics shows how people solved everyday problems with mathematics. 

Mathematics history shows that mathematical discoveries are eternally valid and unchangeable. 

The history of mathematics illustrates the high everyday benefits that mathematics has for people. 

The history of mathematics shows the high cultural significance of mathematics. 

In the future, today’s accepted mathematical findings could be discarded again. 

History of Mathematics describes how people practiced math in their time. 

The history of mathematics describes the path of mathematics towards a consistent system without 

contradictions. 

The history of mathematics documents the constant progress in mathematics. 

The history of mathematics describes mathematics as the spiritual creation of humanity. 
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APPENDIX B 

21 Items: “Beliefs on the teaching and learning of history of mathematics” 

Historical references in mathematics education contribute to an application-oriented image of mathe-

matics. 

In mathematics it is not only important to know a concept, but also its historical development. 

At best, historical references can be used for a digression in the classroom. 

Historical references in mathematics lessons teach students the practical applicability of mathematical 

concepts. 

Historical references in mathematics classes can take away students’ fear of the “scientific” mathema-

tics. 

Students should learn historical references in mathematics education, because it also allows mathema-

tically less interested students to learn mathematics. 

Dealing with the struggle for solutions to mathematical problems make students understand the mean-

ing of their own learning. 

Historical references are ideal as an introduction to a substantive mathematical topic. 

Dealing with the history of mathematics trains problem solving abilities of students. 

Dealing with historical references in mathematics teaching motivates students. 

Historical references in mathematics lessons help students recognize interconnections between    

mathematical concepts. 

Students will gain a deeper understanding of mathematical procedures as they see how they have 

changed over time. 

By dealing with the historical genesis of mathematical concepts, they can be better memorized and 

understood. 

The historical development of mathematics is too complex to handle in class. 

Historical references depend on many interpretations and require too much time in mathematics les-

sons. 

The knowledge of the historical development of a mathematical concept is of little relevance as long as 

one knows the definition of the concept. 

In dealing with the erroneous paths of mathematics, students can develop a critical attitude towards 

mathematical insights. 

Historical references in mathematics education are too time consuming. 

Historical references in mathematics lessons bore students. 

Students do not need to learn historical references in mathematics lessons because they usually are not 

subject to exams. 

Historical references to earlier errors and fallcies of mathematics only confuse students. 
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ABSTRACT 

Considerable work has been done over the last 15 years on how to integrate History of Mathematics (HM) into 

Mathematic Education (ME). However, integrating HM into ME from the perspective of teaching research 

system has been less researched. In Mainland China, a teaching research system has been practiced nationally 

since the 1950s. China has a long history of collaboration among teachers. This paper deals with the teaching 

research system that integrates HM into ME at Chinese education system. The conceptual framework in this 

research including HPM Learning Community (HPMLC) and HPM Lesson Study (HPMLS). We used the 

research method of case study. Based on the conceptual framework above, we selected one case of HPM 

lesson that integrates the history of conic section into teaching practice. Through case analysis, the conceptual 

framework is modified to obtain the result of this study that how the HPMLS work under the context of 

HPMLC. 

1 Introduction 

Considerable work has been done over the last 15 years on how to integrate History of 

Mathematics (HM) into Mathematic Education (ME) (Clark et al., 2016), and there are 

various classifications of approach (Tzanakis et al., 2000; Jankvist, 2009). However, 

integrating HM into ME from the perspective of teaching research system has been less 

researched. 

In Mainland China, a teaching research system has been practiced nationally since the 

1950s, which refers to various activities of professional development institutionalized by 

four hierarchical organizations: province/city, district/county, school, and lesson plan 

group. The system focuses on “guiding teaching research, overseeing teaching 

administration in schools on behalf of educational bureaus, providing consultation for 

educational authorities, mentoring the implementation and revision of new curricula, 

building the bridge between modern educational theories and teaching experiences, and 

promoting high-quality classroom instruction” (Huang, Ye & Prince, 2017). 

The core components of Chinese teaching research activities is studying lessons which 

include Keli (Exemplary Lesson Development) (pronounced: Ker-Lee) and public lessons, 

Both Keli and public lessons are known as Chinese Lesson Study (LS) (Huang & Shimizu, 

2016). Chinese LS is a form of school-based professional development that aims to update 

ideas of teaching and learning, to design new learning situations, and to improve 

177



classroom practice through Keli, which is a community-mediated process of developing 

an exemplary lesson, including the planning, delivery, debriefing, revision and re-teaching 

of the lesson, and this form develops a model known as action education (Gu & Gu, 

2016).  

Unlike the West, China has a long history of collaboration among teachers (Wong, 

2010). Recently, concepts like “Profession Learning Communities” (PLC) are flourishing 

(Cheng & Wu, 2016). Hord define PLC as defined it as ‘‘teachers in a school and its 

administrators continuously seek and share learning and then act on what they learn. The 

goal of their actions is to enhance their effectiveness as professionals so that students 

benefit (Hord, 1997). So, it is meaningful to research LS in the context of PCL in China.  

This paper deals with the teaching research system that integrates HM into ME at 

Chinese education system. This paper discusses the following questions: 

1. What is the structure and characteristics of PLC that integrates HM into ME? 

2. How does Chinese Lesson Study integrate HM into ME work in the context of 

PCL? 

2 The conceptual framework  

2.1 HPM Learning Community 

The whole process was done by two teams (see fig. 1), HPM Research Team and School 

Teacher Team, and each team has its own expertise. The research team includes HPM 

expert, Ph.D. and M.A. students in the direction of HPM, whose team was responsible for 

theoretical guidance and providing historical materials, meanwhile, the school teacher 

team was mainly responsible for designing discussions and teaching practice. They related 

each other by HPM seminar. 

 

 

Figure 2.1: HPM-LC 

These two teams form a community, and as shown in table 2.1, it has the 

characteristics of PLC (Huffman, Hipp & Hord, 2003), so we call it HPM learning 

community (HPMLC).  
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Table 2.1:  Characteristics of PLC 

Characteristics connotation 

Shared and 

Supportive 

Leadership 

●Nurturing leadership among staff 

●Shared power, authority and responsibility 

●Board-based decision-making that reflects commitment and 

accountability 

Shared Values and 

Vision 

●Espoused values and norms 

●Focus on student learning 

●High expectations 

●Shared vision guides teaching and learning 

Collective Learning 

and Application 

●Sharing information 

●Seeking new knowledge, skills and strategies 

●Working collaboratively to plan, solve problems and 

improve learning opportunities 

Shared personal 

practice 

●Peer observation to offer knowledge, skill and 

encouragement 

●Feedback to improve instructional practices 

●Sharing outcomes of instructional practices 

●Coaching and mentoring 

Supportive 

Condition 

●Relationships 

●Structure 

2.2 HPM Lesson Study 

By using the concept of Chinese LS and PLC, we using the concept structure of the 

teaching research system that integrates HM into ME in this research. We call the lessons 

that integrate HM into teaching as HPM lesson, and we call The Chinese LS combining 

HPM as HPM Lesson Study (HPMLS). The development process of HPMLS includes 

four stages (see Fig 2) (Wang, 2017).  

 

Figure 2.2: HPM-LS 

All concepts mentioned above constitute the concept structure of this research. 
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3 Methodology 

In this research, we used the research method of case study, and the research process is 

shown in the following figure 3.1.  

Get the

conclusion

Modifying

conceptual

framework

Write research

reports

Case study of

implementation

Design Data

Collection

Scheme

Select case

Constructing

Conceptual

Framework

Analysis and summary

Preparing, collecting

and analyzing dataDefinition and Design

 

Figure 3.1: The research process 

Based on the conceptual framework above, we selected one case of HPM lesson that 

integrates the history of conic section into teaching practice and was conducted by an 

HPM studio in a Chinese senior high school. Through case analysis, the conceptual 

framework is modified to obtain the result of this study. 

3.1 The case school and participants 

The research sample of this study is a HPM studio in a senior high school in China. The 

school was founded in 2005, and its students here are of the medium level. The 

participants include the research team and school teacher team, and are Research Team 

consists of University teachers and graduate students, while School Teacher Team 

includes three teachers and a teaching expert in senior high school. The basic information 

of the members in school teacher team is shown in the following table 3.1. 

Table 3.1: Basic information of the members in school teacher team 

members Gender Teaching 

age 

title Educational 

background 

Position 

A Male 25 senior master Leader 

B Male 10 Intermediate undergraduate Teacher
*
 

C Male 11 senior undergraduate Teacher
*
 

D Male 13 senior undergraduate Teacher 

* Teachers that responsible for implement the HPM lesson 

3.2 Data collection and analysis 

We use the modules approach in this case (Jankvist, 2009), and integrate the history into 

the unit of conic section, which lasts two-class periods. Through the planning, discussing, 

implementing and analyzing, two HPM lessons become two exemplary lessons. The 

whole process has undergone three discussions and two implementations. The schedule is 
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as following table 3.2. 

Table 3.2: the schedule of HPMLS 

time activity Data collection 

2017.9.28 Discussion(before lesson) instruction design and reflection list 

2017.11.17 Implementation(1 round) instruction design、tapes and videos 

2017.11.17 discussion(after lesson) tapes and videos 

2017.11.20 Implementation(2 round) instruction design、tapes and videos 

2017.11.20 discussion(after lesson) tapes and videos 

We videotaped and recorded the whole process of the HPMLS, and collected the 

reflection list and instruction design of the teachers. 

By analyzing the data of tapes, videos, instruction design and reflection list in the 

development process of this HPMLS, we can better explain what the structure and 

characteristics of the HPMLC are and how the HPMLS works in the context of HPMLC. 

Therefore, it can provide enlightenment to how to conduct HPM lessons from the 

perspective of teaching research system. 

4 Implementation of framework 

4.1 Selecting a topic and preparing 

Firstly, the leader A confirms the topic of conic section, which in Chinese textbooks is the 

content of a chapter, including curves and equations, ellipses, hyperbolas and parabolas. 

The first and second class periods which are about curves, equations and ellipses in this 

chapter were selected 

The reason of choosing the curves and equations is that some of the curves in the 

textbook have been studied by mathematicians in history. 

“In the section of curve and equation, whether it is an example or a exercise, it is found 

that these are some of the curves that mathematicians have studied in history. So, why 

don't you directly tell the students that mathematicians have studied these curves, now it is 

just to let us restudy it, which can increase the historical sense of mathematics and 

cultural charm, and let the students understand the inheritance and development of 

mathematical content.”(in reflection list from teacher A) 

The reason of choosing the ellipses is that the introduction of ellipse in textbooks is not 

very appropriate (see fig. 4.1), and using trajectory to define ellipse, students will not 

know why ellipses are called conic curves. 

Based on the reasons above, the research team provided the school teacher team with 

published papers about “Generation of plane analytic geometry”, “Origin and 

Development of Conic Curves” and “Travel of Elliptic Equation”. Those papers were 

written by the HPM expert in the research team through reading the original historical 

sources and secondary literature. 
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Figure 4.1: The introduction of the ellipse in the textbook 

After studying the history of the conic section, School Teacher Team has selected the 

following historical materials. 

Three classic geometry problems in ancient Greek, the Greeks very early found 

themselves confronted by three problems which they could not solve, at least by the use of 

the unmarked ruler and the compasses alone. The first was the trisection of any angle, the 

second problem was the quadrature of the circle and the third problem was the duplication 

of a cube. (Smith, 1925, pp. 297-298) 

Hippocrates showed that the problem of duplicating the cube resolves itself into the 

finding of two mean proportionals between two given lines. If a:x=x:y=y:b, then x
2
=ay, 

y
2
=bx, and hence x

4
=a

2
y

2
=a

2
bx, or x

3
=a

2
b. If b=2a, then x

3
=2a

3
, that is, the cube of edge 

x will then have double the volume of a given cube with edge a. since we have the three 

equations x
2
=ay (parabola), y

2
=bx (parabola), and ab=xy (hyperbola), we can evidently 

solve the problem by finding the intersection of two parabolas or of a parabola and 

hyperbola. These methods are credited to Menaechmus (Smith, 1925, p. 313). 

Menaechmus may have used that property of the parabola expressed by the equation 

y
2
=px, and also that property of the rectangular hyperbola expressed by the equation xy=c

2
. 

Archimedes used the same relation for the parabola, Apollonius carried the method much 

farther, the names “ellipse”, “parabola” and “hyperbola” are probably due to Apollonnius 

(Smith, 1925, p. 319). 

We have seen that Menaechmus solved the problem of the two mean proportionals by 

means of conic sections. Menaechmus came to think of obtaining curves by cutting a cone. 

Aristaeus used the title ‘solid loci’ instead of ‘conics’ to indicate that the main devote to 

conics regarded as loci. He must have discussed the locus of three-line and four-line 

problem. Apollonius also studied this problem in Book III of The Conics. Pappus studied 

this problem and distinguished three loci: ‘plane loci’, meaning of straight line and circle; 

solid loci’, meaning conic sections; and ‘linear loci’, meaning curves with a more 

complicated and indeed a forced or unnatural origin such as spirals, quadratrices, 

conchoids and cissoids (Heath, 1921). 

Apollonius proved that ‘in an ellipse the sum of the focal distance of any point is equal 

to the long axis’ (Apollonius, 1896). The French mathematician and astronomer Lahire 

(1640-1719) gave the definition of the focal radius of the ellipse in his work (Lahire, 

1679). 

The definition of the focal radius of the ellipse is widely used. The French 
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mathematician L’Hospital in 18th century (L’Hospital, 1720) and the British 

mathematician Wright in the 19th century (Wright, 1836) gave the method of deriving the 

the equation of an ellipse. 

Dandelin’s spheres were discovered in 1822. They are named in honor of the Belgian 

mathematician Germinal Pierre Dandelin. That the locus of points such that the sum of the 

distances to two fixed points (the foci) is constant is an ellipse was known to ancient 

Greek mathematicians (like Apollonius of Perga), but Dandelin’s spheres facilitate the 

proof (Boag, 2010). 

4.2 Discussing and Designing（First round） 

After the historical materials being selected, the leader A designed three continuous 

lessons. They are “curves and equations” (responsible for teacher B); “solving the 

equation of a curve” (responsible for teacher C); “the ellipse and its standard equation” 

(responsible for teacher D). Each teacher carried out a preliminary teaching design. After 

communicating within the school teacher team, they present their teaching designs to 

Research team in the HPM Seminar. The designs of the three teachers are as follows. 

Curves and equations: (1) To introduce the three classic geometry problem in ancient 

Greek to students, analyze the method of duplication of a cube by Hippocrates and tell 

students who the ancient Greek discovered the conic curve while solving the problem. (2) 

Use a plane to cut the cone and get the oval. (3) Some trajectory problems of ancient 

Greek research are given. (4) Teach the “purity” and “completeness” of curves and 

equations around the trajectory problem. (5) Solve the trajectory problem, and then 

summarize several steps to track equation, and then do some exercises. 

Solving the equation of a curve: (1) Take the contents of the lesson above and review 

the steps of solving the trajectory equation. (2) Continue by finding the equation of the 

trajectory problem given in the first lesson. (3) Give an example: the known curvilinear 

equation is a circle, a moving point is on the circle, and the vertical axis of the x-axis is 

passes through the moving point. To find the locus of the midpoint of the perpendicular 

line (the locus is ellipse). (4) Continue to study the three line problem (if the ratio is not 1, 

the trajectory is an ellipse). 

Ellipse and its standard equation: (1) Along with the content of the first and second 

lessons, the students knew that the ellipse can be cut by the cone, and then the geometric 

method of the second lesson is used to lead to the ellipse, and it is explored by the 

Dandelin spheres. (2) The standard equation of an ellipse is derived from the analytic 

method, and it is prepared to be deduced in three or four ways. (3) More examples and 

exercises about ellipses are given. 

After their presentation, the research team discussed these three teaching designs with 

the teachers’ team, and the teachers’ team modified their designs afterwards. 

4.3 Implementing and Evaluating (First round) 

Because teacher D have another task, so he is no longer in charge of the lesson of Ellipse 

and its standard equation, as the result, teacher B was still in charge of the lesson of curve 

and equation, teacher C become in charge of the lesson of Ellipse and its standard 
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equation. So the three lesson planed in the first place became two lessons when 

implementing. Those two lessons that implemented are as following. Research team and 

teachers’ team observe those two lessons together. 

The first lesson started by introducing three classical geometric problems in ancient 

Greek, and used a plane to cut the cone and get the oval. Then began to study the six 

trajectory problems in ancient Greek: 

(1) The distance to a fixed-point is equal to a constant; 

(2) The sum of the distances to the two fixed-point is equal to a constant; 

(3) The absolute value of the difference between two fixed-points is equal to a 

constant; 

(4) The ratio of the distances to two fixed-point is equal to a constant; 

(5) The ratio of the distances to two straight lines (parallel or intersecting) is equal to 

a constant (two-line problem) 

(6) Given three straight lines, the ratio of the product of the distances of a moving 

point to the two lines, to the square of the distance to the third straight line is equal to a 

constant (three-line problem). 

The teacher said that Apollonius, the Greek mathematician, used geometry to solve the 

problem of “three lines”. However, the process was very complicated, and the “four line” 

trajectory problem cannot be completely solved by geometric methods. In the early 17th 

century, Descartes invented the coordinate system, so he, together with Fermat, began to 

study the trajectory problem using algebra on the basis of the coordinate system – 

“analytic method”. 

Let the students find the conic section through the problem by three-line and four-line 

problem. Then the teacher explained the relationship between the curve and the equation, 

and then let the students get the trajectory equation of the problem 1, 5 and 6. The ellipse 

is obtained from question 6. Then the teacher posed the four-line problem and introduced 

the conic sections. 

The second lesson introduced the ‘ellipse’ from our life. Let the student recall that by 

using a plane to cut the cone and get the oval in the first lesson, and use of Dandelin’s 

spheres to get the property that ‘the locus of points such that the sum of the distances to 

two fixed points (the foci) is constant in the ellipse’, could also solve problem 2 of the first 

lesson. After that define the ellipse by this property.  

Then the teacher let the students explore the derivation methods of equation of an 

ellipse. Students are given a variety of methods and teacher complement the method in the 

history. After that, students do some classroom exercises, and then the teacher explains 

some extension to the ellipse. Finally, let's students take a look at what problem of 

trajectory had been solved after the two lessons. Problem 3 and 4 would not be solved 

until the following lesson. 

After those two lessons, the teachers collect feedback from students and do some 

preliminary analysis. Then the research team and teachers’ team conducted the evaluation 

activity. 

4.4 Discussing and Implementing (Second round) 

The evaluation activity found that (1) It is difficult for students to understand the three 
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classical geometric problems and it takes too long to introduce them. (2) The order of the 

trajectory problem does not conform to the cognitive order of the students. (3) Too many 

derivation methods are unacceptable to students. (4) Students need more explanation to 

the extension. So the teachers’ team modified their teaching design as following. 

Curve and equation: (1) Shorten the introduction of three classic geometry problems in 

ancient Greek. (2) Adjust the order of six trajectory problems in ancient Greek. Ellipse 

and its standard equation: (1) Cut down some derivation methods of equation of ellipse, 

and increase the time for students to explore. (2) Reduced the number of classroom 

exercises and add explanation to the extension. 

Then those two HPM lesson become two exemplary lessons and implemented. 

Research team, teachers’ team and teachers in this region observe these two lessons 

together. The following content will be focused on presenting the differences between the 

two rounds of implementation.  

The first lesson is introduced from three classic geometry problems in ancient Greek 

and began to study the six trajectory problems in ancient Greek: 

(1) The ratio of distance to two straight lines (parallel or intersecting) is equal to 

constant(two-line problem) 

(2) The distance to a fixed-point is equal to a constant 

(3) The ratio of the distance to the two fixed-point is equal to the constant 

(4) Given three straight lines, the ratio of distance product from the moving point to 

the two lines the square of the distance to third straight lines equal to the 

constant(three-line problem) 

(5) The sum of the distance to the two fixed-point is equal to the constant 

(6) The absolute value of the difference between the two fixed-point is equal to the 

constant 

The teacher said the "four line" trajectory problem cannot be completely solved by 

geometry method and introduced the "analytic method". 

Teacher explained the relationship between the curve and the equation. And then let the 

students get the trajectory equation of the problem1, 2 and 3. The ellipse is obtained from 

question 4. Then the teacher posed the four-line problem and introduced the conic 

sections. 

The second lesson introduce the ‘ellipse’ from our life and use Dandelin spheres to get 

the property, it is also solve the problem 5 in the first lesson, then define the ellipse by this 

property. 

Then the teacher let the students explore the derivation methods of the equation of an 

ellipse. The students were given a variety of methods and the teacher focused on two 

methods in history. The students did some classroom exercises, and then the teacher 

explained some extension. Finally, it is found that problem 6 remained unsolved and that 

it would be solved in the following lesson. 

After those two lessons, teachers collected feedback of students and do some 

preliminary analysis. Then the research team, the teachers’ team and teachers in this 

region conducted the activity of the lesson’s evaluation. 
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4.5 Analyzing and Writing 

The last step of HPMLS is to analyze students' feedback and write the paper of this HPM 

lesson. Following present some preliminary result of student’s feedback. 

About the question of ‘What kind of teaching method do you prefer? Teaching methods 

integrating the history of mathematics, or traditional ways? Why?’. The result is that there 

were 33 students (40 in total) who liked to integrate the history of mathematics, 

accounting for 82, 5%, and 7 students who liked traditional ways of teaching, accounting 

for 17.5%. There are several reasons in favor of integrating history of mathematics: (1) 

Classroom is more interesting, not boring (25%). (2) It is easier to understand the 

mathematical content (15%). (3) Understand the development of the content (12.5%). (4) 

Acquired much extracurricular knowledge and enhanced interest in research questions 

(12.5%). (5) The classroom is vivid and impressive (12.5%). (6) A study spirit that can 

learn from the ancient people (5%). 

About the question ‘Please explain why we need to establish a coordinate system and 

use algebraic methods to find out the equation’. In the pretest stage, the results are (1) 

Because of convenience (70.3%); (2) easy to find the law (10.8%); (3) do not know 

(13.5%). In the post test stage the results are: (1) Because of convenience (62.5%); (2) it is 

difficult to solve some complicated problems by using a purely geometric method (20%); 

(3) do not know (10%).  

About the question of ‘Please tell me why the curve like a circle and an ellipse is called 

a conic section’. In the pretest, the result are (1) do not know (83.8%); (2) it is because the 

mathematicians took the name in the first place (10.8%). In the post test the result are: (1) 

Because it is a curve obtained by the plane when it cuts a cone (82.5%); (2) do not know 

(10%). 

After students' feedback, the teachers reflect on teaching and write articles. 

5 Findings and discussion 

After the analysis of those cases, we can modify the concept framework and get the 

question of what the structure and characteristics of PLC and how Chinese Lesson Study 

that integrates HM into ME work in the context of PCL. 

5.1 The structure and character of HPMLC 

From the above case, we can see that the whole process was done by two teams, HPM 

research team and School teachers’ team, and each team has its own expertise. There was 

a leader in each team; the leader in school teachers’ team is responsible for selecting a 

topic and planning the lessons as a whole. The research team is mainly responsible for 

theoretical guidance and providing historical materials, while the school teacher team is 

mainly responsible for teaching design and teaching practice. They became related to each 

other via an HPM seminar. This seminar included the discussion in the stage of teaching 

design and the lesson’s evaluation after the implementation of the lessons. 

From the above case, we can see HPMLC have the common characteristics of the PLC, 
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they are Shared and Supportive Leadership, Shared Values and Vision, Collective 

Learning and Application, Shared personal practice and Supportive Condition, but there 

are also some special points. The revised model is shown as follows (see Table 5.1). From 

the perspective of Shared and Supportive Leadership, we can see that it nurtured 

leadership in the school teacher team and all teachers in the team shared responsibility. On 

the point of Shared Values and Vision, we can see that teachers have common values and 

norms, focus on student learning and shared vision of HPM guides teacher’s teaching and 

learning. About the collective learning and application, school teachers work 

collaboratively to plan the HPM lesson and apply the new knowledge in the teaching 

practice. In relation to the shared personal practice, we can say that the teacher will 

modify his or her teaching based on the opinions which are shared by others during the 

lesson’s evaluation stage. In relation to the Supportive Condition, we can say that the 

relation between teachers is very close and the school provides a lot of support.  

Table 5.1:  Characteristics of HPMLC 

Characteristics connotation 

Shared and Supportive 

Leadership 

● Nurturing leadership in the school team 

● Shared power, authority and responsibility 

Shared Values and Vision ● Common values and norms 

● Focus on student learning 

● Shared vision of HPM guides teaching and learning 

Collective Learning and 

Application 

● Working collaboratively to plan the HPM lesson 

● Application the new knowledge in the teaching 

practice 

Shared personal practice ● Peer observation in HPM lesson 

● Sharing opinions in the lesson evaluating 

● Feedback to modify lesson plan 

Supportive Condition ● Relationships 

● Structure 

Compared with the previous characteristics, these characteristics have more HPM 

features. 

5.2 The current model of HPMLS 

From the above case, the current model of HPMLS in the context of HPMCL needs some 

modifications. The revised model is shown in figure 5.1. 

The first stage is “Selecting a topic & Preparing”. In this stage teachers and researchers 

need to determine a topic and select historical materials about this topic, then teachers 

need to complement the Preliminary teaching design by use the historical materials.  

The second stage is “Discussing & Designing”. In this stage, teachers will display 

teaching design to researchers and discuss their design with each other. Based on the 

discussion, the teachers will modify their preliminary teaching design. 

The third stage is “Implementing & Evaluating”. In this stage teachers will implement 

classroom teaching. After the implementation, the teachers will get students’ feedback. 

Then the teachers’ team and the researcher team will evaluate the lesson together. Based 
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on the lesson evaluation, the teachers modify their teaching design further. This stage is 

repeated; usually two to three times, until the teachers feel satisfied.  

The final stage is “Analyzing & Writing”. In this stage, the teachers analyze all data 

collected after the implementation. Based on these data, the teacher will reflect by 

themselves and publish a paper on the HPM lessons. 

 

Figure 5.1: The running model of HPMLS 

Compared with the previous model, the teaching design has advanced to the first stage. 

In the second stage, the display teaching design has been added, and in the third stage the 

cycle has been carried out, while it emphasizes the reflection of teachers in the fourth 

stage. 

6 Conclusion 

Integrating HM into ME from the perspective of teaching research system has been less 

researched. This research proposes a framework for integrating HM into ME in a teaching 

system. In view of the PLC, we present the HPMLC, based on the Chinese LS, and we 

propose the HPMLS. We portrayed how the HPMLS work in the context of HPMLC. We 

cannot say that this is the only framework to describe the teaching research system and it 

still requires further empirical studies to confirm its educational value. 

The role of history of mathematics in general mathematics education research is still 

limited today. A possible reason for this may be that mathematics education researchers in 

the past decades had been striving towards a more theoretically founded discipline 

(Mosvold, Jakobsen and Jankvist, 2014). In this theoretical article, we aimed to theorizing 

the teaching research system of integrating HM into ME by the theory of PLC and LS. On 

the one hand, it enriches the related theories of HPM, like triangular pyramid IHT model 

and design-based IHT procedure (Wang et al., 2018). On the other hand, it also enriches 

the theories of community in mathematics education, and I hope more mathematics 

education researchers will pay attention to the study of HPM. 
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ABSTRACT 

The research on how to integrate History of Mathematics (HM) in Mathematics Education 

(ME) can guide the teaching practice directly, promoting the better use of HM in ME. 

Many scholars have done some researches on how to use HM in ME (e.g. Tzanakis et al, 

2000; Jankvist, 2009). The previous discussions about how to use HM in ME can be 

divided into the following four dimensions; basically: The type of history in use 

(anecdotes, historical issues, etc.); the ways that HM can be used in ME (the illumination 

approaches, the history-based approaches, etc.); different sizes and scopes that HM can be 

used in ME (1 class period,10–20 class periods, etc.); the ways students work with  history 

(worksheets, student-projects, etc.). The reason why the HM should be integrated in ME in 

China is that the HM has 6 values – the harmony of knowledge, the beauty of ideas or 

methods, the pleasure of inquiries, the improvement of capabilities, the charm of culture 

and the availability of moral education, which can help to achieve the goal of teaching. 

Because there are a lot of characteristics in Chinese mathematics classroom, such as: the 

teaching rhythm is fast, the teaching structure is clear, etc., so the ways that the HM can be 

used in mathematics classroom are somewhat different from other countries, and it is very 

difficult to analyze the ways of using HM in Chinese mathematics classroom with the 

existing classification framework. Based on this, this study aims to construct a 

classification framework for the ways that HM can be used in Chinese mathematics 

classroom. 

Combining the existing researches about how to use HM in ME and the overall 

situation of the application of the HM in Chinese mathematics classroom, this research 

puts forward a new categorization model about the ways the HM can be used in Chinese 

mathematics classroom. Focusing on one material in HM, there are three ways of applying 

HM: complementation, replication and accommodation. Focusing on the role of HM in the 

teaching process, there are two ways of applying HM: creation and reconstruction. 

Afterwards, 20 well-chosen HPM lessons (the lessons featuring HM) are coded with the 

new categorization model. By analyzing the coding results, some subcategories of each 

method in the classification framework are obtained. In order to illustrate every 

subcategory, an example is given for every subcategory, which comes from the 20 well-

chosen HPM lessons; the value of each subcategory is given too. Finally, we elaborate of 

the connotation of the 5 approaches in the new categorization model. 
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ABSTRACT 

The transition from school to university is connected to a variety of some problems for many students. This 

can be attributed to different beliefs about mathematics in school and university. While mathematics 

teaching at school allows knowledge to be developed on the basis of real objects and empirical working 

methods, mathematics at universities is characterized by a rigorous axiomatic structure. The successive 

detachment of the connection to real objects has also occurred in the history of mathematics. From this 

situation, conclusions can be derived for the teaching of mathematics at school and university. The transition 

from school to university seems to be facilitated by the use of digital media in processes of concept 

development and the systematic thematisation of different beliefs about mathematics.  

1  A challenge in mathematics education 

When mathematics teachers as students move from school to university and then again 

when moving from university training back to school to teach mathematics they are often 

confronted with various problems. Felix Klein describes this situation as “double 

discontinuity”: 

“The young university student found himself, at the outset, confronted with 

problems, which did not suggest, in any particular, the things with which he had 

been concerned at school. Naturally he forgot these things quickly and thoroughly. 

When, after finishing his course of study, he became a teacher, he suddenly found 

himself expected to teach the traditional elementary mathematics in the old pedantic 

way; and, since he was scarcely able, unaided, to discern any connection between 

this task and his university mathematics, he soon fell in with the time honoured way 

of teaching, and his university studies remained only a more or less pleasant 

memory which had no influence upon his teaching.” (Klein, 1908) 

Witzke, Struve, Clark & Stoffels (2016) describe a seminar at university level that 

focuses on the first discontinuity, the transition from school to university. In an empirical 

study, they put the following question to the participants: What is the biggest difference or 

similarity between school and university mathematics? 

One male participant answered: “The fundamental difference develops as mathematics 

in school is taught empirical-perceptual (ger.: anschaulich), whereas at university there is 

a rigid modern-axiomatic structure characterizing mathematics. In general, there are more 

differences than similarities, caused by differing aims”. 

Many similar statements from other participants could be found. Thus, the problem of 

the transition from retrospective student viewpoint is closely connected with the 

“differentness” of mathematics. These differences concern the aspects clearness, level of 

abstraction, evidence, formal rigor and axiomatic structure. The result is a clear distinction 

between school and higher education mathematics regarding its character. 
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2  Beliefs about mathematics – A theoretical framework 

Looking at the challenges presented in the previous section, one question is particularly 

obvious: 

How do we develop mathematical knowledge (further)? 

The answer to this question is crucially related to our conceptions of mathematics. The 

notion about the beliefs of mathematics provides a good basis for this description. 

According to Schoenfeld, the way someone works on a mathematical problem depends 

strongly on his beliefs about mathematics: 

“One’s beliefs about mathematics [...] determine how one chooses to approach a 

problem, which techniques will be used or avoided, how long and how hard one will 

work on it, and so on. The belief system establishes the context within which we 

operate […]” (Schoenfeld, 1985, 2011) 

Steiner emphasizes the influence of the conception of mathematics on concepts for 

teaching and learning: 

“Concepts for learning and teaching of mathematics [...] often implicitly are based 

on certain aspects of a philosophy of mathematics” (Steiner, 1987) 

Green describes teaching as the modification of the belief system of learners: 

“The activity of teaching, at least in the sense of instructing, might therefore be 

defined as the effort to reconstitute the structure of our belief systems so that the 

number of core beliefs and belief clusters are minimized, the number of evidential 

beliefs are maximized, and the quasi-logical order of our beliefs is made to 

correspond as closely as possible to their objective logical order.”(Green, 1971) 

How to build up mathematical knowledge, how to handle it and whether one is successful 

seems to depend essentially on the individual conceptions of mathematics (mathematical 

world view, attitudes, beliefs). The term beliefs of mathematics is frequently used in 

literature: 

“Psychologically held understandings, premises, or propositions about the world 

that are thought to be true.” (Philipp, 2007) 

“Belief System: One’s ‘mathematical world view‘, the set of (not necessarily 

conscious) determinants of an individual’s behavior about self, about the 

environment, about the topic, about mathematics.” (Schoenfeld, 1985) 

“individual’s beliefs [...] as subjective, experienced-based often implicit knowledge 

and emotions on some matter or state of the art” (Pehkonen & Pietilä, 2003) 

The different explanations show the diversity of the term belief (cf. Rezat, 2009). 

Mathematics education is characterized by various beliefs about mathematics (cf. 

Grigutsch, Raatz & Törner, 1998, Schoenfeld, 2011, Witzke & Spies, 2016): 

 Scheme-Aspect: Mathematics is a system consisting of rules, formulas and 

algorithms. 

 Formalism-Aspect: Mathematics is characterized by logic, formal rigidity and 

precise technical terminology. It is the formal-abstract science. 

 Process-Aspect: Mathematics is seen as a creative and constructive process. 
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 Application-Aspect: Mathematics is a tool for applications in the natural sciences 

and everyday life. 

 Empirism-aspect: Mathematics describes a universe of discourse in reality. It is a 

natural science. 

A formal-abstract view on mathematics is beside others represented at the university 

level. According to the frequently used textbook for calculus courses at university Heuser 

(2009), the central properties of mathematics are the brightness and sharpness of the concept 

formation, the pedantic care in dealing with definitions, the rigor of proofs and the abstract 

nature of mathematical objects that you cannot see, hear, taste or feel. 

At least since Hilbert it is possible to see mathematics as an archetype of formal science 

with an axiomatic structure that is detached from reality. He developed mathematics as a 

science of uninterpreted abstract systems (focus on structures) with an absolute notion of 

certainty (internal consitency) (e.g. Hilbert, 1899). Thus, “the umbilical cord between reality 

and geometry has been cut” (Freudenthal, 1961). Geometry has become pure mathematics and 

the question of whether and how it can be applied to reality is answered just as in any other 

branch of mathematics.  

The axioms are no longer self-evident truths; in fact, it does not even make sense to ask 

for their truth. This does not mean that there are no real applications or interpretations of 

the theories. 

Figure 2.1: Empirical approaches to mathematical concepts and theorems in 

schoolbooks 
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Figure 2.2: Formal-abstract representations in lecture notes for analysis at the university level 

 

In contrast, this clear distinction between reality and mathematics does not take place 

for school mathematics. Hefendehl-Hebeker (2016) states in this context: 

“The concepts and contents of school mathematics have their phenomenological 

sources predominantly in our surrounding reality. […] All in all the ontological 

bounding to reality is in place because of the educational and psychological 

purposes and aims of school. School mathematics barely surpasses the conceptual 

niveau and state of knowledge of the 19th century […]. Mathematics as a scientific 

discipline has today become a network of highly specialized abstract sub-areas.” 

This considerations lead to the following research thesis: 

Research thesis I: „Mathematical knowledge of pupils is generated in a constructive 

process - through interaction and the work with the offered learning material.” (cf. 

Bauersfeld, 1983) 

At school, mathematics appears as an empirical science of concrete objects, it is not an 

abstract science of uninterpreted systems of terms as in modern mathematics. The 

empirical character of school mathematics (argumentation, models, experiments, term, 

etc.) is on epistemic grounds comparable to the character of natural sciences. 

Argumentations are based on real objects. This results in the following thesis: 

Research thesis II: If mathematics is consequently taught with the support of visual 

representations and illustrative material, students acquire an empirical belief system 

about mathematics. It is a theory about these representations – a quasi - ‘natural science’. 

This kind of mathematics describes a universe of discourse in physical reality. The 

notion of truth relies in empirical facts gained through observation and experiments. 

Nevertheless, empirical mathematics needs logical reasoning to avoid a pure empiricism 

and pure phenomenology. The empirical characteristic is a fundamental difference to the 
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above described university mathematics. The question arises, if this ‘non-abstract’ point of 

view is a reasonable one for the developing of mathematical knowledge. 

3  Epistemological beliefs about mathematics in the past 

A first possible answer to the above mentioned question is provided by an insight into 

beliefs in the history of mathematics. Substantial pieces of historical mathematics can be 

reconstructed as empirical mathematics (e.g. Witzke, 2009) with the help of structuralism 

(cf. Balzer, Moulines & Sneed, 1987).  

  

Figure 3.2: The development of calculus based on curves as empirical objects, 

constructed and drawn on paper 

Figure 3.1: Development of geometry in the history of mathematics 
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The development of modern views of mathematics can be illustrated particularly well 

using the example of geometry (cf. Witzke, Struve, Clark & Stoffels, 2016). The first 

axiomatic structure of geometry can be found in Euclid's elements in 300 B.C. The 

justification of the axioms occured by evidence (cf. Garbe, 2001). Thus they had a clear 

relation to the objects of the real world, e.g. a line drawn on a sheet. The further 

development of the Euclidean geometry took place in the 18th and 19th centuries. The 

famous mathematician Moritz Pasch wrote in 1882: “The geometric terms [...] serve to 

describe the world around us [...]. Geometry is nothing more than a part of the natural 

sciences”. One goal of geometry is the description of the physical world, although there is 

an increasing axiomatization. The relationship of geometry to the real world changed 

dramatically with the development of non-Euclidean geometries in the 19th and 20th 

centuries. These internal consistent theories are based on axioms that are initially 

independent from the surrounding world. However, by striving to find the geometry that 

describes the physical space, there is still a connection to reality. The underlying axiom 

system and the physical world were then disconnected consciously by the development of 

Hilbert’s foundations of geometry in 1899. The axioms no longer need any connection to 

reality. It is a pure inner-mathematical theory. 

The previous explications can be described simplified in a bipolar model of belief 

systems. On the one hand there is the empirical-concrete mathematical belief system. It 

can be found in the history of mathematics as well as in school mathematics and is based 

on didactical (learning theory, e.g. Gopnik et al. , 2007; educational theory, e.g. Winter, 

1969; empirical reasons, e.g. Schoenfeld, 2011, Struve, 1990) and epistemological reasons 

(parallels with natural science, e.g. Einstein, 1921; historical reconstructions, Witzke, 

2009; structuralistic reconstructions, Balzer, Moulines & Sneed, 1987). On the other hand, 

there is a formal-abstract mathematical belief system that can be found in mathematics 

courses at universities and in the history of mathematics since Hilbert. 

4  Epistemological beliefs: Back to the future 

The questions remain what we can learn from these perspectives and how history can 

inform modern mathematical education. One possible answer can be provided by looking 

at the use of digital media in mathematics classroom. The use of digital media is usually 

connected with an emphasis on qualitative and empirical working methods. The potential 

of digital media can be illustrated using the example of calculus. Textbooks at school 

contain a large number of graphical representations. Often, they form the basis for 

argumentations; questions of existence such as continuity or differentiability become less 

relevant (cf. Witzke, 2014). Graphic calculators and function graphing software enable the 

dynamic investigation of curves. In this way, concepts can be developed qualitatively in a 

first step, so that the students can develop sustainable ideas (e.g. function microscope by 

Elschenbroich, 2015). On epistemological grounds, these objects represented in an iconic 

way constitute parallels to the construction of curves at the time of Leibniz. 

Another example results from graphical differentiation and integration. This means the 

qualitative drawing of the graph of a primitive integral or the derivative by graphical 

determination of the integral or the derivative at single points which is somewhat 

problematic because of the discreteness. The 3D printing technology offers the possibility 

to develop a so-called integraph (cf. Witzke & Dilling, 2018). This is a device that 

continuously draws the graph of a primitive integral of a graphically given function in a 
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mechanical way. It enables the students to justify the first part of the fundamental theorem 

of calculus visually. First concepts of an integraph reach back to Leibniz (1693). 

  

Figure 4.1: Curves in the history of mathematics, in the mathematics textbook and 

visualized with digital media 

Figure 4.2: Graphical determination of the derivative or primitive integral in the history of 

mathematics, in the mathematics textbook and by the use of an integraph 
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The examples show that working with digital media promotes an empirical view of 

mathematics that was established in the history as well. However, these empirical 

approaches are not to be equated with pure empiricism, since concepts are consciously 

emphasized and systematically developed. The aim of the authors is not the equalization 

of school and university mathematics. Instead, the differences and the resulting obstacles 

for the transition from school to university should be specifically addressed. This is 

connected with the hope that in this way more students bridge the gap and develop an 

adequate perspective regarding the nature of mathematics in different contexts. 

Acknowledgement: I am particularly grateful to Frederik Dilling for his comments on 

the manuscript and the support in the development of the paper. 
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ABSTRACT 

In this paper we approach an analysis of the partnership between history, epistemology and teaching in ‘real 

maths classes’. We will do so by starting our consideration as much as possible under the ‘real maths’ 

teachers’ perspective. The initial focus is on comparing and contrasting the situations in different countries. 

In the follow-up, however, we investigate a bit further, entering deeper into specific situations and 

suggesting good practices. To conclude, more theoretical features will be briefly discussed, as well. 

1 Introduction by the panel coordinator 

A typical danger in mathematics education research, and in my opinion the main reason 

why it has less effectiveness than it could have, is the general lack of open discussions 

taking into account teachers’ feelings as well as “orthodox statistics” or academic 

literature on the subject. This field could benefit from a more humanistic and realistic 

setting if teachers with 30 or 40 years of classroom experience were respected when 

expressing their conceptions as much as the academic researchers usually are. I was 

fortunate enough to be able to learn this way of working by Nicolas Rouche at the 

Université Catholique de Louvain in Louvain-la-Neuve (BE) in the late 1980s. For this 

reason, I would like to dedicate this work to him. Moreover, I feel particularly thankful to 

Évelyne Barbin and all the French ESUs’ participants for having let their inter-IREM 

conferences become European Universities in which the original spirit of Montpellier 
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1993 is still alive 25 years later. 

 I am particularly glad to also express my gratitude to the organizers who invited me. I 

am essentially a “general maths teacher” and therefore I could have been considered not 

entitled to coordinate a Plenary Panel dealing with general questions as the presence and 

the integration of History and Epistemology of Mathematics in the curricula. Furthermore, 

I have had the opportunity to invite at the table with me two other “general maths 

teachers”: Michel and Nathalie. The presence of Kathleen has contributed to balance the 

point of view that we share. 

The main aim of this panel has been to give a voice to the teachers, trying to discover in 

which measure they are keen on letting history and epistemology of mathematics enter 

their classrooms, whether they do it, and why. Then we concentrated on comparing and 

contrasting the situations in different countries in order to set the right directions for our 

research. 

We moved from the analysis of a questionnaire we implemented in our particular 

countries and regions. We originally took into account the Flanders in Belgium and the 

Netherlands, France, Italy, and Florida and Massachusetts in the USA. Ultimately, we also 

had representation from China, as well. I would like to thank very much indeed Yue 

Zengcheng, PhD, from East China Normal University in Shanghai, who wrote me kindly 

proposing himself as a collaborator.  

Eventually, following to the suggestion given by Costas Tzanakis, we decided not to 

discuss in detail the results of the questionnaires in these proceedings. We would rather 

prefer to emphasize the possible reasons which led to such results, and discuss some steps 

towards ‘solutions’ considering the different teaching and teachers’ training situations, as 

well as the very recent changes in the programs or guidelines of some of the nations 

involved.  

To conclude, I would like to express my gratitude to my dear friends Daniele Gouthier 

and Colette De Coster. Daniele is a very eclectic freelance mathematician, who teaches at 

the Master of Science in Communication at the Scuola Superiore di Studi Avanzati 

(SISSA) in Trieste. He helped me both with the questionnaires and with the review of this 

paper. Colette works as professor at Université de Valencienne. She recently came to 

Trieste as visiting professor at the local University. In such occasion I met her and while 

having a pleasant meal we informally discussed about the training courses for French 

young teachers held by her university. 

2 The starting point of the panel: the questionnaire 

As has already been stated, this panel report does not focus on the work of researchers in 

history of mathematics or in educational science. The main aim is to instead give a voice 

to the teachers, focussing on those who work with adolescent pupils. Therefore, we will 

discuss about the difficulties that teachers meet, the possible reasons of such difficulties 

and consequently propose some realistic steps which could help them to introduce history 

and epistemology in their lessons. 

Our panel’s starting point was a questionnaire we adapted for the regions involved. The 

questionnaire can be found in the conference site, where it was published to allow ESU8’s 

prospective participants to express their opinion as well (https://esu8.edc.uoc.gr/esu-8-

main-themes-plenary-sessions/).  

The questions collected information about the teachers’ background in the history of 
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mathematics, their epistemological awareness, the introduction of history of maths in their 

class practice, how and why they do it or why they do not. 

Kathleen, with the assistance of two colleagues, was able to distribute the questionnaire 

to two different teacher populations professional networks. In total, 149 mathematics 

teachers, predominantly from Florida and Massachusetts, completed the questionnaire. 

Nathalie analysed the situation in France. She first proposed the survey to all the 

teachers of Poitou-Charentes, the region where she teaches. She received approximately 

230 responses. To get more feedback, she asked for help from colleagues in other regions. 

In the end, the questionnaire was given to teachers both in Paris and in Franche-Comté. In 

those two regions, she only managed to contact in-service training teachers; ultimately, the 

results of the survey were similar and she received 530 responses altogether. 

As far as the Michel’s work is concerned, he took into account the Flanders (the 

Flemish part of Belgium) and the Netherlands (with the collaboration of Jeanine Daems 

and Desiree van den Bogaart). In Flanders, the questionnaire was distributed on the 

website of Uitwiskeling (a journal for mathematics teachers that he has edited since 1984). 

In the Netherlands, the questionnaire was posted on the Facebook group of Dutch 

mathematics teachers. In total, 127 teachers responded.  

Caterina submitted the questionnaire to 1500 teachers belonging to the national 

association “Mathesis”, randomly spread around Italy with the help of Professor Salvatore 

Damantino, chair of the section of Udine. The response rate was very poor: only 3%. She 

underlines that it is very difficult to talk about “the Italian situation”. Italy is a quite recent 

country that was dominated by cultures really distant from one another. It is neither as 

small as the Belgian Flanders or the Netherlands nor it has the shape of a hexagon like 

France. Even though it is one state, federal issues have been influencing the political 

choices and the personal feelings since its unification in 1861 and undoubtedly in a 

stronger way than before during the last 25 years. These facts are strongly related to quite 

a large number of different situations moving north, south and east or west within Italy. A 

sort of “average” is not really meaningful. However, even though Italy is neither as 

“systematic” as France, nor as clearly “split in parts” like Belgium or the USA, there are 

some features that are quite uniformly widespread and are worth being discussed. 

In China, the questionnaire was implemented by Zengdeng through the WeChat app, a 

very popular social network in China (more than one billion people regularly use it). 

Furthermore, he also contacted the teachers he is linked to. Altogether he received 64 

responses. 

3 Evidence of the inquiry 

We start our reflection from the general results from the questionnaire responses. 

However, since the sample of teachers interviewed was certainly not well representative of 

the entire population, and therefore our survey was certainly biased, we do not present the 

inquiry evidence as a statistic. We prefer to enlighten some interesting features that are 

nonetheless worth being extrapolated, because quite a strong core of similar answers 

around the occidental parts of the world involved. In China, due to a quite different 

cultural background, some differences arose. 

In short, the common facts and feelings with very few exceptions are: 

– Few teachers have followed a course in history of mathematics, either in their 

graduate program or in their initial training courses or master’s; China was an 
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exception, where a course in history of mathematics is usually present and specially 

oriented to the introduction of the history in classrooms; 

– Very few teachers are able to convey an epistemological position and teachers 

generally do not know what epistemology is; 

– The majority is keen on making use of history of mathematics in their daily 

teaching; 

– There are general opinions that history will: 

o render mathematics more human and interesting,  

o underline that mathematics are an historically contextualized cultural 

product,  

o allow a deeper acquisition of the conveyed notions,  

o make both the learning and the teaching more fun; 

– When teachers integrate history in their teaching it is most often in an anecdotal 

way (to present a new topic, or a mathematician), more rarely solving old problems 

and almost never working on original sources; 

– The rather superficial presence of history is allocated to a lack of knowledge, of 

training, of resources or of time. 

4 General observations  

Even though we have examined different cultural contexts, there are some overall teaching 

features that seem meaningful to us in order to understand the homogeneous situation 

which generally emerged. 

First of all, mathematics is not always taught by mathematicians. The reasons can be 

different according to the geographical region involved, however this is a general fact that 

has essentially to do with the worldwide shortage of mathematics teachers.  

On the second hand, the presence of history of mathematics in textbooks is usually 

characterized by a sort of juxtaposition. History is not integrated and does rarely permeate 

the way of presenting mathematical evidences. It is often used to share anecdotes or to 

introduce a mathematician, and whenever the presence is more substantial, it is either 

exiled in single problems or stored in very small “boxes”. 

Sources directly coming from research are usually perceived as too difficult to be 

adapted to “real classes” by “real teachers”. This is also likely due to the very trendy 

standardization to which teaching has increasingly undergone. As a consequence, a 

dangerous need is perceived: the necessity of what during the panel Michel defined with a 

Flemish expression “gesneden brood” that can be translated as “bread already cut in 

slices”. 

However, in China the link between research on history of mathematics in an 

educational perspective and teaching of mathematics appears to be quite stronger. 

In summary, the importance of history of mathematics was not strongly emphasized, 

nor it was included in the national final exam of high schools in the countries in which a 

final exam exists; even though China seems to be an exception again. However, it must be 

said that especially in France, but also in a weaker way in Italy, the situation very recently 

has changed. New ministerial indications have been added, as we will see in the next 

section. 

In China, although they do not emphasize explicitly the importance of history of 

mathematics, they strongly enhance mathematical culture, and history of mathematics is 
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generally recognized as a rather important part of this.  

5 Context-specific remarks  

5.1 Specific features of French context 

As far as the initial training in concerned, it has to be said that teachers in “college” 

(pupils aged 11 to 15 years) and “lycée” (pupils aged 15 to 18 years) are normally 

recruited through a competitive examination. In the last 10 years, in addition to the 

competition, teachers are required to have master’s degree, as well. Very often, but not 

always, they enrol in a master’s degree related to teaching in their subject and they are 

allowed to participate to the competition during the first year of their master’s studies. The 

competitive examination is national and even if each university organizes the master’s 

program autonomously, there exists official national guidelines to define the training.  

The last reform of university in France introduced on average more history of 

mathematics in the training of the future teachers, but there can be many differences from 

one university to another. On the contrary, teachers recruited more than 10 years ago had 

had in general very little of history of mathematics in their courses, and some of them had 

no history at all.  

Additionally, in order to face the shortage of mathematics teachers, numerous staff 

members are recruited without competitive examination to teach as temporary instructors 

just for 3-4 months, one year, or even more (depending on their status and the needs of the 

corresponding institution). In this case, teachers very rarely have had training in history of 

mathematics, and, if fortunate to do so, they have the possibility to undergo a training 

specially conceived for them; History of Mathematics is certainly not a priority. 

What is more, there are also people who have a very different cultural background and 

“convert” to becoming mathematics teachers by taking from time to time some exams 

specially arranged for them. In this case, they may be interested in history because it 

allows them to understand a content they cannot cope with well enough, otherwise they 

are looking for didactical prompts (“bread already cut in slices”). 

Nowadays, history of mathematics is present either in the first or the second year of the 

master’s degree. When introduced in the first year it brings to prospective teachers a 

minimum of culture in this field: names of mathematicians, their work, the fields of 

mathematics, the specificities and contributions of each period, but it is not very strongly 

linked with the programs and what can be taught to the pupils. However, if the training in 

the history of mathematics takes place in the second year of the master's degree, this is 

when students are interning with classes, and it usually starts from the examination of 

documents (e.g., primary sources) in order to construct teaching material to be tested in 

classrooms. 

While the initial training in history of mathematics seems to have increased in recent 

years, in-service training has certainly decreased. In France it is quite easy to find online 

resources or books, especially edited by the Instituts de Recherche sur L’Enseignement 

des Mathématiques (IREMs), though not exclusively. However, it is not always simple to 

find the time to consult them and even more to understand them sufficiently while 

working independently. It is also not easy to “sort out” reliable from unreliable sources if 

someone does not have a minimal basic knowledge. 

In textbooks, it is common for very little history of mathematics to be found and such 
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content is often limited to an image of a mathematician, his birth and death date, a small 

remark on his work, usually written in few lines and collocated in the page margin. Very 

rarely there are class activities or exercises entirely built on a historical situation.
17

 

Therefore, teachers need to decide to undergo some voluntary training if they want to 

use original sources and they have to do additional work in case they want to become able 

to create activities based on history of mathematics. 

The French curriculum does not require to teach precise aspects of history of 

mathematics but it does encourage teachers to use history: 

Elements of epistemology and history of mathematics naturally fit into the 

implementation of the curriculum. The knowledge of the name of some famous 

mathematicians, the time when they used to live and their contribution is part of the 

cultural background of any student with scientific training. The presentation of 

historical texts helps to understand the genesis and the development of some 

concepts. (Ministère de l’Education, 2010)  

Recently the Villani and Torossian report (2018) reaffirmed the importance of the 

history and epistemology of mathematics: 

First, epistemology and history of the construction of mathematical notions, which 

bring a real didactic richness, are little taught in initial training. […] By taking 

advantage of history of mathematics, teachers place their teaching in the evolution 

thought. In addition, students are often sensitive to the “mathematics legend”. 

Narrative can play a motivating role here. On the other hand, the epistemological 

lessons that emerge from history as the role of problems, the entanglement of 

concepts and techniques, the need of abstraction, etc., are obviously likely to 

contribute to training, in particular by overcoming short-sighted utilitarianism. 

Apparently, this report has influenced some of the ministry decisions. In January 2019, 

new curricula were published and history of mathematics indeed takes a real important 

new place. The introduction indicates: 

It may be useful to illuminate the course with historical or epistemological 

contextual elements. History can also be seen as a fertile source of problems that 

clarify the meaning of certain concepts. The "History of Mathematics" items identify 

some possibilities in this direction. To support them, the teacher can rely on the 

study of historical documents. (Ministère de l’Education, 2019) 

For each part of the curricula, some examples and indications are given. For example, 

in the part “Numbers and calculus” of the curriculum it is explained: 

The seemingly familiar notion of number is not self-evident. Two examples: the 

crisis caused by the discovery of irrationals by Greek mathematicians, the difference 

between "real numbers" and "calculator numbers". It is also important to highlight 

the gain in efficiency and generality brought by literal calculus, by explaining that a 

large part of mathematics could only develop once this formalism had stabilized 

over the centuries. It is possible to study ancient texts by authors such as 

Diophantus, Euclid, Al-Khwarizmi, Fibonacci, Viète, Fermat, Descartes and 

highlight their algorithmic aspects. (ibid.) 

We still do not know what will be introduced in the textbooks, but hopefully teachers 

will be given more resources and activities to be encouraged to introduce history of 
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mathematics in their classes. 

5.2 Specific features of Flemish context 

The Belgian Flanders have a strong tradition in mathematics education, and still produce 

good results in comparative studies as PISA. However, they are facing problems that 

could influence future issues. The main critical points are the lack of a master’s degree in 

mathematics and future teachers who have to learn everything. 

In Belgium, to teach to pupils aged 15 to 18 years, a university master’s degree is 

required. In the last decades, Belgium has been facing a shortage of mathematics students, 

accompanied by a shortage of mathematics teachers. Therefore, people having a master’s 

in other subjects such as economics, biology, engineering, etc. often teach mathematics. 

Usually they do not feel a deep interest in mathematics and its history, and often they are 

less creative in doing mathematics and teaching it than mathematicians. They are more 

comfortable with ready-to-use materials and, as a consequence, publishers have been 

starting to provide these prompts. These kind of resources include exercises and tests with 

all the solutions, pre-prepared slides for projection on smartboards and other similar 

means. As a consequence, their creativity is not enhanced and tends to be more and more 

reduced. 

Alternatively, in order to teach to pupils aged 12 to 15 years, a professional bachelor’s 

degree is needed. Many teachers start their bachelor courses with a poor background in 

mathematics. Their view of the subject is almost always limited to techniques and 

algorithms. Teacher trainers are consequently called upon to do a big work. They must: 

teach problem solving, spatial insight, reasoning, proving, speaking and writing about 

mathematics, recognizing mathematics in different contexts and something about the 

historical and cultural aspects of the mathematics they are supposed to use while teaching. 

5.3 Specific features of Italian context 

As already mentioned, in Italy mathematics is also not always taught by mathematicians. 

Teachers working in “scuola media inferiore”, where pupils are aged between 11 and 14 

years, can have a master’s in biology, natural sciences, geology, chemistry, physics, and 

many other subjects since they are supposed to teach general sciences too. Professors 

working in “scuola media superiore”, where students are aged between 14 and 19 years, 

on the contrary, need to have a master’s in Mathematics, Physics, Engineering or 

Computer Sciences (and in rare cases, Economics).  

What is more, as far as initial teacher training is concerned, the actual in-service 

teacher population is composed by essentially three different categories of people: 

(i) Those who have been employed via a “concorso ordinario”; 

(ii) Those who have been employed via a “concorso riservato”; and 

(iii) Those who have been employed after having had a university training followed by 

a thesis. 

The teachers employed via a “concorso ordinario” only had to study their subjects and 

the laws that concern the school work; those who took part in a “concorso riservato”, 

generally speaking, also had to attend some didactical courses; the youngest ones who had 

university training were supposed to study pedagogy, didactics and quite rarely, as already 

seen, history and epistemology courses, as well. 

Another important remark to understand the Italian situation is related to the number of 
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hours dedicated to mathematics instruction in schools. In the “Liceo Scientifico opzione 

Scienze Applicate”, the most scientific Italian school, students have only five hours of 

mathematics per week in the first year and only four hours in the following four years. To 

understand the historical reasons of this inadequate instructional time, the paper “Personal 

and Social Conscious and Unconscious Backgrounds in Mathematics Education 

(Vicentini, 1994) could be a useful reading. 

Furthermore, in Italy the curricula are defined on a nationwide basis. However, since 

some years ago, the ministerial document has been named “indicazioni ministeriali”, 

which means ministry’s indications. Therefore, the ministry underlines the importance of 

certain contents, but does not oblige the teacher to deal with all the suggested topics. What 

is more, the “independence” and the “full freedom” of teachers’ choices are underlined. To 

sum up, these indications are rather general. (see MIUR, 2010) Therefore, as a matter of 

fact, in Italy a teacher legally has a large autonomy in choosing what to teach and how to 

teach it. Practically speaking however, not many teachers use this legal freedom and there 

are many reasons for such a choice. To mention just one, in the final State exam the 

mathematics exam paper is the same for all the different types of “liceo scientifico” and it 

is issued from Rome for the entire country. Moreover, teachers do not feel they are really 

entitled to choose what to teach; therefore, they tend to adapt the didactical tradition. It 

must also be said that it is compulsory to “adopt” a textbook and there are only two syllabi 

that reach all together the majority of the students of Italian high schools (students aged 

between 14 and 19 years): one edited by Zanichelli in Bologna, whose authors are 

Massimo Bergamini, Graziella Barozzi and Anna Trifone; and the other edited by Petrini-

De Agostini in Novara, whose author is Leonardo Sasso (recently together with Claudio 

Zanone).  

As a result, what really happens in Italian classes is a melting pot of didactical tradition, 

of what is present in the two textbooks quoted above, what is written in the guidelines 

together with a few ideas coming from research in mathematics education (that can be in 

several cases very good, but do not generally thrill the majority of the teachers). 

Concerning the presence and integration of the history of mathematics in the 

guidelines, the ministry refers to history, but mainly in the general part of the document in 

which all the subjects are mentioned. It is written: “According to the Lisbon’s indicators 

the various subjects should be studied in a systematic, historical and critic way by reading, 

analysing and translating literary, philosophical, scientific texts as well as essays” (MIUR, 

2010), but very few mathematics teachers usually read the general part. Therefore, the 

integration of the history of mathematics in the development of the regular curriculum is 

“de facto” not enhanced since the majority of teachers usually avoid a careful study of the 

entire document; instead, they concentrate on the section concerning their subject. 

On the other hand, we must observe that very recently the ministry, which is about to 

change the structure of the State exam, has released the so called “quadri di riferimento” 

(landmark frameworks). In these frameworks it is clearly stated that “the problems may 

have an abstract or practical character and also contain references to classical texts or 

significant historical moments related to Maths” (MIUR, 2018); therefore, perhaps the 

importance granted to history of mathematics will increase in the near future (Rogers et 

al., 2015). 

A final observation relates to the teaching materials other than textbooks. In Italy we do 

not generally have institutions like IREMs in France. We have the NRD instead, i.e. the 
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Nuclei di Ricerca Didattica, allocated in mathematics departments within some 

universities, in which “general maths teachers” together with mathematicians and 

researchers in mathematics education cooperate to enhance didactics of mathematics and 

to produce didactical materials they then disseminate. However, these institutions are not 

specifically devoted to history or epistemology of mathematics; therefore, good material is 

not easily available. This is especially true of learning how to use original sources, which 

is quite difficult. (Though, there exists the book by Dematté and Furinghetti (2004), whose 

title (in English) is Doing Mathematics with Historical Documents, and an important site 

edited by Giorgio Bagni, which was last updated in 2009, the year of Giorgio’s death 

(http://www.syllogismos.it/).)  

6 Suggestions in view of a more promising future 

In our opinion, a course about history of mathematics is not enough and perhaps also not 

the most important despite being strongly recommended.  

What really enables teachers to let history permeate their teaching is having a quite 

extensive experience of dealing with historical original sources in their pre-service and in-

service training. Using them while working in groups on the design of workshops or for 

lessons in which historical aspects of mathematics are re-discovered; to solve together 

historical problems; or translating, interpreting and contextualizing original sources into a 

portion of the curriculum. Moreover, it is fundamental for the teacher to give such types of 

lessons firstly to their peers in order to test them and afterwards to pupils, with the 

guidance of an expert supervisor. 

What is more, the work based on original sources is surely very interesting and rich, but 

it can be too challenging for prospective teachers or pupils who have to learn the 

mathematical content in parallel with navigating the original source material. Having to 

simultaneously combine various goals, we rarely have the time to focus on the analysis of 

the old texts. Therefore, it can be a good idea to do it from time to time as an optional 

work.  

Alternatively, we might consider ourselves allowed to treat historical contents in an 

anachronistic way, e.g. explaining a historical method in modern language, using 

equations written in our modern way, visualizing with GeoGebra even though the software 

did not exist, etc. Of course, we have to warn students that it is anachronistic and 

emphasize the moments in which the anachronism is particularly strong, clarifying in 

which period the tools we are making use of are born and by which civilization they were 

introduced. In China, this way of working is already a reality: the purpose of integrating 

history of mathematics into teaching is to achieve certain teaching goals and a rather 

consistent relationship between history and teaching has already been built (Wang, Qi, & 

Wang, 2017).  

7 Some “virtuous” examples? 

7.1 How Nathalie usually integrates History of Mathematics in her courses 

Nathalie considers herself a “normal” teacher; she feels she has no lessons to give to 

colleagues on an “ideal” integration of the history of mathematics. She is used to think 

about how to make use of history through discussions with the members of the IREM’s 
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commission on epistemology and history of mathematics, who mainly are researchers.  

However, in her classes, she does as much she can, with the time and the constraints 

she has. Sometimes she takes the time to read a historical text with the pupils or to 

construct short exercises from a historical situation, but often she only presents the context 

and the historical interest of a notion or problem (Chevalarias, 2016; Chevalarias & Minet, 

2012). On certain occasions, she only gives a few elements from history, but she believes 

that knowing a bit of history of mathematics allows her to approach the content she 

teaches in a different way and stimulates her to be more attentive to the difficulties 

students encounter in approaching notions that we know have taken centuries to be built 

up and still are not trivial. 

7.2 What Michel and his colleagues try to do while teaching at the professional 

bachelor and what he does in high school in Brussels 

As far as the professional bachelor is concerned, since students generally enter the training 

with a poor vision of what mathematics is, thinking of mathematics as a magic box to 

solve exercises, he and his colleagues decide to teach alternative methods: sometimes 

theoretical, often through problem-solving, visualizing, etc. Here and there they mention 

the origins and stress the differences between old and new concepts. As an example, they 

underline the distance between Greek notion of number and today’s concept of number; or 

they show the Arabic origin of trigonometry and the role of astronomy in its invention… 

but in the end the context and the historical side notes are easily forgotten. 

In the third and last year of the teacher training, they let students develop teaching 

material by themselves. They are meant to design a workshop lasting one hour about a 

historical mathematical topic, in which they have to zoom out (sketch the cultural context) 

and zoom in (let the participants work on a proof or calculation or a figure…). 

Concerning the teaching in high school instead, an observation, which undoubtedly 

does not apply only to Belgium, is the very diverse, multicultural student population. 

Taking into account the also very diverse cultural background of the branches of 

mathematics taught, it seems very important to let the pupils know which part of 

mathematics comes from ancient Greece, or from the Arabic/Islamic tradition from the 

Middle Ages, and what we have inherited from other centuries and cultures, also in view 

of motivating students with roots in Islamic countries to work hard and consider the 

possibility of going ahead studying mathematics and science at university. 

7.3 How Caterina usually treat history of Maths in her lessons 

While teaching in high school Caterina acts in essentially in two parallel ways. On one 

side, she lets history permeate her courses, on the other side, she makes use of original 

sources. By “general” integration of history she means that the historical perspective 

allows her decide the order of topics, the grade of emphasis which has to be given to a 

notion or a problem, which type of language which is worthwhile to use in situations, and 

the degree of “hybridization” among different branches of mathematics which is 

functional to a deeper understanding of a concept (e.g. Euclidean geometry, Cartesian 

geometry, linear algebra).  

The use of sources is done either during the normal timetable or during special 

extracurricular and volunteer seminars on history and epistemology of mathematics open 

to all the students of the school, according to the situation. Very often she also encourages 
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students to produce something ‘concrete’: a mathematical social play to be presented in a 

festival, an exposition of sources in a gallery, a theatrical show to be acted in some theatre, 

etc. (Vicentini, 2001; 2004; 2007) 

While teaching to future teachers at university, first Caterina introduces a few general 

elements of epistemology and history, presents some points of view on didactics of 

mathematics, and then she imitates what Nicolas Rouche did in his course of  

“Méthodologie de l’enseignement” in Louvain-la-Neuve (BE), in letting future teachers 

work in groups in order to examine an original source and build a series of lessons making 

use of this source (cf. Rouche et al., 2006; 2008).  

Eventually, in order to pass the exam, prospective teachers are supposed to present and 

discuss a complete unit based on historical material. The main phases of this unit must 

include an introduction to the topic, the historical presentation of the source, the guided 

reading of the source, some exercises and problems built from the original text, some 

possible hermeneutics hints for the students, some guided social activities on the source, 

some individual activities on the text, a summary of the important notions acquired, and 

the contextualization of the notions acquired in the school program (Bagni & Vicentini, 

2008). 

8 Closing remarks by the panel coordinator 

I think some observations of a different kind and relevance are worth making before 

closing this quite long (and I hope never boring) paper. Let’s sketch them in a very 

synthetic way.  

1. Unusually, in a references list, one can find more items than those strictly quoted. 

This is due to the will of giving to those potential readers who are teachers the 

possibility to find ready-to-be-used classroom sources possibly in their mother 

tongue. What is more, some additional, theoretically important references are present 

to consent an enrichment of the teachers’ personal theoretical framework. 

2. The situation in China appears to be somewhat different to the occidental one. Maybe 

this fact allows an explanation for why “more than one in four students in Beijing-

Shanghai-Jiangsu-Guangdong (China), Hong Kong (China), Singapore and Chinese 

Taipei are top-performing students in mathematics, meaning that they can handle 

tasks that require the ability to formulate complex situations mathematically, using 

symbolic representations” (PISA 2015-OECD). 

3. The introduction of history in classrooms can help teachers to ‘row against’ what 

Freudenthal called the widespread “anti-didactical inversions” present in the curricula 

all over the world (Barbin, 2015; Freudenthal, 1999). 

4. We focused more on history than on epistemology since according to the inquiry 

results, historical issues are more explicitly felt by teachers compared with 

epistemological ones (D’Amore, 2004). 

5. We neither addressed hermeneutical problems that naturally arise while using history 

in general and original sources in particular (Bagni, 2006; 2009; Rorty, 1979), nor 

provided a reflection under the semiotics’ point of view (Peirce, 1989). Nevertheless, 

I am strongly convinced that a thorough analysis should deal with this perspective. 

6. We only lightly touched upon cultural issues (D’Amore, Radford, & Bagni, 2006) and 

we did not approach interdisciplinarity (Battisttutti & Vicentini, 1994). 

7. A more massive political and institutional presence of teachers and researchers seems 
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suitable in view of amending the curricula. 

To conclude, I kindly thank Alain Bernard from France for his participation in the 

discussion on this topic with an interesting remark. Quoting the paper, “No, I Don’t Use 

History of Mathematics in my Class. Why?” by Man Keung Siu, Alain criticized the term 

“use” in our questionnaire, proposing to substitute it with the verbs “integrate” or 

“permeate”. Obviously, under the point of view of the HPM research, I agree with him. 

Nonetheless, given the results we acquired, I wonder if the majority of teachers 

interviewed would have noticed the difference and answered in a different way.  

While underlining that to improve the situation in real classes we have no need to be 

too demanding; meaning (among other things) that the entire HPM research community 

should not bother too much about a sort of ‘contamination’ of their results. The distance 

between the ‘ideal’ and the ‘real’ class being quite large, the first step has to be a sort of 

‘breaking the ice’, and I would almost say ‘no matter how’. Let’s take as an example the 

widespread use of the English language: the more it is spoken, the less it is orthodox BBC 

English. This seems to be an unavoidable consequence. 

Often in conferences, while talking about the effectiveness of research, a tacit 

assumption is silently implied, i.e. that teachers have to do something more to align with 

researchers’ work. In my opinion the converse is also important: researchers should worry 

a bit more about the large integration of their research, not being too afraid of 

‘contaminations’ going in the sense of ‘adaptability’ to real situations (Artigue, 2014). 

Man Keung Siu himself, in the introduction to the same paper quoted by Alain Bernard, 

suggests: “instead of harbouring a preconceived view one should join the company of 

school teachers and listen with an open mind to what they have to tell about their 

classroom experience” (2006, p. 268) 

I am glad to thank all the audience members during the panel for their open, rich and 

very kind participation. Now I feel comfortable in loudly confessing that I was really 

worried by the embarrassing silence that could have occurred due to my decision to 

manage the situation much more as a reflection’s starting point than as a presentation of 

ready-made results. In my opinion a panel should always be only loosely structured, 

otherwise instead of being one of the rare brainstorming official occasions in a conference, 

it runs the risk of becoming something like a sequence of multiple talks, losing a bit its 

appeal. In Italy we call panels ‘round tables’ and in a round table there are no privileged 

seats. 

 Finally, I offer all participants of ESU with the wish that instructional practice and 

HPM research will be able to move one towards the other in the fastest and most 

harmonious way possible. The meeting of these two essential aspects will hopefully be 

able to strengthen each other, in the same way as the experience of teaching and learning 

of mathematics. 
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ABSTRACT 

This workshop will present a strategy for teaching the derivative concept based on 

Leonhard Euler’s text Foundations of Differential Calculus. The idea of using Euler’s 

approach in a modern classroom is an extension of the primary source project (PSP) The 

Derivatives of the Sines and Cosine Functions (Klyve, 2017), itself developed as part of a 

larger effort to incorporate primary sources into the teaching of standard mathematics 

topics currently supported by major funding from the US National Science Foundation. In 

this particular PSP, Euler’s method of determining differentials for the sine and cosine 

functions is shared with students through guided reading of selected excerpts from an 

English translation of Euler’s original text. However, Euler’s use of differentials is not 

limited to these two functions but is developed and applied to other functions throughout 

his text. In other words, the symbols dy, dx and the mathematical concepts these symbols 

represented had a central role in Euler’s calculations. 

In contrast to Euler’s approach, the topic “differentials” is placed at the end of the 

chapter on derivatives in today’s calculus textbooks. When the symbols dy and dx appear 

in calculations prior to this point in the course, they are used to represent the derivative 

function: f’(x)=dy/dx. This raises a number of perplexing questions for students and 

instructors alike: 

Is [dy/dx] a fraction, or a single indivisible symbol? What is the relationship between 

the dx in dy/dx and the dx in ∫ f(x) dx? Can the du be cancelled in the equation dy/dx = 

(dy/du)(du/dx)? (Tall, 1993, p. 5) 

The conceptual challenges encountered by students as a result of the current approach 

to teaching and learning calculus suggest that placing differentials at the center of the 

subject – as Euler did –  might inform (and reform) our pedagogical approach to teaching 

not just about the derivative, but about calculus more generally. Such a pedagogical 

approach is currently being tested in a university-level first-year calculus course in the 

United States. 

During the workshop, participants will consider several of its student tasks, the primary 

goal of which is to use Euler’s perspective on differentials as the building block for 

student learning of the derivative concept. Following a brief introduction to a study 

conducted in Fall 2017 study, participants will first be asked to work together in small 

groups on these problems as calculus students might (approximately 15 minutes). They 

will then be asked to reflect on their problem-solving experience as “students” from the 

perspective of a teacher, and discuss pedagogical issues and concerns in these same small 

groups (approximately 20 minutes). This will be followed by a whole group discussion 

during which participants will share their reflections and consider issues related to 

221



classroom implementation of the approach (approximately 30 minutes). Finally, I will 

share some findings from the actual classroom implementation of the PSP and other Euler-

based differential tasks, and invite questions and reflections from the workshop 

participants (approximately 25 minutes).  
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ABSTRACT 

In 2015, we began work on the design, development, and implementation of a seminar for 

undergraduate mathematics students who were preparing to teach mathematics. The 

theoretical underpinning of the seminar included our hypothesis that: 

The change from an empirical-object oriented to a formal-abstract belief system of 

mathematics constitutes a crucial obstacle for the transition from school to university. 

And, on epistemological grounds, similar changes regarding different natures of 

mathematics can be described for the history of mathematics. The explicit analysis of 

the historical genesis provides support for students dealing with their individual 

transition processes. 

From this hypothesis we also highlight our notion of the two extremities of the belief 

system continuum. As we previously asserted (Witzke, Struve, Clark, & Stoffels, 2016), 

“an empirical belief system on the one hand describes a set of beliefs in which 

mathematics is understood as an experimental natural science, which includes deductive 

reasoning about empirical objects” (p.71); whereas, a formalistic belief system “describes 

a set of beliefs in which mathematics is understood as a system of un-interpreted concepts 

and their connections in propositional functions …, which can be established using 

axioms, (implicit) definitions, and proofs” (p.72). 

Thus, driven by the stated hypothesis, the aim of the seminar was to promote students’ 

awareness of the changes regarding the nature of mathematics from school to university. 

We used geometry as the topic of the seminar’s mathematical content and the seminar 

activities included engaging students in reading and discussing excerpts, task transcripts, 

textbooks, standards, and historical resources, as well as working on various tasks 

prompted by historical sources and content. The seminar, “Addressing the Transition 

Problem from School to University Mathematics” (which we refer to as the ÜberPro 

Seminar, from the German, Übergangs Problematik, and in English, “transition problem”) 

was first implemented as a three-day intensive seminar in Spring 2015. In relation to 

literature focused on the transition from school to university mathematics contexts, 

Gueudet et al (2017) have described certain boundary objects which may play a significant 

role in helping students to “make this transition.”
1
 In particular, Bosch noted, “in the case 

                                                           
1 To clarify, we are concerned more with working with students to recognize and address said transition, and 

less on “making the transition” in the research on the design and implementation of ÜberPro. 
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of the transition between secondary and tertiary education, an interesting boundary object 

can be the so-called bridging courses organized in different universities to smooth the gap 

between upper-secondary school and university” (ibid p.109). In this way, ÜberPro may 

be considered in this classification of such bridging courses; however, the unique attribute 

of our course is in the potential of utilizing the case of the historical development of 

geometry. We have described the first implementation of ÜberPro elsewhere (Witzke et 

al., 2016), as well as the modifications to extend the initial intensive seminar into a 

semester-long seminar experience (Witzke, Clark, Struve, & Stoffels, 2018). Furthermore, 

we propose that in light of the instructional materials (e.g., textbooks) that students face in 

school mathematics, they are more likely to acquire an empirical belief system. Yet, at 

university, students are likely to obtain a formalistic belief system based upon the 

instructional materials found there. Epistemologically, both of these experiences provide 

parallels to specific historical understandings of mathematics, which we sought to 

highlight as the fundamental components for the design of our “transition problem” 

seminar for students. 

In this presentation, we will describe one aspect of the research conducted during the 

third implementation of ÜberPro in Summer 2017. We sought to address the research 

question: In what ways do ÜberPro Seminar students, confronted with the historical 

development of mathematics, recognize their own transition? Data sources included 

recordings of and field notes from 12 class sessions, seminar materials, and “reflection 

learning diaries” (RLDs) from approximately 15 seminar students. We conjectured that 

the RLDs would provide important evidence about whether the explicit analysis of the 

historical genesis addressed in the seminar supported students in dealing with their 

individual transition processes. In our analysis of the students’ seminar experience – 

especially with a focus on the way in which the seminar served to promote students’ 

awareness of changes in the nature of mathematics – we searched for evidence of the ways 

in which students responded to weekly research diary questions. In particular, we sought 

to (1) determine whether the RLD questions were addressed or not by the student, and (2) 

classify whether there was explicit attention to an emotional, content, or opinion 

orientation within their responses. Since a key outcome of the seminar was to understand 

how students were recognizing and dealing with their own transition process, the first 

author was particularly interested in the emotionality expressed as students were 

confronted by elements of the transition from school to university mathematics as 

presented during the seminar. In the presentation, we will present cases that represent 

students at different points of recognition and awareness of their own transition as 

prompted by an examination of the historical development of geometry. 
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ABSTRACT 

In this paper, we are presenting a work carried out by a research group on the history of mathematics for 

secondary school teaching in France. The goal of this work is to introduce the notion of area from a 

historical perspective, using various media as ancient texts, software and concrete objects to manipulate. We 

show how this original approach increases the student’s motivation and understanding. To do this, we 

present the historical texts worked on in our group and then explain how we have integrated them into our 

teaching at different levels and as transitions between the levels. In particular, we present some “integration 

machines”, whose manipulation aroused our audience surprise, whether students’ as well as teachers’. 

Introduction 

In our IREM1 research group on history of mathematics, we have been working on the 

issue of experiment in mathematics since 2014. After studying the use of the balance in 

mathematics (Equipe GRHEM, 2018), we started to work on the notion of areas 

throughout history2. 

That’s how we came up with the idea of introducing the notion of area and the 

associated calculations, based on historical methods. This approach has a cultural purpose 

since it helps to familiarize our students with elements of the history of mathematics. In 

addition, it seems useful to us for a better understanding of the students for three main 

reasons: 

- They often calculate areas with formulas they have learnt without having 

understood their meaning, as a kind of application of a “magic formula”. The 

historical method allows them to obtain results with the sole force of their reasoning 

and makes more concrete formulas learned by heart in the past. 

- The curriculum in France does not make any link between the different approaches 

to the concept of areas: 11 to 15 year old students
3
 learn it in the context of 

geometry, high school
4
 students use integrations in the context of calculus. The 

history of mathematics makes it possible to connect those different points of view 

as it provides a real transition in the curriculum between successive levels.  

- Initiating students to ancient ideas and techniques can improve their motivation in 

mathematics. For example, the use of machines like planimeters and integrators 

stimulates their curiosity and makes them connect the current methods to the oldest. 

                                                            
1 Since the late 1860s, the Instituts de recherche sur l’enseignement des mathématiques (Research institutes 

on mathematics education) bring together primary, secondary and higher education teachers to conduct 

research on mathematics education and thus participate in teacher training. The authors of this article are 

high school teachers. 
2 The link between these two subjects was the study of Archimedes’ text about his “mechanical method”, 

which will be discussed later. 
3 Secondary school is called “collège” in France. 
4 High school is called “lycée” in France. 
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In this paper, we present a possible progression from the level “Seconde” (first grade in 

high school, with students aged from 15 to 16 years) to the level “Terminale” (last grade 

in high school, with students between 17 and 18 years old). In French curriculum, 

rectilinear areas are studied in primary school and in “collège”. The areas then only 

reappear in “Terminale” with the integral calculation. In between, there is a gap in the 

school programs that we are trying to fill. 

This progression is based on well-known historical supports, extending over three 

distinct periods: 

- In Antiquity: The Elements of Euclid, Measurement of a circle and the “mechanical 

method” of Archimedes. 

- In the 17
th

 century: Geometria Indivisibilus by Cavalieri and the Treatise on the 

Indivisible by Roberval. 

- In the 19th century: integration machines such as planimeters and integrators. 

Our work takes place in several stages: first of all, reading and analysis of texts in a 

research group, then reflection on how to apply it in class, followed by experimentation 

with our students, and finally feedback to fellow teachers via presentations in workshops 

and training courses. 

The pedagogical work we present to you followed this process and was presented at a 

workshop at ESU-8 in Oslo. 

1 Greek quadratures in “Seconde”  

1.1 Areas in Euclid’s way 

1.1.1 Text presentation 

In Euclid’s Elements, a plane figure is a shape and a magnitude (its area). Contrary to 

what seems familiar to us today, however, the areas were not evaluated by numerical units 

of measurement. To measure areas consists in equaling them geometrically by comparison 

or by addition for example. Indeed, common notion 4 states that “things which coincide 

with one another are equal to one another” and common notion 2 indicates: “if equals be 

added to equals, the wholes are equal” (Heath, 1956, p. 224). To square a figure is to 

construct (with ruler and compasses) the side of a square of the same area. 

In his Elements, Euclid states theorems that consist in comparing areas of rectilinear 

figures: 

“Book I – Proposition 35 – Parallelograms which are on the same base and in the same 

parallels are equal to one another. (Heath, 1956, p. 326) […] 

Euclid also gives construction methods for moving from one geometric figure to 

another geometric figure. 

Proposition 44 – To a given straight line to apply, in a given rectilinear angle, a 

parallelogram equal to a given triangle. (Heath, 1956, p. 341)  […] 

Proposition 45 – To construct, in a given rectilinear angle, a parallelogram equal to a 

given rectilinear figure.” (Heath 1956, p. 345)  (fig. 1.1) 
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Figure 1.1: Euclid-Book I-Proposition 45
5
 

Quadratures are therefore fundamental in this geometry since they make it possible to 

reduce any figure to a square, which can then be easily compared to other squares. The last 

proposal in Book II in fact gives the quadrature of any rectilinear figure:  

“Book II – Proposition 14 – To construct a square equal to a given rectilinear figure.” 

(Heath, 1956, p. 409) 

To prove this last proposition, Euclid begins to construct a rectangle equal to the 

rectilinear figure, and then squares this rectangle. 

In that way, one can square any rectilinear figure by decomposing it into triangles, each 

triangle being equal to a parallelogram, itself equal to a rectangle, finally equal to a square. 

1.1.2 Pedagogical application 

Without presenting the text to the students, we proposed them exercises in which this 

method could be applied. They had to determine areas without calculating, but rather by 

counting tiles, making decompositions or puzzles (see exercises 1 and 2 in the appendix). 

In our workshop, we presented these problems to the participants, and we asked them 

which level of high school students they could give it to. First of all, they were surprised 

that we proposed this kind of exercises to high school students, because these notions are 

taught in “collège” and even in elementary school. In our classroom experiments, solving 

those problems wasn’t so easy for our fifteen years old pupils (see works 1 and 2 in the 

appendix).  

One of us also gave exercise 1 to her students in “prépa ECT”
6
. That class includes 

students from technological education
7
, aged from 18 to 20 years. While they were in high 

school, they didn’t study a lot of mathematics (about three hours per week) and so it 

wasn’t their main subject at school, and nor their favorite one! The teacher was surprised 

at the reaction of students to this exercise. First, they counted each tile of the rectangle, 

and after counting, realized it was only the multiplication of the length by the width, and 

remembering the formula, lastly said: “That’s why!”
8
 

Finally, even an exercise that may look simple is not necessarily so for students, when 

it uses reasoning and unusual figure manipulations instead of the implementation of 

formulas. Coming back to the source of the calculation of areas by a method related to 

history has allowed students to rediscover the formulas learned long ago by understanding 

                                                            
5 This figure has been realized with a geometry software as well as figures # 2, 4, 5, 6, 7 and 8. 
6 In this two years course, students prepare entrance contests to major business and management schools.  
7 STMG series in France “Science et technologie du management et de la gestion” (Financial management 

science and technology). 
8 In “ECT” class, this work started the “integration” chapter. The other experiments were conducted in 

“Seconde” in half classes, over time devoted to research, and at any time of the year, since these concepts do 

not appear in the official program of this level. 
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them. This leaves us thinking about the all-powerful place of calculations in the programs, 

especially when they are meaningless for students. 

1.2 Squaring parabola with Archimedes’ method  

1.2.1 Texts presentation 

After having squared all rectilinear figures by Euclid’s method, one may wonder how the 

Ancients were able to square curvilinear figures.  

In his treatise Measurement of a circle (Heath, 1897), Archimedes solves the 

quadrature of the circle in that way: 

“Proposition 1 – The area of any circle is equal to a right-angled triangle in which one 

of the sides about the right angle is equal to the radius, and the other to the circumference, 

of the circle” (Heath, 1897, p. 91)  (fig. 1.2). 

 

Figure 1.2: Squaring the Circle 

In this text, Archimedes proposes a proof of the theorem based on a double reductio ad 

absurdum, which is a classical method in ancient Greek texts. Thus, the method of finding 

the result is not indicated.  

In the 1630s, mathematicians made many reproaches to the Ancients for having hidden 

their method to find their results (Barbin, 1987, pp. 125-159). They tried to find a new 

“method of invention”, which could solve any quadrature by giving the way they obtained 

them, and also for new curves, like the cycloid, defined by a kinematic process
9
. 

In this period, they didn’t know that Archimedes gave one in a letter that had been lost 

for centuries, and discovered in 1906. The original Archimedes’ text was copied around 

the 10th century on a parchment, which had been reused in the 12th century. The hidden 

text of the palimpsest had been entirely revealed by technological methods in the 2000s 

(Noel, 2008). 

In this text, Archimedes describes his “mechanical method” and applies it among others 

to the quadrature of parabola (Heath, 1912). 

“Proposition 1 – Let ABC be a segment of a parabola bounded by the straight line AC and 

the parabola ABC, and let D be the middle point of AC. Draw the straight line DBE 

parallel to the axis of the parabola and join AB, BC.  

Then shall the segment ABC be 
 

 
 of the triangle ABC.” (Heath 1912, pp. 15-16) (fig. 1.3) 

                                                            
9 See “Indivisibles Method” in section 2. 
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Figure 1.3: Archimedes’ Mechanical Method (Heath 1912, p. 16) 

He makes a both mechanical and mathematical proof, using the straight line CK as a 

lever around which he balanced the areas to be compared. 

1.2.2 Pedagogical application 

For teaching, the issues are the same: we can prove the result to our students in rigorous 

ways, but they won’t understand the result if we don’t give them a way to catch the 

“invention method” with which we found it. In this sense, working on Archimedes' 

mechanical method could be very instructive for our students. 

We did not work on Archimedes' text with our students, because it seemed too difficult 

to address, especially because of the underlying properties of conics, which would require 

prior work to be introduced. On the other hand, we proposed an open problem to our 

students in “première” (aged from 16 to 17 years) aimed at conjecturing the area under a 

portion of a parabola.
10

 

You can see the exercise and their works in the appendix (works 6 and 7). That area 

(below the parabola) represents a third of the area of the rectangle. Indeed, the area above 

the parabola covers four third of the triangle ABC (according to Archimedes’ result), i.e. 

two third of the rectangle ABCD. This reasoning could already be the subject of an 

exercise in itself. Some students found the good ratio and others weren’t too far from the 

result. Their methods were varied and imaginative. 

In our workshop, we presented these exercises to participants, and asked them to think 

about a way to study Archimedes’ “mechanical” proof with students. Indeed, we are still 

looking for some relevant and efficient schoolwork to propose on this subject in our class. 

We created a GeoGebra animation which details all the steps of the proof. That could be a 

good tool to build an educational sequence
11

. 

This pedagogical sequence is still a “work in progress” to be achieved but we are sure it 

might be rewarding for pupils to study that method. That exercise refers to the classical 

theme of the Archimedean lever in a particular way, and in a mathematical proof. It also 

appeals to the intuitive notion of balance while requiring strong geometric knowledge. It 

could show to students that mixing mathematics and mechanics is original and can be 

effective. 

                                                            
10 The experiment was carried out in half classes, over time devoted to research, and at any time of the year, 

since these concepts do not appear in the official program of this level. 
11 The GeoGebra figure is available in following the link: https://www.geogebra.org/classic/chqspxrg. 
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2 In “Première”
12

: Cavalieri’s Indivisibles Method 

2.1 Text presentation 

In 17
th

 century, the Italian mathematician Bonaventura Cavalieri publishes Geometria 

indivisibilibus continuorum nova quadam ratione promota (1635) (Cavalieri, 1653). In 

this treatise, he presents his new method called “Geometry of indivisibles” in these terms:  

“If, between the same parallels, any two figures are constructed, if inside them, any 

straights lines are drawn equidistant from the parallels, and if the portions included in any 

one of these lines are equal, then the plane figures are also equals to each other” (fig. 2.1) 

 

Figure 2.1: Cavalieri’s Indivisibles 

This new process is quite simple to understand and is easily applicable to students.  

2.2 Pedagogical application 

We proposed an exercise, based on that principle, to our classes in level “première” 

(students aged from 16 to 17 years). Its statement is contained in the appendix as 

“Exercise 3”, as well as one student’s work (work 3). As you can see in question 1, this 

young student didn’t notice that the three areas were the same. All the other students made 

the same mistake. In question 2, a few pupils realized that the figures had the same area. 

Students made also a construction on GeoGebra software to visualize the proof of the 

circle area with indivisibles method, proposed by Cavalieri (fig. 2.2): 

 

Figure 2.2: Squaring a Circle by Cavalieri’s Method 

Our students easily built it on GeoGebra and were able to experience the indivisible 

thanks to the “trace” function of the software. They were thus able to understand visually 

the formula of the area of a disc. 

We showed exercises and student works to the participants of the workshop. They 

could also watch and manipulate the GeoGebra animation about the circle area. We 

discussed about the relevance of that kind of exercise and the contribution of such a 

                                                            
12 Second grade in high school, with students aged from 16 to 17 years. 
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method to the training of pupils.  

Compared to the proof of the same theorem by Archimedes, this way of proving is 

could be more intuitive and understandable for the students. A double proof by the absurd 

does probably not have a meaning for them, contrary to this very visual evidence, which 

allows them to understand the profound reason for this result. We plan to build a new 

learning sequence in this sense, with a parallel study of Archimedes' and Cavalieri's 

proofs, in order to verify this theory. 

2.3 To go further 

To be complete on that subject, and go further with certain students, it is also possible to 

talk to them about the criticisms encountered by indivisibles method in the 17
th

 century. 

Indeed, Cavalieri’s contemporaries like Guldin
13

 criticized his method because it 

generated paradoxes. The two most famous ones are the followings (fig. 2.3, 2.4 and 2.5): 

 
Figure 2.3: Paradox 1    Figure 2.4: Paradox 2 

 “Do blue and red triangles have the same area?” 

 

Figure 2.5: The Bowl’s Paradox: “Is a point equal to a circle?”
14

 

On these few examples, we can see how Indivisibles’ method led mathematicians to 

ask questions about infinity and the infinitely small. That kind of queries can arouse 

students’ curiosity, make them think about the way science works and progresses, the 

barriers people have had to overcome to build mathematics as we know them today. A 

good source to understand how Cavalieri improved his method to solve this kind of 

paradoxes is his letter to Torricelli of April 5th 1693 (Roberval, 1693, pp. 283-302). 

 

 

                                                            
13 Paul Guldin (1577 – 1643) was a Swiss Jesuit, mathematician and astronomer. 
14 Paradox treated by Galileo (Galileo 1914). He proved that the cone and the bowl have the same volume, 

which gave, passing to the limit, the equality between the disc and the point. 
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3 Transition from “Première” to “Terminale”: Roberval’s indivisibles 

method 

3.1 Text presentation 

The last step in our progression in high school curriculum is the presentation of 

Roberval’s proof for squaring the parabola.  

Still in the 17
th

 century, Gilles Personne de Roberval
15

 developed his own indivisibles 

method, in response to a problem put by Marin Mersenne
16

. Indeed, in the 1630s, 

Mersenne asked Roberval to determine the area of a portion of a cycloid. To answer him, 

Roberval devised a method of invention of the tangents and a method of quadratures with 

the help of the indivisibles. He applied this method to “all the curves” known at the time, 

solved the problem of the cycloid posed by Mersenne, and then obtained the quadrature of 

the parabola. He showed that the area of the portion of the parabola is equal to two-thirds 

of the area of the rectangle. (Walker, 1932, pp. 181-182) (fig. 3.1) 

 

Figure 3.1: Roberval’s Quadrature of Parabola (Walker, 1932, p. 181) 

His proof was based on the Indivisibles principle and a formula of sum, which he 

established a little before in his treatise. 

3.2 Pedagogical application 

We introduced this to our students in three steps: 

- Firstly: they had to work on the sum of squares formula. They had at their disposal 

wood pyramids to assemble in order to form a rectangle parallelepiped. From this 3D 

puzzle, they had to guess the formula of a sum of squares (pict.3.1 and 3.2). 

  

Picture 3.1: Students at work  Picture 3.2: Students have found 

                                                            
15 Gilles Personne de Roberval (1602 – 1675) was a French mathematician. 
16 Marin Mersenne (1588 – 1648) was a French cleric, scholar, mathematician and philosopher. 
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They could also watch a video about this “Chinese puzzle”
17

. Furthermore, they had an 

iconographic document to refer to (doc. 3.1). 

 

Document 3.1: Sum of Square 

To further study this formula, they had an exercise to do on a spreadsheet
18

. The point 

was to see that a sum of squares is not so far from the third of the cube of the highest 

number of the sum, and that the difference is all the smaller as the number of terms is big. 

- Secondly: they had to read and try to understand Roberval’s text (Walker, 1932; 

Roberval, 1693) and to illustrate it by completing a GeoGebra animation
19

. The idea 

was to build and see the indivisibles with the help of dynamic geometry, from the 

figure of the text. 

- Thirdly: they had to read and try to catch the idea of the end of Roberval’s text, in 

which he extended his result to other power functions. Exercises were thus proposed to 

train students to calculate areas below curves in different configurations. 

This sequence is the opportunity to make a transition between the “Première” 

curriculum (students aged from 16 and 17 years), and the “Terminale” one (a year later)
20

. 

Indeed, in “Terminale” class, students work a lot on integral calculation. These activities 

were intended to prepare students to develop reasoning on integrals, without resorting to 

calculate primitives. 

                                                            
17[Math Help]. (2015, Jan 14). Sum of squares (video file). Retrieved from: 

https://www.youtube.com/watch?v=kZTFrv3vRgg. 
18 You can see the spreadsheet following the link: https://docs.google.com/spreadsheets/d/1-

dNkYiK_16IXT1Aa7yLitB9R_ZxxMlAAzq4gxmA90Z0/edit?usp=sharing. 
19 You can see the GeoGebra file following the link: https://www.geogebra.org/classic/a5436kdu. 
20 That’s why this sequence was experimented at the end of “première” and ended in some classes at the 

beginning of “Terminale” (the third step). 
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Participants of the workshop had access to all the pedagogical material: pyramids, 

videos, documents, GeoGebra and spreadsheets animations. For example, they could 

experience the difficulty to make the puzzle of the Chinese pyramids (pic. 3.3).  

 

Picture 3.3: Making the puzzle at the workshop 

They also could notice that, working on these exercises, some students had found by 

themselves the primitive formula of power functions. Some works are shown it in the 

appendix (works 4 and 5). 

This part of our work is at the margins of our theme “how to calculate areas without 

formulas”, because Roberval’s proof requires to use the sum of squares formula, and is 

definitely more computational than Cavalieri’s or Archimedes’ approaches. However, we 

wanted to introduce it because it is a very rich teaching sequence for our students. It mixes 

the reading and understanding of historical texts with activities on spreadsheets and 

GeoGebra software as well as manipulation of concrete material. We had obtained results 

beyond our expectations, from the point of view of acquisition as well as the one of 

students’ motivation and interest. 

4 In all classes: squaring with instruments and machines 

4.1 Machines presentation 

Squaring with machines is a method almost forgotten nowadays. The use of computers has 

made it obsolete. But it was a fairly common way in the 19
th 

century. The need was great 

in many fields like: computing stress in civil engineering, evaluation of the average power 

of a machine, calculation of the property tax, measure of the extent of a forest from a 

cadastral map. All those operations require the determination of the area of a surface. 
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Economic, technical and industrial issues were therefore important. 

As early as 1814 engineers invented machines like planimeters to measure the area of a 

surface by going along its contour and like integrators to draw an integral curve. These 

machines were used until the 1970s (Tournès, 2003; Gatterdam 1981). 

One machine has been invented in 1814, by Johann Hermann in Germany. It had been 

named a “Cone planimeter” (pic. 4.1 and 4.2): 

  

Picture 4.1: Cone Planimeter  Picture 4.2: Cone Planimeter’s Scheme 

A stylus follows the curve, whose equation is       , that delimits the surface, 

whose area one wants to measure. When the stylus holder moves with respect to the 

carriage in the direction (Ox), it causes an identical displacement of the carriage, thanks to 

a small disk. When the stylus holder moves with respect to the carriage in the (Oy) 

direction, it drives a disk, secured to a small toothed wheel, which rolls without slipping 

on the cone. The set of two toothed wheels is a speed reducer and drives the dial hand. For 

an elemental shift along the x-axis, the wheel rotates (with a coefficient close depending 

on the dimensions of the device) at an angle        and, for a movement along a segment 

[x0, x], it rotates from a total angle:       
 

  
. 

You can see how it works on the video linked here : 

http://images.math.cnrs.fr/Un-planimetre-a-cone.html (Ghys & Leys 2009) 

Another one was called “polar planimeter”, invented by Johan Amsler in Swiss in 1854 

(pic. 4.3 and 4.4): 

  

Picture 4.3: Polar Planimeter   Picture 4.4: Polar Planimeter’s Scheme 

When the pointer moves, the wheel rotates. The number of turns is proportional to the 

component perpendicular to AM of the pointer movement. When the curve is traveled, the 

number of turns of the wheel is proportional to the length of the curve. Finally, by a 

calculation in which we use Green's theorem which makes it possible to transform a 
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curvilinear integral into a double integral, we show that the number of turns of the wheel 

is proportional to the area of the domain. (Gatterdam, 1981). 

There is also another one, made by Abdank-Abakanowicz in Poland in 1876, baptized 

“integrator” (pic. 4.5 and 4.6) (Abdank-Abakanowicz, 1886): 

  

Picture 4.5: Integrator     Picture 4.6: Integrator’s Scheme 

This instrument draws an “integral” curve of the curve whose area it delimits. The 

tangent of the angle alpha is the ordinate     . The other side of the triangle is orthogonal 

to the side of the articulated parallelogram. Parallelism “preserves” orthogonality, the 

inclination of the tangent to the integral curve is equal to the ordinate     . 

You can see one copy there made in Lego technics : 

http://www.nico71.fr/integraph-graphic-planimeter/ (Nico71’Creations 2017) 

4.2 Pedagogical application 

In our classrooms, we intended to educate our students to the difficulty of determining 

non-geometric form areas. So we proposed them this exercise (doc. 4.1)
21

. 

The method of the grid works, but is not very practical to apply, and gives 

approximative results, hence the need for a more efficient technique that are the machines. 

We have bought a polar planimeter to use with our students in our classes. It has been 

tested to determine the area of a square, and then of a circle. As these areas can be 

obtained by calculation, it was possible to check the result after manipulation. It was 

reliable to the nearest ten-thousandth. 

Participants of the workshop in Oslo really enjoyed manipulating this material, and 

were also surprised at the accuracy of the result (pic. 4.7). 

The use of a simple machine to get the result of an area precisely is surprising for the 

students. It is an original and practical method.  

Thereafter, it is possible to deepen this exercise with the best students by proving the 

mathematical principles underlying these machines. 

                                                            
21 This sequence was experimented in “ECT” class. 
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Document 4.1: Non Rectilinear Areas 

 

Picture 4.7: Using Polar Planimeter at the workshop 

239



5 Conclusion       

Throughout the progression we have presented, the most important feature is the fact that 

the students were able to grasp what an area is, beyond the simple formulas applied 

hitherto without understanding them. Showing them historical methods, in their great 

diversity, is a way to achieve this. The originality and the beauty of the reasoning put into 

effect can more win their adhesion to mathematics in a more general way. 

In addition, these activities can be very well integrated into French high school 

curricula: from elementary geometry taught in “Seconde”, to function and sums concepts 

seen in “¨Premiere”, until integrations learned in “Terminale”. They also create links 

between the “collège” and high school, as well as being transitions between the different 

levels of high school. 

As they were often carried out in small groups, sometimes in the computer room, the 

sessions were well experienced by the students, they motivated and interested them. They 

appreciated the manipulation of objects that allowed them to anchor their knowledge on 

concrete experience, which is rather rare in the current teaching. The diversity of media 

(historical texts, objects, videos, software) gave them opportunities to express broader 

skills than in traditional mathematical activities. We were able to see the main benefits of 

these sequences: a more concrete meaning given to the areas, a better understanding of the 

formulas and calculations, and an easier access to the integral calculation. 

For the coming periods, we plan to continue this approach on another subject, that of 

tangents. Here again, it is a theme that closely combines geometry and analysis, that poses 

real difficulties of understanding in high school and that would benefit from the 

contribution of history. 

We hope that the participants of the workshop and our readers will find this project 

inspirational, and will have as much pleasure in transmitting these notions as we had. 
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Students’ works : 
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ABSTRACT 

This paper (based on a workshop which will not be described here) mainly aims to present the bibliographic 

database Publimath which contains in particular the works of IREM (Research Institutes in Mathematical 

Education) and APMEP (Association of French Professors of Mathematics), as well as numerous 

resources in different languages that the editorial team finds relevant: for instance, proceedings of earlier 

conferences. More than 8000 items associated with the history of mathematics, both original historical 

sources and accounts of classroom experiments, are included in the database.  

The first part of this paper is an answer to the question: who manages Publimath? 

The second part provides a first orientation to the database itself. 

1  Two important actors in French mathematical education and their 

websites 

The IREM Network consists of 28 regional IREMs (Institutes for Research on 

Mathematics Education) in France. It has been funded by the Ministry of Education and 

the universities since 1969. National committees (called CII = Commission Inter Irem) are 

organized either around a level of education or a theme. Two of these CII, Repères IREM 

and Publimath, are intended to disseminate the work of IREM. The CII History and 

Epistemology of Mathematics coordinates the regional groups that work with history, 

philosophy and/or epistemology of mathematics. 

The APMEP (Association des Professeurs de Mathématiques de l'Enseignement 

Public) was created in 1910. It is a federation of 26 regional associations of mathematics 

teachers, with regional activities and national committees, funded by membership fees and 

sale of productions. 

Both organizations act as an interface between research (in history and/or didactics) 

and teaching/training, bringing together teachers of mathematics from kindergarten to 

university. They produce paper and digital working documents, published by the IREMs 

or APMEP, as well as conference proceedings, journal articles, and books for private 

publishers. 

Both also have websites which focus in part on the History of Mathematics: 

- The APMEP website is: https://www.apmep.fr/. The page dedicated to the group 

working about History of Mathematics is https://www.apmep.fr/-Histoire-des-maths- 

- The national IREM website is “Le Portail des IREM”: http://www.univ-irem.fr/.  

- The page dedicated to the CII “Histoire et Epistémologie des mathématiques” is 

http://www.univ-irem.fr/spip.php?rubrique15 
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2 : a database and a search engine 

Publimath is a joint operation of IREM and APMEP. It is a database that is intended to 

identify not only the work resulting from research carried out in the IREM network or 

APMEP, but also any publication useful to the mathematics teacher, as this is the easiest 

way to offer access to all their in-house materials productions  alongside others related to 

teaching, learning, and scientific culture.  These include:  

- the working documents posted on the IREM websites; 

- books and journals of the IREM network and APMEP ; 

      - proceedings of conferences such as HPM (History and Pedagogy of Mathematics and 

ESU (European Summer School) ; 

- papers published by learned societies of mathematics ; 

- books produced by private publishers; 

- websites, videos and other educational materials. 
  

 Publimath is freely accessible to anyone, as is the associated database “Bibliothèque 

numérique des IREM” (IREM Digital Library).  These resources are useful to the entire 

educational community of mathematics teachers, from school to university, teacher 

trainers, and students training to become math teachers., They are also of interest to 

researchers in didactics in history, and in the history of mathematics education, as the 

majority of these resources have been used in France for a long time by teachers and thus 

offer valuable information on French curricula and didactical practice. 

2.1 Les fiches 

Each item in the Publimath database is described in a "fiche". There are 28,759 fiches as of 

March 19, 2018. The following example is: http://publimath.univ-

irem.fr/biblio/ACF11023.htm 
 

Auteur(s): Smestad Bjorn; Nikolantonakis Konstantinos 

 

Titre : History and Epistemology in Mathematics Education: Proceedings of the Sixth 

European Summer University (ESU 6). Historical methods for multiplication. p p. 235-

244. (Méthodes historiques de multiplication.) 

 

Editeur : Verlag Holzhausen GmbH Vienne, 2011, Autriche  

Format : p. 235-244 Bibliogr. p. 244-244 

ISBN : 3-85493-208-1 EAN : 9783854932086 

 

Type : chapitre d'un ouvrage Langue : Anglais Support : papier 

 

Public visé : chercheur, enseignant, formateur 

 

Classification : F40  

 

Résumé :  Cet article résume le contenu de l'atelier, dans lequel les auteurs ont étudié 

la multiplication "grecque", donnée par Eutocios d'Ascalon dans son commentaire sur "La 
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mesure du Cercle" dont ils étudient une partie. Ils partent de l'hypothèse que cet 

algorithme historique de multiplication est d'accès facile car les stratégies mentales 

informelles mises en oeuvre intuitivement par les enfants font appel aux mêmes processus 

de calcul. L'idée importante est que la numération de position est fondamentale et que les 

élèves agissent avec des quantités et non avec des symboles isolés comme cela arrive avec 

l'algorithme classique. Cela aide les élèves à contrôler leur pensée à chaque étape du 

calcul. Ils ont également discuté de la méthode russe et de la méthode "par croix" 

(fondamentalement la même que "la preuve par neuf") pour contrôler l'exécution des 

opérations. 

Notes :  

Chapitre des Actes de la sixième université d'été (ESU 6).  

 

Mots clés : 

"calcul algorithmique" 

"histoire des mathématiques" 

"multiplication de nombres entiers" 

"preuve par 9" 

"réflexion sur l'enseignement des mathématiques" 

"technique de multiplication" 

 

Some comments : 

The button   gives access to an abstract in English:  

This paper summarizes the contents of our workshop. In this workshop, we presented 

and discussed the “Greek” multiplication, given by Eutokios of Ascalon in his 

commentary on The Measurement of a Circle. 

We discussed part of the text from the treatise of Eutokios. Our basic thesis is that we 

think that this historical method for multiplication is part of the algorithms friendly to 

the user (based on the ideas that the children use in their informal mental strategies). 

The important idea is that the place value of numbers is maintained and the students 

act with quantities and not with isolated symbols as it happens with the classic 

algorithm. This helps students to control their thought at every stage of calculation. 

We also discussed the Russian method and the method by the cross (basically the 

same as “Casting out nines”) to control the execution of the operations. 

 

The phrase "langue: anglais" indicates that the paper is written in English. If you want 

only items written in a specific language, go to the page recherche avancée, click on 

Langue, then choose “anglais”, or “espagnol”, etc. The database contains several 

hundreds of papers in English. 

The symbol means that you can find the pdf online, either with direct access or 

through a link to another site. There are more than 10,000 documents of this type, 

including those in the bibliothèque numérique  for which you can get the paper with 1 

click on the sentence  "Bibliothèque numérique des IREM et de l'APMEP". If you want to 

see only the items available on line, go to the page Recherche avancée, then click on 

Ressource(s) en ligne . If you use the simple search engine, papers available on line 

have the symbol  after the title. 
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2.2 Two modes for searching 

2.2.1 Simple search 

Let’s try it: open the homepage here http://publimath.univ-irem.fr/. This gives access to 

"recherche simple” (simple search). 

In the first box, you can put in all the key words that you like, in any language you like. 

In the second box, you have a choice between les fiches, la liste des mots-clefs 

(keywords), la liste des auteurs (authors), les notices du glossaire (glossary). A 

glossary notice is intended to provide quick information (e.g., definition of an object 

or a concept, biographical details of mathematicians) and references for further 

research. 

To start your search, click Valider. 

These two lists (liste des mots-clefs, notices du glossaire) are very useful for people 

who don't know French mathematical or teaching vocabulary well. If you put in an 

English word, you’ll get the “fiches” in which the word appears in the abstract in 

English, even if the paper is written in another language. 

As in all the basic search engines, you'll get all the items in which any one of your 

search terms appears (full text research). The tag “bibliothèque numérique” allows for 

searching only the items in the “bibliothèque numérique.”  

 

2.2.2 Advanced search  

Now, if you know precisely what you are looking for, you can use the “recherche avancée 

et dans les revues” (advanced and journals search) by clicking on that tag; it opens a 

second page: http://publimath.univ-irem.fr/avancee.php 

If you look for a specific kind of document, as a website,  a video , click on the 

button “Type” and choose in the drop-down menu : site internet website) or film 

(video) 

“Public visé” means “Target audience”. 

 If you are wondering what “CDI Litteramath” is, it is a collection of books 

available in every french school library (CDI) for students in the first 4 years of 

secondary schools. 

A useful tip: clicking on the logo Publimath on any page will take you back to the 

homepage: http://publimath.univ-irem.fr/ 

2.3 How to contribute to the improvement of the Publimath database? 

First, a little experiment: on the first page, try this search: Put your last name in the line:  

 Chercher  My last name in liste des auteurs  Valider 

Do you find your name?  If yes, click it! 

Do you find all your papers? If yes, do you like the “fiches” about them? 

 If not, you can help us to improve Publimath! 

 Click on:  
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 Aidez-nous à améliorer cette fiche   (help us to improve this fiche). A small 

video  will show you how to do it. 

Ideally, the author or publisher of a document fills out the review form available on 

the homepage by clicking on   Proposer une fiche 

 

But you can also provide information on any document that you think is worth it. If 

some fields are not completed, the team members will do it.  

Anyone can contribute to enriching the database by translating an abstract, 

proposing an improvement for the summary, proposing a new summary, or correcting 

existing data. Non-French associations and journals are welcome! We especially need 

your help in increasing the references for papers written in English. 

How to contact us? By clicking on the button  Contactez-nous on the home 

page. 

 

2.4 More about Publimath 

Usage statistics are available at: http://publimath.univ-irem.fr/usage/ 

This database, born in 1996, is maintained by a team of about ten people who, in 

addition to writing and improving the files, each have a specific task, such as 

- ensuring the architecture of the database,- following the census of publications of interest 

to our public (in French) 

- maintaining connections with 

• the CII History and Epistemology of Mathematics; 

• APMEP publications; 

• international publications. 

- performing English-French translations. 

- populating the glossary. 

For the last 5 years, the two big new tasks have been 

-the creation of a classification based on the ZDM ontology which is in the testing phase; 

in the “fiches,” you find this in the field “Classification” 

- the digitalization of IREM and APMEP’s documents. 

 

Hombeline Languereau is currently co-responsible for CII Publimath (with Michèle 

Bechler, who has served in this role since the creation of the CII in 1996). Anne 

Michel-Pajus ensures in particular the connections with the CII History of 

Mathematics and international publications. 
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ABSTRACT 

One of the multiple uses of the abacus in teaching mathematics is to illustrate the true nature of carrying and 

borrowing in addition and subtraction respectively. The understanding of carried and borrowed number 

requires deep knowledge of the place value concept in the decimal number system. Generally, students do 

not seem to understand these two concepts. In our workshop we tried through several activities to convince 

the participants that the Chinese abacus can help teachers to teach and students to understand and learn the 

aforementioned notions. The fact that the Chinese abacus enables someone to write up to fifteen in each 

place value and then to make exchanges between place values with his hand reinforces the understanding of 

carried and borrowed number. The visual and tactile perception, that the Chinese abacus provides, can 

support learning. 

1 Introduction 

Undoubtedly, one of the most important issues in the mathematics curriculum of 

elementary school is the understanding of place value concept in the decimal number 

system. However, it seems somewhat incongruous that such a system, which incorporates 

in its heart a small number of simple rules, would be so difficult for teachers to teach and 

for students to learn (Jones & Thornton, 1993; Ross, 1990; as cited in Price, 2002). In 

recent years, after a long period of formal and ineffective learning, mathematical 

education has focused more on the learning of numbers and operations (Tzekaki, 2007).  

The use of appropriate educational material contributes to better approach of mathematical 

concepts, since it is well integrated into the mathematical activity of students (Tzekaki, 

2016). 

One of the earliest calculating instruments, which has entered the classroom as a 

manipulative, is the abacus. It is an ancient tool through which one can process the place 

value concept in the decimal number system. According to Spitzer (1942), there are five 

important characteristics of arithmetic that are admirably demonstrated through this 

device. Firstly, the beads can represent various concrete objects. Then, the abacus can 

nicely illustrate that the value of each digit depends on its position to the number. 

Furthermore, it demonstrates the idea of a place-holder or the function of zero. Moreover, 

it illustrates the idea of collection. Last but not least, it reveals the true nature of carrying 

and borrowing. 

As far as the Chinese abacus is concerned, Zhou & Peverly (2005) state that it provides 

a semi-concrete representation of number, children can manipulate it, and they can easily 

create a mental image of it. “With experience, mental calculation is enhanced by learning 

how to use an abacus because children learn to rely on internalized mental abacus which 

helps them create mental representations of numbers” (Zhou & Peverly, 2005, pp. 266-

267). Stigler (1984) concluded that several pieces of evidence in his research indicate that 

the mental abacus incorporates important features of the physical abacus.  
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Bartolini Bussi states that a way to introduce the history of mathematics into classroom 

is through the exploration of copies of ancient instruments and artifacts (Nagaoka et al., 

2000). This exploration is not limited to the visual contact only. It is extended to the tactile 

perception, too. Students do not just observe the instruments, they also use them. This 

tactile experience has the potential to motivate students and it is an important part of the 

cognitive foundations of mathematical activity (Nagaoka et al., 2000). 

2 Background of the workshop 

The workshop was based on a research study that was conducted during the school year 

2016-2017 in a primary school of central Macedonia in northern Greece. The purpose of 

the research study was to examine if 3
rd

 Grade students of primary school are familiar with 

the structure of the decimal number system and to ascertain whether the Chinese abacus, 

which as an artifact is in the core of the theory of instrumental genesis and semiotic 

mediation, can contribute to the understanding of the structure of the base 10 number 

system. The participants were 7 students (4 boys and 3 girls) consisting the 3
rd

 Grade of 

the aforementioned primary school.  

Data collection was attained through a questionnaire along with personal interviews 

before and after the instructional intervention, with the filling out of 35 worksheets, most 

of them with the aid of the Chinese abacus, as well as by observing the students’ activities 

during the intervention. The interviews took place just before and just after the 

intervention, which was completed within 35 class periods.  

In the questionnaire before the intervention, students were asked to read and write 

three-digit numbers, to perform additive analysis of numbers, to recognize place value in 

three-digit numbers, to make exchanges between classes of numbers, to compare and to 

set in order three-digit numbers, to execute addition and subtraction algorithms, as well as 

to explain the notion of carried and borrowed number. 

During the instructional intervention, the students dealt with activities that firstly 

introduced them to the notion of number system in general, and then to the notion of the 

decimal number system. Moreover, everyone constructed his own Chinese abacus with 

materials provided by the teacher-researcher and they used it in several activities. The 

intervention’s exercises and activities covered the whole range of the above aspects of the 

place value concept. The abacus, through its use, revealed the true meaning of the place 

value concept. The conceptualization of place value is the basis for number sense 

development.  

Through a questionnaire after the intervention, students’ knowledge of the above 

aspects was checked again.  

The findings of the questionnaire before the intervention indicate that students do not 

have profound understanding of the notion of place value in whole numbers and in 

operations with them. During the intervention, the Chinese abacus was converted from an 

artifact into an instrument and mediated mathematical content to the students. Whereas 

before the intervention there were major difficulties especially in the execution of the 

addition and subtraction algorithm, and in the explanation of carried and borrowed 

number, after the intervention these difficulties were limited.  

Similar research studies concerning the development of the place value concept in 6
th

 

Grade students with the aid of the Chinese abacus were conducted by Poisard (2006), and 

Tsiapou & Nikolantonakis (2013, 2016).  
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In the context of the ESU-8, we decided to organize a workshop based on a sequence of 

activities to introduce the Chinese abacus as a resource for the teaching and learning of 

number sense and place value system in primary school. According to Poisard (2017) it 

benefits both students’ learning and teachers’ classroom practices.  

So, we focused on how teacher can foster the understanding of the paper and pencil 

algorithms for addition and subtraction work by means of the prominence of place value 

representation of the addends in addition and of the minuend in subtraction, and on the 

procedures for addition (carried number) and subtraction (borrowed number) on the 

abacus.  

 Most of the worksheets that were used in the workshop were originally designed for 

the aforementioned research study and our young participants filled most of them out with 

the aid of the Chinese abacus. In addition, the workshop’s material was enriched with 

activities that emerged from the students’ answers to the questionnaires’ exercises before 

and after the intervention. The 11
th

 and the 19
th

 question (worksheet) below appertain to 

this category.  It should also be noted that the 2
nd

 question (worksheet) below has been 

modified so as to better correspond to the age of the workshop participants. The original 

one was asking the students to discover how the Chinese abacus works through its 

electronic version (http://cii.sesamath.net/lille/exos_boulier/exo1.html) as the structure 

and the function of the actual Chinese abacus differs a lot from the Slavonic and the spike 

abacus that they had already been using. The modified one asks the participants to 

discover the abacus’ mode of use through the study of four figures depicting the 

successive stages of the Chinese abacus’ evolution and a copy of it that was constructed 

by the workshop leaders and was distributed to everyone. To sum up, 21 worksheets and a 

copy of the Chinese abacus were available to everybody. Most of the participants were in-

service teachers in different grade levels. 

3 The way that the Chinese abacus works  

The Chinese abacus, which is also called counting frame, known in China as “Suan Pan” 

(literally “counting disc”), consists of a rectangular frame. It has a height of about 20 cm 

and its length varies according to the magnitude of the numbers that are represented on it. 

It usually has more than seven rods. There are two beads in each of the top rods and five 

beads in each of the lower rods. The upper beads stand out from the bottom ones with a 

separating beam. The beads are usually round and they are made of hard wood (Korros, 

2012).  

The beads are activated when they are moved up from below the beam or down from 

above the beam. When they are moved towards the beam they are counted, while when 

they are moved away from the beam they are not counted. 

Now, let’s see how we “read” the Chinese abacus. Firstly, we will talk about the beads. 

There are two kinds of beads on the abacus, these of the upper and those of the lower 

deck. Each of the lower deck beads is worth 1. Sometimes they are called earth or water 

beads. The upper deck beads sometimes are called heaven beads and each of them has a 

value equal to 5. The rightmost rod of the abacus represents the units, the next one on the 

left the tens and so on. However, we may select an inner rod for the units’ place, whence 

the rod directly to its left becomes the tens’ rod and those to its right the tenths, the 

hundredths, etc. On the Chinese abacus there are always two heaven and five earth beads 

in each rod.  
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At the end of an action-operation on the abacus, we will never see five earth beads 

activated in the same rod. If this happens, they immediately return to their original 

position and a heaven bead is activated on the upper deck. The same thing happens if two 

heaven beads are activated in the same rod. They immediately return to their original 

position and an earth bead on the rod to its immediate left is activated.  

4 Workshop activities 

The workshop has the same structure as the instructional intervention of the research 

study. The workshop activities are divided into four parts: 

 the discovery of the structure and the mode of operation of the Chinese abacus 

 the way that numbers are formed on the abacus 

 the way that an addition (with or without carried number) is executed on the 

abacus 

 the way that a subtraction (with or without borrowed number) is executed on the 

abacus. 

The participants had the option to work either individually or in couples. Each activity 

was followed by plenary discussion. In general, the following pattern was applied: action-

opinion formulation-validation-formalization. 

Next we present the worksheets that were used in each part of the workshop with the 

correct answers to their questions. 

4.1 First part 

The first part of the workshop concerned the discovery of the tool. Initially, the 

participants were asked to guess what they could do with the Chinese abacus.  

 

1. Can you guess what you could do with the Chinese abacus? 

As most of the participants were teachers at various grade levels, it was easy for them 

to answer correctly that the Chinese abacus can support number representation, the 

execution of addition, subtraction, multiplication, division, and the finding of square and 

cube roots.  

After studying some images representing the successive stages of the historical 

evolution of the Chinese abacus as a computational device, they were asked to guess how 

it works. 

2. After studying the images depicting the stages of the evolution of the Chinese abacus 

and a copy of it, which was given to you, can you guess how a number is formed on the 

Chinese abacus? 

254



 

Chu Pan or Bead Tray (figure 1) was the initial prototype of the Chinese abacus. Its 

rectangular chess-board-like tray was divided into squares which had ten rows 

horizontally and as many columns as necessary. Each horizontal position denoted 

numerals 0 to 9 from bottom up. Each column represented a place value increasing from 

right to left. Numbers for operations were presented on the tray by placing beads in proper 

squares (Li, 1958). 

The next improvement of the Chinese abacus was the tray with beads in two different 

colors (figure 2). The yellow beads were denoting numerals 0 to 4, from bottom up and 

the black ones numerals 5 to 9, from top down. Place value was increasing from right to 

left, too. This improvement enabled the bead tray to be reduced in size as it was divided 

into five only horizontal rows of squares and as many vertical columns as before (Li, 

1958).  

Before the 2
nd

 century AD Chu Pan had almost taken the form of the current Chinese 

abacus but with unattached beads (figure 3). The beads had not yet being attached to 

bamboo bar rails. Chu Pan consisted of a wooden board divided into rectangular column 

spaces. An upper horizontal partition separated the board in two unequal parts. On the top 

and the bottom of the board there were recesses for storing beads. In each column only 

five beads could be placed. One bead could be placed in the upper part and four beads in 

the lower part. The bead above the partition represented 5, while each of the four beads 

below the partition represented 1. Place value was increasing from right to left as in the 
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previous figure. Though the beads that were used above and below the partition were 

differently colored, it was not absolutely necessary as the worth of each bead was 

determined by its position and not by its color. This model had existed until the early 7
th

 

century AD (Li, 1958). 

The 4
th

 figure represents the Chinese abacus that has been constantly in use for nearly 

1.300 years without further improvements since the 10
th

 century until very recently. At 

this stage the frame was perfected by providing a hole through the middle of each bead, by 

setting a round bamboo rod at each place value, and by placing an additional bead both 

above and below the partition at each rod. Thus the beads became attached, enabling the 

elimination of the top and bottom recesses for the storage of the beads. As in the earlier 

Chinese abacus with unattached beads, each bead above the partition is worth 5, and each 

below the partition denotes 1. When 5 is reached, it is exchanged with one upper bead 

replacing five lower beads. When 10 is reached, it is exchanged with one lower bead on 

the left place value replacing two upper or one upper and five lower beads on the right 

place value. From the point of view of simple number representation, one of the two upper 

beads and one of the five lower beads seem redundant. In fact both are necessary in the 

advanced techniques of multiplication and division operations (Li, 1958). 

The workshop participants explained that the 3
rd

 image was very helpful in discovering 

how the Chinese abacus works as it clearly shows the worth of each bead on both parts of 

the abacus. It should also be noted that some people already knew the mode of its 

operation, as they had already used it in the past. Then, the following picture that 

describes the parts of the Chinese abacus was given to them. Thus the organizers 

described in detail its structure. 

The parts of the Chinese abacus 

 

Afterwards, a video entitled “Chinese Zhusuan, Knowledge and Practices of Arithmetic 

Calculation through the Abacus” was presented to the participants. This video was 

submitted to UNESCO in the year 2012, so that the Chinese Zhusuan be inscribed on the 
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representative list of the intangible cultural heritage of humanity. It describes the form and 

content of the Chinese abacus, its cultural value, its challenges and its protection 

measures. Zhusuan means bead computation, that is, a time-honored traditional method of 

performing mathematical calculations with an abacus, the Chinese abacus. Finally, in the 

year 2013 Chinese Zhusuan was inscribed in the list of the intangible cultural heritage of 

humanity.  

4.2 Second part 

In the second part of the workshop activities, the participants were asked to form single 

digit numbers both in their individual abacus and in the worksheet’s sketched abaci.  

3. Can you draw beads on each abacus to represent the number written next to it? 

 

5 

          

     3 

 

7 

          

     1 

 

2 

          

     8 

 

4 

          

     6 

 

9   

Firstly, they formed the given numbers in their individual abacus and then they drew 

beads in the worksheet’s sketched abaci to represent the same numbers. The workshop 

leaders were walking around the room to check the participants’ way of working. Most of 

them formed the given numbers correctly. 

Then, they were asked to discover how the numbers 5 and 10 are represented on the 

Chinese abacus. They were suggested to study again the figure that shows the parts of the 
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Chinese abacus and the value of each bead, as it implies the different ways that the two 

numbers can be represented on it. 

4. Can you draw beads on each group of abaci to show the different ways the same 

number can be represented?  

 

   5 

 

   10 

 

   5 

 

   10 

  

 

   10 

The participants identified all the possible ways that are presented above. Afterwards, 

they were suggested to think which one could be the most appropriate for the 

representation of each number on the Chinese abacus.  

5. Which do you think is the most appropriate way to represent the numbers 5 and 10 on 

the Chinese abacus? Can you justify your answer? 

The representation of the number 5 with an activated bead on the upper deck of the 

rightmost column of the abacus and the representation of the number 10 with an activated 

bead at the lower deck of the left column are the most appropriate answers. Thus there are 

available beads, which may then be needed in the same column of the abacus in case of 

adding, subtracting, multiplying or dividing with another number that, in turn, must be 

represented on the abacus. 

Time was also devoted to the identification of the role of zero in a number. The 

following question was given. 

6. What do you think is the role of zero in a number? 

Its twofold role 

• as an indication that there are no units, tens, hundreds, etc. in the number and 

• as a place holder,  

was highlighted by the participants.  

Then, they were asked to represent zero both on their individual and the following 

sketched Chinese abacus. 
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7. How would you represent zero in the following Chinese abacus? 

 

          0 

They easily suggested that zero be represented by activating no beads on the abacus. 

Most participants individually and successfully interpreted numbers that were represented 

in sketched abaci.  

8. Can you write above each abacus the number that it represents? 

                                           950 

 

                                        196                 

 
                                     515 

 

                                             444 

 

                                           300 

 

  707 

 

                                           628                                              103 
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Then, they correctly formed nine three-digit numbers and one four-digit number on 

empty abaci by drawing beads. Previously, they verified their answers on the actual 

abacus. 

9. Can you draw beads on each abacus to represent the number written above it? 

                                               300 

     

                             852 

        

   

                              109 

 

                              570 

 

                                622 

 

                                303 
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                              240 

 

                               420 

 

                                   999 

 

                                  1.000 

 

4.3 Third part 

The third part of the workshop activities concerned the addition algorithm. In the plenary 

discussion, the participants used their experience to share common students’ mistakes in 

the implementation of the addition algorithm.  

10. What kind of mistakes do students usually make in the addition algorithm?  

They mentioned mistakes in the placement of the addends, wrong sums at place values, 

non-creation of carried number, etc. 

Afterwards, they worked on an activity that presented five different attempts to execute 

the addition 398+12. These were the answers that were given by five different students at 

the pre-test questionnaire of our research study. The participants were asked to identify the 

students’ mistakes and to guess their way of thinking that led to these mistakes.  

11. Can you identify the students’ mistakes while they executed vertically the addition 

398+12? Can you guess their way of thinking that led to these mistakes? 
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The participants were very interested in this activity. They easily identified the 

mistakes and they announced their remarks in the plenary discussion that followed the 

activity. 

Then, they were asked to explain what carried number is.  

12. Can you explain what carried number is? 

Poisard (2006), in order to explain the concept of carried number, states that in each 

rank of the decimal number system (units, tens, hundreds, etc.) only one digit from 0 to 9 

can be written. In the addition, as soon as ten is reached in any place value, there is a 

transfer of numbers between ranks (always from right to left). One transfers 1 ten for 

every 10 units, 1hundred for every 10 tens, 1 thousand for every 10 hundreds, and so on. 

“The carried number enables us to manage the change of the place-value by making a 

transfer of numbers between ranks” (Poisard, 2006, p. 417). That is the definition she 

provides for carried number. Moreover, the understanding of the meaning of carried 

number requires a profound comprehension of the place value system. 

 Next, the participants were asked to perform step-by-step both on sketched abaci on 

the worksheet and on the actual abacus an addition without carried number and an 

addition with carried number, following instructions. Thus the concept of carried number 

was visualized. At the same time, by using the concrete abacus, the visual and the tactile 

perception of the concept were combined (Nagaoka et al, 2000). 

13. Can you draw beads on the following sketched abaci to show step-by-step how you 

would perform the addition 152+236 on the Chinese abacus? Draw only the activated 

beads. On each line explain what you are doing. Use only the abaci you need. Finally, 

write the sum in the box. 

  152 + 236 = 388 
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1
st
 abacus 

I activate 1 hundred. 

 

2
nd

 abacus 

I activate 5 tens. 

 

3
rd

 abacus 

I activate 2 units. 

 

4
th
 abacus 

I activate 2 more hundreds.  

 

5
th
 abacus 

I activate 3 more tens. 

 

6
th
 abacus 

I activate 6 more units. 

 

7
th
 abacus 

…………………………… 

 

8
th
 abacus 

…………………………… 

 

9
th
 abacus 

…………………………… 

 

14. Can you write vertically the following horizontal addition and find the sum? Verify the 

result by using your abacus. Then, follow the instructions to show, by drawing beads, the 

way of executing an addition on the Chinese abacus. 

Horizontal addition vertical addition Abacus 

   

Place the number 567 on the abacus. Then, write under each 

place value how many Units, Tens and Hundreds are 

activated. 

 

                                           5     6     7 
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567+156= 723 

 

 

 

 

 

 

 

 

 

             

      5   6   7 

   + 1   5   6   

      7   2   3  

 

Add the number 156 by drawing beads. Then, write under 

each place value how many Units, Tens and Hundreds are 

activated. Paint the carried numbers with red color. 

 

                                            6    11    13 

 

Make the necessary exchanges between place values. 
 

 

                                            7      2     3 

Can you explain what carried number is? 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

_________________________________________________ 

4.4 Fourth part 

In the fourth part of the workshop the participants dealt with subtraction. Initially, they 

were asked to perform the subtraction 600-8 with two different algorithms that students 

learn in primary school.   

15. Can you carry out the subtraction 600-8 using two different algorithms that students 

are taught in primary school? 
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In the plenary discussion, the participants mentioned two methods: “regrouping the 

minuend” and “adding equal amounts”.  

Then, they were asked to think about which one of the two ways could be applied to the 

Chinese abacus.  

16. Which algorithm do you think the Chinese abacus can support? 

They explained that the first method can be applied on the Chinese abacus, while a 

participant tried to explain that the “adding equal amounts” method could be applied, too. 

Later, the participants were asked to mention common mistakes that students usually 

make in the subtraction algorithm.  

17. What kind of mistakes do students usually make in the subtraction algorithm? 

They mentioned that usually students place wrongly the subtrahend, they don’t know 

from which place value to borrow and they also make mistakes in the calculations. 

Next they were asked what borrowed number is.  

18. Can you explain what borrowed number is? 

Then, as in the addition, five different attempts to perform the subtraction 600-8 were 

presented. Once again the participants were asked to identify the students’ mistakes and to 

think what led them to these mistakes.  

19. Can you identify the students’ mistakes while they carried out the subtraction 600-

8? Can you guess their way of thinking that led to these mistakes? 

 

 

 

265



 

 

 

 

 

 

It is another activity that the participants said that it was interesting and they announced 

their thoughts in the plenary discussion that followed. 

Finally, both in sketched and actual abaci, the participants were asked to perform a 

subtraction without borrowed number and a subtraction with two borrowed numbers, 

following the worksheet’s instructions. 

20. Can you draw beads in the following abaci to show step-by-step how you would 

perform the subtraction 368-156 on the Chinese abacus? Draw only the activated beads. 

On each line explain what you are doing. Use only the abaci you need. Finally, write the 

difference in the box. 

 368 - 156 = 212 

1
st
 abacus 

I activate 3 hundreds. 

 

2
nd

 abacus 

I activate 6 tens. 

 

3
rd

 abacus 

I activate 8 units. 
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4
th
 abacus 

I deactivate 1 hundred. 

 

 

5
th
 abacus 

I deactivate 5 tens. 

 

 

6
th
 abacus 

I deactivate 6 units. 

 

 

7
th
 abacus 

…………………………… 

 

8
th
 abacus 

…………………………… 

 

9
th
 abacus 

…………………………… 

 

 

21. Can you write vertically the following horizontal subtraction and find the difference? 

Verify the result by using your abacus. Afterwards, follow the instructions to show, by 

drawing beads, the way of executing a subtraction on the Chinese abacus. 

horizontal subtraction vertical subtraction Abacus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Place with beads the number 954 on the abacus. Then, write 

under each place value how many Units, Tens and Hundreds 

are activated. 

 

                                             9     5     4 

Start subtracting. You cannot subtract 6 Units from 4 Units. 

Borrow 1 Ten (=10 Units) from the Tens’ place and make 

the necessary exchanges between place values. Then, draw 

the beads which are activated on the place values and write 

under each place value how many Units, Tens and Hundreds 

are activated. Color in red the borrowed number. 
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954-586= 368 

               14 

         8   4  14 

       9   5   4 

   -  5   8   6 

        3   6   8 

 

                                                                       9     4    14   

Subtract the Units in the Units’ place and draw what 

remains. Then, draw beads on the Tens’ and Hundreds’ 

place. Write under each place value how many Units, Tens 

and Hundreds are activated and go to the Tens’ place.  

 

                                                                        9     4     8 

You cannot subtract 8 Tens from 4 Tens. Borrow 1 Hundred 

(=10 Tens) from the Hundreds’ place and make the 

necessary exchanges between place values. Then, draw the 

beads which are activated on the place values and write 

under each one how many Units, Tens and Hundreds are 

activated. Color in red the borrowed number.  

 

                                                                       8    14     8 

Subtract the Tens in the Tens’ place and draw what remains. 

Then, draw beads on the Units’ and Hundreds’ place. Write 

under each place value how many Units, Tens and Hundreds 

are activated and go to the Hundreds’ place.   

268



At the end of the workshop we presented to the participants an outline of the theory of 

instrumental genesis and semiotic mediation that we used in our instructional intervention, 

and several examples of the implementation of the two theories.  

5 Discussion 

Poisard (2006) argues that for many students and teachers the notion of carried number 

appears not to be developed mathematically. Usually the addition is taught in the form of 

learning the algorithm, which means the execution of a series of steps that represent the 

syntactic rules of the algorithm. However, the performance of an algorithm does not 

require deep awareness of the meaning of the successive steps. For example, when the 

student sums up the units of the addends and finds a result equal to or greater than ten 

units, he says “one is the carried number”. Then, he marks it with the digit 1 either above 

the tens’ place that will carry it over or on the right side of the addition. However, it is not 

certain that the student understands that this 1 is 1 ten, which means 10 units, and not 1 

unit (Fuson, 1990). This misconception is clarified by the Chinese abacus. The fact that in 

each column of the abacus can be represented numbers up to 15 (i.e. 15 units, 15 tens, 

etc.) and someone can make exchanges between the columns with his hand, enhances the 

understanding of the carried number concept (Poisard, 2006). Thus carried number 

acquires a material substance, which did not have until now, since the addition algorithm 

is usually taught without the use of physical manipulatives. Therefore, it is understood 

 

                                        8    6    8 

Subtract the Hundreds in the Hundreds’ place and draw what 

remains.  Then, draw beads on the Tens’ and Units’ place 

and write under each place value how many Units, Tens and 

Hundreds are activated.  

 

                                             3    6      8 

Can you explain what borrowed number is? 
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through the visual and tactile perception of the Chinese abacus. At the same time, the 

knowledge of carried number also contributes to the reduction of algorithmic errors. 

This visual and tactile perception of the Chinese abacus also applies to the case of the 

borrowed number. As it has already been mentioned, the Chinese abacus can support the 

visualization of the subtraction algorithm by the type of “regrouping the minuend”. This 

regrouping requires exchanges between place values in the opposite direction from 

addition. Thus, the intangible borrowing, which so far has been taught to children in the 

context of the subtraction algorithm, becomes tangible, and it is obvious now what is 

being borrowed and from where. In this way errors can be avoided when performing the 

subtraction algorithm, especially when the student is asked to borrow from a place value 

that has a zero digit. 

Therefore, the Chinese abacus is a resource for the teaching and learning of the place 

value system in primary school. It benefits both students’ learning and teachers’ practice 

in the mathematics classroom. 
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ABSTRACT 

We want to introduce our students into some mathematical ‘culture’. This noble goal, however, has many 

competitors in the form of other important goals of mathematics education, and time is finite. We also want 

to (and have to) teach calculus methods and train the students’ algebraic skills. We want to show them that 

different methods can solve the same problem. We want to show the utility of mathematics in architecture 

and technology. We want to stimulate the students’ spatial insight and their ability to make sketches of 

spatial situations. We want to show them the relationships between different parts of mathematics. We 

would like to make them critical of manipulation by the media or the internet.  

The bicylinder is an object that allows combining all these goals. We will discuss how the bicylinder can 

play an interesting role in mathematics courses for students between the ages of 15 and 18, in order to 

combine various goals and to make the mathematics courses more cultural and versatile without spending 

much extra time. 

1 Describing the bicylinder 

1.1 Orthogonal projections and ‘edges’ 

Consider two solid circular cylinders of equal radii, the axes of which intersect 

perpendicularly. While figure 1.1 shows their union, we are interested in theirintersection.  

 
Figure 1.1: The two cylinders (Mathenjeans, 2006) 

We call that intersection a bicylinder, but it has been given many names throughout 

history: 牟合方蓋 [Móuhéfānggài, double box-lid] (ZǔChōngzhī, 5th century),Steinmetz’ 

solid (Charles Proteus Steinmetz, 19th and 20th century), birdcage (Stannard, 1979), 

equidomoid (Ferréol, 2013)… 

Showing the students only the union of the cylinders (figure 1.1), we ask them to 

imagine whatthe bicylinder looks like and to draw its perpendicular projections: a front 

view (FV), top view (TV) and a side view from the left (SV) (figure 1.2). If this causes 

them some difficulties, they can be comforted by this quote: "It takes an unusual gift of 

imagination to visualize this shape clearly" (Strogatz, 2010). 

 

FV 

TV 

SV 
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Figure 1.2: Orthogonal projections of the bicylinder 

We also ask them the shape of the (curved) ‘edges’. It is a bit unusual to talk about 

edges when the figure is not a polyhedron, hence the quotation marks. One could say that 

the bicylinder has two ‘vertices’(at the top and at the bottom), four curved ‘faces’ and four 

curved ‘edges’ connecting the two ‘vertices’. Some students want to determine the shape 

of the ‘edges’ analytically. Taking the axes of the cylinders as  - and  -axes and calling 

the radius  , they determine the ‘edges’ with a system of equations. They solve by 

replacing the second equation by the difference of both and then factorizing. 

 
        

        
   

        

       
   

                 
            

   
                         
             

  

The ‘edges’ are created by intersecting one of the cylinders with the two ‘vertical’ 

diagonal planes       and      . Instead of analytically, this could just as well 

be discovered on the basis of symmetry. So the four ‘edges’ are halvesof two ellipses. The 

small axis of these ellipses is the height    of the bicylinder; the large axis is       (as 

you can deduce from the top view in figure 1.2). 

Figure 1.3 shows a wooden model of the bicylinder. We deliberately don’t give it to the 

students from the beginning; we want to appeal to their imagination. 

 
Figure 1.3: Bicylinder (Modellsammlung) 

1.2 Making the bicylinder 

If students want to make a paper model of the bicylinder, they have to know the shape of 

its ‘faces’ when developed in the plane. We will prove here that the plane development of 

a cylinder cut by an oblique plane is bound by one period of a sine graph. It can be shown 

with a paint roll (figure 1.4). It is alsoused by knitters: the pattern of a sleeve, which is 

more or less a cylinder segment, is made using (approximately) a sinusoid (figure 1.5).  
 

FV SV 

TV 
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Figure 1.4: Paint roll experiment 

 

Figure 1.5: Sleeve pattern 

In order to prove that the plane development is delimited by a sinusoid, we use figure 6. 

By the symmetry it suffices to prove that the half ellipse (left part of figure 1.6) obtained 

by intersecting the volume with a plane, gives rise to half a period of a sine graph in the 

plane development. The solid consisting of the cylinder ‘under’ the half ellipse in figure 

1.6a is called a cylinder hoof. 

 

Figures 1.6a and 1.6b: Proof that we get a sinusoid, first part 
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Figure 1.7: Proof that we get a sinusoid, second part 

We prove that   is indeed a sine function of   (figure 1.7). 

                            

                     

     
 

 
     

     
 

 
                      

Knowing this, the students can make a bicylinder from its plane development. In the 

case of the bicylinder, the height   of the cylinder hoof equals the radius   of the 

cylinders, so the development of two of the ‘faces’ is delimited by one period of the 

graphs       
 

 
 (figure 1.8), and in the same way the development of the other two 

‘faces’ by        
 

 
 (not shown in figure 1.8). 

 
Figure 1.8: The bicylinder and the development of two of its ‘faces’ 

2 Calculating the volume of the bicylinder 

2.1 As did Archimedes? 

Archimedes announces in his preface to The Method that the volume of a bicylinder is 2/3 

of the volume of the circumscribed cube. His proof is lost but we have his proof of the 

volume of a cylinder hoof, which is in a non-lost part of The Method. With eight cylinder 

hoofs, we can construct a bicylinder (figure 2.2), so it is likely that Archimedes used this 

idea for determining the volume of the bicylinder. 
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Figure 2.1: Archimedes of Syracuse (3rd century BC) 

 

 
Figure 2.2: Eight cylinder hoofs form a bicylinder 

Before going into the details of his proof for the volume of a cylinder hoof, let’s say a 

few words about The Method.  

Archimedes sent his papyrus roll with The Method to Eratosthenes at the famous library 

of Alexandria (in present-day Egypt). Later, the work was copied on parchment sheets for 

better preservation. Together with some other works of Archimedes, the sheets were knit 

together into a booklet, a codex. This codex disappeared until it was found in 1906 in a 

monastery in Jerusalem. In the 13th century, the monks had scrapped Archimedes’original 

texts and drawings to replace them by prayers. Archimedes’ codex had become a 

palimpsest, a recycled piece of parchment. The codex was stolen in the course of the 

twentieth century and reappeared in 1998 in a sales hall, where it was sold by auction. A 

mysterious Mr. B bought it for $2,200,000. Nobody knows who Mr. B is, although there 

are some speculations. Fortunately, he allows scientists to study the codexusing UV- and 

X-rays. For more details about the story of this palimpsest, see Netz and Noel (2009). 

In The Method, Archimedes determines areas and volumes in a revolutionary way for 

Greek mathematics: he determines an area by considering an infinity of line segments and 

a volume by considering an infinity of flat slices. Much later, this idea will become 

Cavalieri’s principle (Bonaventura Cavalieri, 17
th

 century) and integral calculus. 

Sometimes he also uses the physical idea of a balance with which he ‘weights’ the slices, 

but this is not the case in the proof about the cylinder hoof. 

How did Archimedes determine the volume of a cylinder hoof (i.e. of one eighth of a 

bicylinder)? We follow the ideas of his proof, but in a very anachronistic way, using 

today’s algebraic notations. 
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Figure 2.3: The cylinder hoof as locus of triangular slices 

In a cube of edge 2, a cylinder of radius 1 and height 2 is inscribed (figure 2.3).The 

prism         is one eighth of the cube. The cylinder hoof obtained as the intersection 

of this prism with the cylinder is one eighth of the bicylinder.Archimedes considers this 

hoof as the ‘locus’ of the variable horizontal triangle     as   varies on the segment 

     (see figure 2.3). The students calculate the area of the triangle    , the variable area 

of the triangle     (as a function of       ) and the proportion of both areas. 

 
          

 

 

                          
 

 
      

   
         

         
      

The proportion of these areas is a quadratic function of  . The graph of a quadratic 

function is a parabola. This is not the way the Greeks of the time of Archimedes 

considered a parabola, but in a different, more geometric way Archimedes came to the 

same idea. Then he constructs a point   on the segment      such that  

    

    
 

         

          
       

 
Figure 2.4: The parabola added in figure 2.3 
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If   varies, the point   moves on a parabola and the variable segment     describes a 

parabola segment inscribed in the rectangle      (figure 2.4). 

Archimedes knows from one of his other works (The Quadrature of the Parabola, 

theorem 14) that the area of a parabola segment inscribed in a rectangle equals 2/3 of the 

area of the rectangle. Since each slice (line segment) of the parabola segment represents a 

slice (triangle) of the cylinder hoof and each slice (line segment) of the rectangle 

    represents a slice (triangle) of the prism       , he deduces, ‘integrating’ all 

these slices, that the volume of the cylinder hoof equals 2/3 of the volume of the prism. 

So the volume of the whole bicylinder is  

   
 

 
                

 

 
                   

 

 
              

    

 
 

Surprisingly, the formula for calculating the volume of bicylinder does not contain a 

factor  . Archimedes: “Unlike spheres, cones and cylinders, this object is equal [in 

volume] to asolid figure bound by plane figures.” (Introduction to The Method, cited in 

Hogendijk, 2002).  

2.2 As did (not) Liú Huī 

 
Figure 2.5: Liú Huī (3

rd
 century) 

Liú Huī wrote his famous Commentary on the Jiǔzhāng Suànshù [Nine Chapters on the 

Mathematics Art] (2
nd

 century BC), wherein he added explanations and proofs to the Nine 

Chapters. He considers a bicylinder and its inscribed sphere (figure 2.6). 

 
Figure 2.6: A bicylinder and its inscribed sphere (Cadav92, 2014) 

He uses ‘horizontal’ slices. Each slice of the bicylinder is a square. The slice of the 

sphere at the same height is a circle inscribed in that square. So the proportion of the slices 

at a same height is always 
 

 
. He deduces that the volume of the bicylinder is 

 

 
 times the 

volume of the sphere. This is an early use of what we now call Cavalieri’s principle 

(Bonaventura Cavalieri, 17
th

century). This principle says: if at any height the ‘horizontal’ 

cross-sections of two solidsare in a fixed proportion, then the volumes of these solidsare in 

the same proportion. 
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Our students can use this proportion to calculate the volume of the bicylinder from the 

volume of the sphere, getting the same result as in 2.1 (i.e. 2/3 of the volume of the 

circumscribed cube). But, unlike our students, LiúHuī did not dispose of the volume of a 

sphere. On the contrary, he considered this discovery of the proportion 
 

 
as a step towards 

finding the volume of the sphere, if he would be able to find the volume of the bicylinder 

first. 

2.3 As did ZǔChōngzhī 

 
Figure 2.7: Zǔ Chōngzhī (5th century) 

Zǔ Chōngzhī succeeded in finding the volume of the bicylinder, using a cube, a pyramid 

and the later principle of Cavalieri, already used by Liú Huī. 

In figure 2.8a, you see the upper half of a bicylinder cut by a horizontal plane. The part 

above this plane has been removed. In figure 2.8b, you see a half cube hollowed by an 

inscribed pyramid (top down). This is also cut by a horizontal plane. The part above this 

plane has also been removed. 

 
Figures 2.8a and 2.8b: Proof of the volume of a bicylinder by Zǔ Chōngzhī (De Temple, 

1994) 

Using a front view of figure 2.8a, the students can show that the side of the square slice 

at height   equals        . So, the area of this square is         . On the other hand, 

the side of the section of the pyramid at height   (figure 2.8b) equals   . Therefore, the 

area of the square ‘ring’, the slice at height   in figure 2.8b, equals        . Because 

the areas at height   are equal for each value of  , the students conclude by the principle of 

ZǔChōngzhī and Cavalieri that the volumes in figure 2.8a and 2.8b are equal. So, the 

volume of the half bicylinder is equal to 2/3 of the volume of the half cube. By symmetry, 

the volume of the whole bicylinder is also equal to 2/3 of the volume of the whole cube, as 

in 2.1. 

Here we worked in half a cube; the original proof of ZǔChōngzhī divides the cube in 

eight parts, but this does not change much. (See Papillon, 2012, Lam, 1985 or Antony, 

s.d.). 
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2.4 As we do 

The ‘normal way’ for our students to calculate the volume of a solid, is using an 

integral.Unlike the majority of the textbook exercises on volumes with integrals, the 

bicylinder is not a solid of revolution. The horizontal slices are squares, so the volume is 

the integral of the area of a square slice as a function of the height   (figure 2.9). 

 

Figure 2.9: Square slice at height   

Again, the side of the square slice at height   is        , so the volume is  

                              
 
  

 

  

 

             

 

  

 

       
  

 
 
  

 

 

      
  

 
    

  

 
   

 
    

 
 

3 Calculating the surface area of the bicylinder 

As we saw in paragraph 1.2, the flat development of the bicylinder of radius  is delimited 

by the sine graphs        
 

 
and        

 

 
 (figure 1.8 in 1.2). The surface area of 

the bicylinder is the area of its development: 

                               
 

 
  

  

 

 

         
 

 
 
 

  

 

             

       

Again it is striking that there is no π in the formula! The surface area is simply the area 

of a square with side   . The fact that the area of the bicylinder is equal to the area of a 

square of side   is culturally interesting. It means that the quadrature is possible here, the 

constructionof a square with the same area as the bicylinder by means of ruler and 

compass, starting from the given radius  . The quadrature of the circle is one of the 
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famous construction problems of Greek antiquity, which in the 19
th

century has been 

shown to be impossible to solve with ruler and compass. 

The area of the bicylinder is     of the surface area of the circumscribed cube    
           . For the bicylinder and its circumscribed cube the proportion of the 

volumes equals the proportion of the surface areas!  

Hogendijk (2002) explains how the surface area can be derived from the volume, 

without integrals. 

4 Applications of the bicylinder 

Cross vaults and the joining of cylindrical pipes are an obvious application of meeting 

cylinders, although it is more the union than the intersection of the cylinders (figures 4.1 

and 4.2).  

 

Figure 4.1: A cross-vault (Glaeser, 2007) 

 
Figure 4.2: Pipes meeting at a right angle (Glaeser, 2007) 

The roofs of the Château de Cheverny, one of the Châteaux of the Loire valley, have 

the form of half bicylinders (figure 4.3). 

 

 
Figure 4.3: Chateau de Cheverny (Papillon, 2012) 
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5 Generalizations of the bicylinder 

A first generalization consists of inventing analogue solids with a different number of 

curved ‘faces’ than four. It is easy to imagine making one with 6 (or         ) ‘faces’by 

intersecting 3 (or 4      ) cylinders, with equal radii and axes lying in one plane and 

intersecting in one point at equal angles of 60° (or        
    

 
). Is it also possible to 

obtain an odd number of ‘faces’? The number of cylinders is half of the number of ‘faces’ 

and one cannot use half cylinders... Why not actually? In figure 5.1a the familiar 

bicylinder is made in a different way and this way can be generalised to an odd number of 

‘faces’. 

 
Figures 5.1a and 5.1b: (Apostol & Mnatsakanian, 2004) 

On the website Mathcurve (Ferréol, 2013) these solids are called polygonal 

equidomoids. The bicylinder is a quadrangular equidomoid. On that site it is claimed that 

the dome of the Cathedral of Florence is a (half) pentagonal equidomoid (that has been 

vertically stretched a little). In order to convince us of this, they place the following two 

figures next to each other (figure 5.2). 

 
Figure 5.2: The dome in Florence and a pentagonal equidomoid (Ferréol, 2013) 

However, you can clearly see in the picture that the dome has more than five ‘faces’ 

since four of them are visible. By entering the cathedral and looking upwards you find out 

that the dome is octagonal (figure 5.3). 

 
Figure 5.3 
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Another generalisation is to take three cylinders with the same radius and with the axes 

that intersect in one point and are two to two perpendicular. The intersection of these 

cylinders is atricylinder. This is a very interesting object, a curved rhombic dodecahedron, 

but we will not discuss it here (figure 5.4). Moore (1974) mentions applications in 

crystallography of the tricylinder and intersections of more than three cylinders, when due 

to increased temperature or decreased pressure a polyhedral crystal gets curved ‘faces’. 

 
Figure 5.4: (Weisstein, 1999-2018) 

6 In the classroom 

In my classroom, I introduced the bicylinder as an exercise on the calculation of volume 

with an integral (2.4). In order to know what area they had to integrate, they had to 

imagine how the object is like (1.1). Only afterwards I confronted the students with other, 

historical, ways of finding the same result. In my esu8-workhop and in this article, I 

follow the chronologic order. You can find the worksheets of the workshop online: 

https://esu8.edc.uoc.gr/1112-2/. 

What I like about the bicylinder, is that it includes a ‘normal’ textbook-like exercise 

(calculate its volume (2.4) or its surface area (3) with an integral), but that it goes further. 

Other methods than integral calculus are possible and have been discovered through 

history (2.1, 2.2, 2.3). The bicylinder is an challenge for the students’ spatial insight (1.1, 

1.2) and it has applications in architecture and technology (4). It can even remind the 

students to be critical of manipulation by the media or internet (5). It is an object with a 

rich cultural history and it provides exemplary access to important mathematicians and 

important highlights in the history of mathematics. 
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ABSTRACT 

(i) Materials: 

 Lime Survey for getting to know and prepare the participants of the workshop 

 Excerpt from Kolmogorov (1933) (pp. 2-3) 

 Original Data of pre-service teacher students’ (PSTs’) learning diaries, who 

attended the described seminar ÜberPro_WR II 

(ii) The age and level of education of students to whom the workshop refers 

Teachers’ pre-service education 

(iii) Short Description of the Workshop 

The aim of the workshop is to share ideas of the seminar “Übergangsproblematik am 

Beispiel der Wahrscheinlichkeitsrechnung II” (engl. Transition problems in probability 

theory, short ÜberPro_WR II) – aiming to supporting students in their transition from 

school to university. The seminar was developed similarly to a seminar with a focus on the 

development of Geometry (Witzke, Struve, Clark, & Stoffels 2016) and which was refined 

at the University of Siegen in 2015-2017. The workshop is divided into seven phases: 

1. The participants prepare the workshop by answering three questions and reading a 

source (7 book pages). It is important for the participants’ experience as well as for 

the whole workshop that the chronologic order is fixed and that the given source 

remains unknown before answering the questions. 

2. We will start discussing the online survey regarding probability theory and beliefs 

amongst the participants and discuss possible explanation, why it is meaningful to 

ask these questions. Kolmogorov (1933) claimed also, that “[t]he author set 

himself the task of putting in their natural place, among the general notions of 

modern mathematics, the basic concepts of probability theory – concepts which 

until recently were considered to be quite peculiar (Kolmogorov, 1933; p. v). 

3. The answers given in the survey will be shared with the participants on paper 

cards, so that we can cluster them in an intuitive way and have the opportunity to 

talk about the results. 

4. A short presentation (<10 min.) will introduce the outline of the seminar 

ÜberPro_WR II and the didactical decisions that lead to the outline. Another 

clustering of answers will be presented originating from the described seminar 

based on a categorization of mathematical world views by Grigutsch et al. (1998). 

This overview will motivate the next part of the workshop. 

5. The participants will get an excerpt of Kolmogorov’s “Foundations of Probability 

Theory”. And shall scan this source for surprising and interesting aspects. After 

reading the excerpt the identified aspects will be discussed.  
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6. After the participants’ own work with the historical sources, excerpts of the 

participants’ diary entries, who attended the seminar ÜberPro_WRII, will be 

handed out to be discussed in groups of 3 to 4 participants. 

7. The workshop finishes with a concluding statement, addressing the importance of 

students’ reflections about their own beliefs and the benefits from using historical 

sources to engage them in their own reflections. This statement is planned to be 

discussed by the participants in the light of their own workshop’s experiences. 

For workshop participants: If you want to participate please prepare the workshop 

using the following link: https://umfragen.uni-siegen.de/index.php/431978/lang-en 

REFERENCES 
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ABSTRACT 

The workshop reports on some teaching experiments which were carried out in France in 

elementary school classes (pupils from 7 to 9 years old) during three academic years 

(2014-2015, 2015-2016 and 2016-2017). The common point of student activities was the 

use of historical counting boards and jetons for learning the decimal numeral system and 

related calculation techniques. 

Counting boards and jetons were one the main instruments of calculation in the West 

until the end of the 18th century. They were replaced progressively, not without difficulty, 

by the written calculation methods coming from India and used with Arabic numerals, 

before the latter are gradually automated by means of mechanical calculators, then 

electronic. This crucial place occupied by counting boards and jetons in the history of 

calculation led us to question the relevance of the use of these ancient material artifacts for 

the development or consolidation of elementary numerical apprenticeships. 

In the first part of the workshop, after a short historical presentation about counting 

boards, participants will manipulate various models of counting boards and discover how 

to manage with them the simplest calculations (addition, subtraction, multiplication). In 

the second part, classroom experiment reports, student work, and videos will be shown as 

a starting point for a pedagogical discussion. 
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ABSTRACT 

After a brief presentation of the main method of recruitment of secondary school teachers (in all disciplines, 

not only in mathematics), we will detail extracts of some official texts that provide the framework for the 

training of future teachers in mathematics: specifications for the master “MEEF”, school curricula and the 

expectations of the national recruitment competition exam called the “CAPES”. We will more particularly 

study the place of the history of mathematics in these texts and its theoretical impact on teachers’ training. 

In the second part of the article, we will specify what training (initial and in-service) is given in the history 

of mathematics for secondary school teachers. How many hours? During which years at university? How 

many training courses? On which themes? Etc. We will give examples of contents. We will also discuss the 

difficulties encountered by teachers, particularly in finding and working on documents that allow them to 

introduce the history of mathematics into their own courses. 

1 Recruitment of secondary school teachers in France (some general 

elements) 

In France, most of current teachers have been trained in two different schools. From 1990 

to 2013, the initial training of French teachers was organized by the “IUFM” (“Institut 

Universitaire de Formation des Maîtres”), which first was independent institute and then 

integrated to university from 2010. Students started IUFM after the third year of university 

(licence degree). During the first year in this school, they prepared for the competitive 

exam named “CAPES”
1
.When the student passed the exam, the second year was divided 

in two parts: part time course in a class as a trainee and part time initial training at IUFM 

(courses on evaluation, lesson planning, class management, …). From 2013 on, the 

“IUFM” was replaced by the “ESPE” (“École Supérieure du Professorat et de 

l’Éducation” that is to say “higher school of teaching and education”) which became fully 

integrated in universities. 

This change of schools mainly brought administrative changes with different statuses 

for trainers, university professors, a bigger place for research, etc. For future teachers, the 

concrete change had been linked with the reform of universities in 2008. From that year, 

the initial training of French teachers has conformed to the national LMD reform “Licence 

(years 1, 2, 3) – Master (years 4, 5) – Doctorate (years 6, 7, 8)”. As the two years of 

school corresponded to years 4 and 5 of university, the creation of a Master's degree was 

necessary. So, now, during year 1, the ESPE prepares students for “the CAPES” exam and 

organizes (with the university) courses of a Master’s degree in education (“Master 1 

MEEF”). During year 2, the ESPE organizes courses of “Master 2 MEEF” and the 

students do an internship in in several classes (about 8 - 10 hours a week in total2). To 

                                                           
1
 The CAPES is a national competitive exam, consisting of written admissibility tests and, for about half of 

the candidates, oral admission tests. The number of candidates admitted to CAPES depends on the number 

of vacant positions throughout France. There is a CAPES for each discipline of the French curriculum. 
2
 In mathematics, it usually corresponds to two or three classes. 
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become teachers, the students have to pass their Master’s degree in the university and their 

internship has to also be validated by the “Ministère de l’Éducation Nationale”. 

This procedure is the normal recruitment of French teachers but there are other 

possibilities. Students can pass another Master’s degree (year 4) and prepare alone “the 

CAPES” exam; they can then follow only year 2 (with adjustments) of ESPE. Some 

students can prepare for another competitive exam (the “agrégation”) generally after a 

Master’s degree of research; if they before passed a Master’s degree, they only must 

validate their internship.  

2 The Master degree “MEEF” in mathematics – some officials texts 

2.1 General organization  

The courses of a Master degree “MEEF” in mathematics are organized in each region by 

the “ESPE” and the department of mathematics of the University
3
. Different choices may 

be done in each region but many common points can be noticed. Indeed, the training 

provided by the “ESPEs” is defined by a national specification (Ministère de l’Éducation 

nationale, 2013-August). The following points can therefore be found in the organisation 

of MEEF Masters degree in mathematics: 

In the first year, students go to a secondary school and shadow an experienced teacher 

in his or her classes. If all goes well, the student can implement some sequences with the 

teacher’s help. There must be four to six weeks of internship in the year, which are 

followed by courses where the students analyse their observations and experiments. 

Most of the students' time is devoted to theoretical mathematics courses as algebra, 

geometry, analysis, probability, etc. These contents are evaluated in the Master’s final 

exams. They are also useful for the written exams of “CAPES” which are admission 

exams and take place in March or April. This first year ends with the oral exams of 

“CAPES” in June. 

The second year, the students have a one-year training course (internship) as a 

trainee teacher. To obtain their Master’s degree, they also follow courses at “ESPE” 

two days a week about evaluation, lesson planning, class management, etc. They must 

write a Master’s dissertation on a theme linked with their experience as a teacher.  

2.2 Place of history of mathematics in the contents of the Master degree 

Another common point is that some courses of history of mathematics can be found in the 

schedules of some Master degree “MEEF” in mathematics
4
. In Poitiers, a new course was 

created in 2009, especially for the Master’s degree “MEEF”. What motivated this 

creation?  

In addition to the decree of August 2013 which gives the specifications of the 

“ESPE”, the choices of training content are linked to the “Référentiel des 

compétences professionnelles des métiers du professorat et de l'éducation” (Ministère 

de l’Éducation nationale, 2013-July) where we can read that teachers must “have a 

thorough knowledge of their discipline […]. Identify the fundamental points of 

                                                           
3
 I only present the case of mathematics but master degree “MEEF” do exist for all disciplines of French 

curriculum. 
4
 I will detail in next paragraph some different choices. 

292



reference, epistemological issues and didactic problems.”
5
. The contents are also 

linked to the definition of the CAPES oral tests. Since its creation and until 2009, one 

of the aims of the CAPES oral test was to “detect that candidates: […] have reflected 

on the aims and evolution of the discipline” (Ministère de l’Éducation nationale, 

1993, p. 19, translation)
6
. In 2009, the word “history” appears in the new official text: 

“This oral examination allows the candidates to show: 

– their mathematical and professional culture; 

– their knowledge of teaching content and curriculum; 

– their reflection on history and aims of mathematics and its relationship with other 

disciplines.” (Ministère de l’Éducation nationale, 2009, translation)
7
 This text may 

explain the choice of my university and several others. 

In practice, few oral subjects explicitly contain references to the history of 

mathematics. But the candidate can make it on his or her own initiative. One of my 

students told me that, while being asked about probabilities, he presented the problem 

of the Grand Duke of Tuscany. However, it is worth noting that in 2018, one of the 

possible subjects for the oral examination is based on an extract of Elements of 

Algebra (Euler) “A troop of men and women spent a thousand cents at an inn. The 

men paid 19 cents each, the women 13. How many men and women were there?”.  

2.3 Place of history of mathematics in the curriculum 

Of course, the CAPES oral exams are also related to the content of the teaching 

curriculum. What place does the history of mathematics have in it? It may be a other 

reason for the introduction of history of mathematics for the future teachers. In fact, since 

2009, there has been less indication of the history of mathematics in the curriculum but it 

can still be found in those of two last years of “lycée” (16-17 and 17-18-year-olds). Even 

if there haven’t been explicit contents linked with history, in the introduction, it is 

indicated: 

“Elements of epistemology and history of mathematics naturally fit into the 

implementation of the curriculum. The knowledge of the name of some famous 

mathematicians, the time when they used to live and their contribution is part of the 

cultural background of any student with scientific training. The presentation of historical 

texts helps to understand the genesis and the development of some concepts.” (Ministère 

de l’Éducation nationale, 2010, p.1, translation)
8
 

In February 2018, the Villani and Torossian’s report “21 measures for mathematics 

teaching” reasserts the importance of the history and epistemology of mathematics:  

                                                           
5
 Original text: “Connaître de manière approfondie sa discipline […]. En situer les repères fondamentaux, les 

enjeux épistémologiques et les problèmes didactiques.” 
6
  Original text: “déceler que les candidats : [...] ont réfléchi aux finalités et à l'évolution de la discipline”. 

7
 Original text: “L'épreuve permet au candidat de montrer:  

- sa culture mathématique et professionnelle ;  

- sa connaissance des contenus d'enseignement et des programmes ;  

- sa réflexion sur l'histoire et les finalités des mathématiques et leurs relations avec les autres disciplines.” 
8
 Original text: “Des éléments d’épistémologie et d’histoire des mathématiques s’insèrent naturellement dans 

la mise en œuvre du programme. Connaître le nom de quelques mathématiciens célèbres, la période à 

laquelle ils ont vécu et leur contribution fait partie intégrante du bagage culturel de tout élève ayant une 

formation scientifique. La présentation de textes historiques aide à comprendre la genèse et l’évolution de 

certains concepts”. 
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“First, epistemology and history of the construction of mathematical notions, which bring 

a real didactic richness, are little taught in initial training. […] By taking advantage of 

history of mathematics, teachers place their teaching in the evolution of knowledge. In 

addition, students are often sensitive to the “mathematics legend”.  Narrative can play a 

motivating role here. On the other hand, the epistemological lessons that emerge from 

history (the role of problems, the entanglement of concepts and techniques, the need of 

abstraction) are obviously made to contribute to training, in particular by overcoming 

short-sighted utilitarianism.” (Villani & Torossian, 2018, pp. 35, translation)
9
 

Almost a year after this report, in January 2019, new curricula for the “lycée” are 

published and history of mathematics indeed takes a real new place. The introduction 

always gives a general indication: “It may be judicious to enlighten the course with 

historical or epistemological contextual elements. History can also be seen as a fertile 

source of problems that clarify the meaning of certain concepts. The “History of 

Mathematics” items identify some possibilities in this direction. To substantiate them, the 

teacher can rely on the study of historical documents.” (Ministère de l’Éducation 

nationale, 2019, p.5, translation)
10

. The real novelty is these items of history of 

mathematics! For each part of the curricula, some examples and indications are given. For 

example, in the part “Numbers and calculus” of the curriculum for the “seconde” (15-16 

years old students), it is explained:  

“The seemingly familiar notion of number is not self-evident. Two examples: the crisis 

caused by the discovery of irrationals by Greek mathematicians, the difference between 

“real numbers” and “numbers from the calculator”. It is also a matter of highlighting the 

gain in efficiency and generality brought by literal calculus, by explaining that a large part 

of mathematics could only develop once this formalism had stabilized over the centuries. 

It is possible to study ancient texts by authors such as Diophantine, Euclid, Al-Khwarizmi, 

Fibonacci, Viète, Fermat, Descartes and highlight their algorithmic aspects.” (Ministère de 

l’Éducation nationale, 2019, p.6, translation)
11

  

In France, these new curricula may lead to an increase in training in the history of 

mathematics. For the moment, it is not well developed, in particular in the in-service 

teacher-training. Let us look at the situation in a little more detail. 

                                                           
9
  Original text: “Tout d’abord, l’épistémologie et l’histoire de la construction des notions mathématiques, 

qui apportent une réelle richesse didactique, sont peu enseignées en formation initiale. […] En tirant parti de 

l’histoire des mathématiques, les professeurs inscrivent leur enseignement dans l’évolution de la pensée. De 

plus, les élèves sont souvent sensibles à la « légende des mathématiques ». La narration peut jouer ici un rôle 

motivant. D’autre part, les leçons épistémologiques qui se dégagent de l’histoire (rôle des problèmes, 

enchevêtrement des concepts et des techniques, nécessité de l’abstraction) sont évidemment de nature à 

contribuer à la formation, notamment en permettant de dépasser un utilitarisme à courte vue.” 
10

  Original text: “Il peut être judicieux d’éclairer le cours par des éléments de contextualisation d’ordre 

historique, épistémologique ou culturel. L’histoire peut aussi être envisagée comme une source féconde de 

problèmes clarifiant le sens de certaines notions. Les items «Histoire des mathématiques» identifient 

quelques possibilités en ce sens. Pour les étayer, le professeur peut s’appuyer sur l’étude de documents 

historiques.” 
11

  Original text: “La notion apparemment familière de nombre ne va pas de soi. Deux exemples  la crise 

provoquée par la découverte des irrationnels chez les mathématiciens grecs, la différence entre «nombres 

réels» et «nombres de la calculatrice». Il s’agit également de souligner le gain en efficacité et en généralité 

qu’apporte le calcul littéral, en expliquant qu’une grande partie des mathématiques n’a pu se développer 

qu’au fur et à mesure de l’élaboration, au cours des siècles, de symbolismes efficaces. Il est possible 

d’étudier des textes anciens d’auteurs tels que Diophante, Euclide, Al-Khwarizmi, Fibonacci, Viète, Fermat, 

Descartes et mettre en évidence leurs aspects algorithmiques.” 
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3 History of mathematics in teacher-training 

To get some data on the situation in France, I sent two questionnaires. The first one was 

addressed to secondary school teachers. I first proposed it to all the teachers of Poitou-

Charentes, the region where I teach. I got around 230 answers. To get more feedback, I 

asked some colleagues for help in others regions. So, the questionnaire was given to 

teachers both in Paris and in Franche-Comté. In those two regions, we only managed to 

contact teachers who are used to follow training courses (not all the teachers), but in the 

end, the results of the survey were similar and I therefore got 530 answers altogether. The 

main questions of this survey were: During your initial training did you follow a course in 

History of Mathematics? Do you use History of Mathematics in classroom? If yes, how? 

[a. in an anecdotic and occasional way? b. in a constant and integrated way? c. other 

option (specify)] If yes, what kind of use ? [a. some anecdotes; b. motivated introduction 

of a chapter, of a notion; c. reading historical texts; d. exercises at home; e. 

interdisciplinary works; f. other option (specify)] If no, why? [a. lack of personal interest; 

b. lack of formation; c. lack of knowledge; d. lack of documents; e. lack of time; f. lack of 

motivation; g. other option (specify)] Do you think that the use of History of Mathematics 

could improve your teaching? If yes, how? 

Another survey was given in several universities in different regions. I send it to some 

members of the IREM
12

, who often was secondary teachers or university teachers who 

teaches history of mathematics. There were two sets of questions. The first was on 

university courses in the history of mathematics: are there such courses in licence? If so, 

with what modalities (hours, semesters, contents, etc.)? Are there such courses in master 

degree “MEEF”? if so, with what modalities (hours, semesters, contents, etc.)? if not, why 

not? The second series concerned the history of mathematics courses in in-service 

training: number of courses offered by IREM in 2017-2018? on what subjects? courses 

offered by institutions other than IREM? number of courses in 2016-2017, 2015-2016 and 

2014-2015? 

3.1 The place of history of mathematics in studies at university 

In the survey for secondary school teachers, the first question was: “During your initial 

training, did you follow a course in History of Mathematics?” Only 20% answered “Yes” 

and more than 70% of them have had less than twenty-hour courses. For example, in 

Poitou-Charentes before 2009, trainee teachers used to get only six hours of history of 

mathematics and after 2009 a new thirty-hour history course was created for them. But 

most teachers who have answered the survey have been recruited before 2009… In 

addition, the University of Poitiers does not offer courses in the history of mathematics 

during the three years of the “Licence de Mathématiques”. What about the other regions? 

In the second survey, one of the questions was: “Do you offer courses of history of 

mathematics? If yes: when? How many hours? required or elective?”. Out of sixteen 

regions, fourteen of them offer history of mathematics in master degree “MEEF”. If they 

                                                           
12

 “Institut de Recherche sur l’Enseignement des Mathématiques”: The IREMs network is formed by 

institutes (about one per region) where primary, secondary and higher education teachers can work together 

to conduct research on mathematics education, and to prepare teachers’ training. Some representatives of 

each region can meet up in “Commissions inter-IREM” on different themes including “epistemology and 

history of mathematics” (there is also “didactic”, “popularization of maths”, “informatics”, etc). 
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don’t, history of mathematics is a required course in “Licence”. Six of them offer history 

of mathematics both in master degree “MEEF” and in “Licence”. 

Here is a summary of the answers
13

 to the survey: 

 Licence Master 

Bordeaux S3 or S5 25h   

Caen S6 elective 50h S2 30h required 

Clermont S5 elective S4 21h required 

Dijon   S3 ; S4 15h + 1 seminar + 1 

training day  

Besançon S3 ; S5 ; S6 18h+(24h or 29h)+ 50h   

Lille S3 ; S6 25h elective + 72h S3 ; S4 28h + 28h required 

Limoges   S1 ; S2 ; M2 10h + 10h required 

+ 6h (elaboration of 

a course) 

Montpellier   M1 ; M2 M1: 16h at least 

M2 : 12h elective + 

6h required 

Paris 13 - UPC   M2 Integrated in 

“contents for 

teaching” and/or 

elaboration of a 

course (possibly 

linked to the 

master’s 

dissertation) 

Paris 8 S1-S2-S3-

S4-S5-S6 

6*30h 

Elective (S1-S2) 

Required (others) 

M2 

Paris - UPEM S3-S4-S5-S6 conferences M2 

Orléans   M2 (elaboration of a 

course) 

Nantes L1 ; L2 20h + 16h elective M1 24h required 

Amiens   S3 24h required 

Poitiers   S1 30h required 

Réunion   S3 24h required 

 

3.2 Examples of contents of courses in master degree “MEEF” 

Most common contents in the various regions are elements of epistemology and history of 

mathematics on some classical themes:  

- History of numerations and numbers; calculus methods; algorithms 

- Euclidian geometry; proofs; some elements of non-Euclidian geometry 

- History of algebra; algebraic equations 

- Infinitesimal calculus  

Some courses are proposed to students to think about the interest and the limits of using 

history of mathematics in a class. The future teachers have to analyse examples of 

exercises for secondary students, based on history of mathematics. When these courses are 

given during the second year of the Master's degree, the trainee teachers are proposed to 

create sequences including history of mathematics. These sequences are tested in their 

classes and then, analysed. 

                                                           
13

  Table’s caption: There are three years in “License” labelled L1, L2 an L3 including six semesters labelled 

S1 to S6 in the columns 2 or 3. There are two years in Master labelled M1 and M2 and thus four semesters 

labelled S1 to S4 in the columns 4 and 5; When I don’t know the precise semester or when the course is a 

year-long one, I indicate L… or M…, otherwise I write the semester. 
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In the Master degree “MEEF” of Poitiers, as the students haven’t had any history of 

mathematics courses in “Licence”, the sequences are divided into different times with 

different aims. There are times of lecture course to give them bases and points of reference 

about mathematicians and history of mathematics. Students also have to read historical 

texts. That allows them to do mathematics through historical documents and confronts 

them with unfamiliar notations and vocabulary. The reading of historical texts can be 

followed by different types of questions as detailed by Evelyne Barbin in De grands défis 

mathématiques d'Euclide à Condorcet, (Barbin, 2010, p. 66): interpret in the historical 

context, compare texts, write in the manner of a mathematician, interpret in modern terms, 

etc. For example, in a course about infinitesimal calculus, I present some parts as 

problems of tangent or quadrature in Antiquity, as the method of indivisibles of Cavalieri 

or as the method of tangent circles of Descartes. However, the students have to read 

themselves some texts in different aims. About the tangent to a circle by Euclid (book 3, 

prop 16) they have to understand the type of reasoning; from a text on the quadrature of 

cycloid by Roberval, they have to write in modern notations the areas of the figure; from 

an extract of Analyse des infiniment petits pour l’intelligence des lignes courbes by the 

Marquis de l’Hospital, they have to calculate other differences in the same manner as 

d(xy)=xd(y)+yd(x). The students also prepared brief oral presentations, from a historical 

text. Last years, the main texts they studied were extracts of Euclids' Elements as book I, 

proposition 47 (Pythagoras’theorem) or proposition 32 (sum of angles in a triangle), La 

Disme of Stevin, texts on the resolution of second-degree equations by Descartes or by Al 

Khwarizmi, etc. They had to present the author, explain the mathematical content of the 

text and analyse the link with contents of the current curriculum as can be seen in the 

example in annex 2. 

3.3 History of mathematics in the in-service training: Difficulties and paradox 

It is more difficult to find history of mathematics in the in-service training. Fifteen regions 

completed the survey about in-service training and only six of them answered they could 

offer a training in history of mathematics in 2018! For the past four years
14

, only five 

regions have succeeded in maintaining their training in history of mathematics at the same 

quantity each year (“Académies” of Besançon, Paris, Lille, Montpellier, Limoges); several 

regions stopped providing such courses. In the “Académie” of Grenoble, the number of 

them has decreased each year but there is still one proposed in 2017-2018. Many others 

haven't given any for several years. 

The different topics offered within in-service training in 2018 were “Focus on 

mathematics in Germany” and “Mathematics and philosophy: Model and reality” (IREM 

of Franche-Comté), “Ancient instruments” (IREM of Grenoble), “Mathematics and other 

disciplines throughout history” (IREM of Lille), “History of mathematics and algorithms” 

(IREM of Limoges), “History of astronomy in mathematics class” (IREM of Paris 7) and 

“Voting systems and general will” (IREM of Montpellier). 

In the “Académie” of Poitiers, for years we have had fewer and fewer elective training 

(including those in history of mathematics) because there are more institutional trainings 

for example on algorithms and programming. So, we tried to include a touch of history of 

mathematics while studying other themes of training like “probability and models in 

                                                           
14

 In the survey, I asked them for 2014-2015; 2015-2016; 2016-2017 and 2017-2018 in order to see the 

evolution. Of course, many of them had proposed in-service trainings before 2014. 

297



lycée” in 2015, or “teaching with magnitudes in collège” last year. We hope that the 

introduction of the history of mathematics into the new curricula will make it possible to 

offer more training.  

Though there is little training related to history, paradoxically it seems to be 

appreciated. I do not have enough statistical data on this issue but in my own experience 

as a trainer, I have noticed some very positive reactions. For example, in the “Académie” 

of Poitiers, in 2014 and 2015, elements of history of mathematics were integrated in the 

training about probabilities whereas they weren’t announced in the title of the course. 

And, at the end, when the colleagues had made an assessment of their daytime, it was one 

of the most appreciated aspects of the training! In Franche-Comté, the courses in history 

of mathematics have become a tradition as it can be seen in one of the answers to the 

survey: “The math history training at the IREM of Franche-Comté has been offered and 

accepted by the rectorate without interruption since 1986. It brings together between 25 

and 35 participants every year. Its duration is traditionally 3 days (with sometimes a 

negotiation to 2 days for budgetary reasons). The mathematics and philosophy workshop 

has been taking place every spring since 2015 and is a continuation of a workshop from 

2013 on Aristotle's syllogisms. It brings together 20 to 30 participants. Its duration has 

increased from one day to two days since 2017.”  

Secondly, there are few trainings but an actual use in class! In the survey for secondary 

school teachers, while 70% of teachers said they had no initial training in the history of 

mathematics, 70% said they use it in class. Of course, as colleagues responded voluntarily 

to the survey, it is likely that they did so willingly when they used the history of math, 

hence this high percentage. However, this result remains paradoxical in relation to their 

training. 

3.4 Documentary resources on history of mathematics for teachers  

The answers to this survey show that, even if teachers don’t use history of mathematics, it 

isn’t a lack of personal interest (only 3%) or lack of motivation (3% too). Some of them 

are afraid of wasting time in class (around 9%). The main difficulties indicated by the 

teachers are the lack of training, the lack of knowledge and the lack of references or 

sources. Let us look at the documentary resources that French mathematics teachers can 

access. 

Many documents exist but it is not necessarily easy to find them and especially to study 

them alone. The in-service trainings do help colleagues to use these materials. Let us 

quote some examples of resources on history of mathematics in France. 

For more than 40 years, the IREM have been linking university research and teachers, 

often through the organization of training courses. The IREM are quoted in the Villani-

Torossian report as an important resource for the teachers. In history of mathematics, 

many of their members (professors of university or secondary teachers) take part to the 

initial training, previously described. The epistemology and history of mathematics inter-

IREM commission has already produced numerous books for teachers. The first one was 

Mathématiques au fil des âges (Dhombres, Dahan-Dalmedico & Bkouche, 1987) and the 

last one Passerelles : enseigner les mathématiques par leur histoire au cycle 3 (Moyon & 
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Tournès, 2018). Most of book references can be found in the Website of the IREM 

institutes
15

.  

One of the current issues is the way to access to these resources. As there are fewer and 

fewer in-service training sessions, how to make these resources known to teachers? 

Internet use must be taken into account. In the end, it becomes a way for the teachers to 

learn by themselves. In France, “Culture Maths”
16

 and “CNRS - Images des maths”
17

 are 

two institutional websites where you can find, among other things, articles on the history 

of mathematics. In the website of APMEP (National association of mathematics teachers), 

a working group on history of mathematics
18

 lists documents, books, sites, videos, etc. that 

can help colleagues to learn about the history of mathematics and to find ideas for 

classroom activities. 

And obviously, IREM-related websites can be found. Websites of certain IREM-groups 

provide documents on the history of mathematics prepared for training, such as the 

“IREM de Caen-Normandie”
19

. Publimath (managed by an inter-IREM commission) is a 

bibliographic database on mathematics education
20

, including many references in the 

history of mathematics. Many of these documents are available online. Recently, a new 

use of website has been experimented on the website of the epistemology and history of 

mathematics inter-IREM commission. The new pages
21

 created are linked to the chapters 

of the book Passerelles : enseigner les mathématiques par leur histoire au cycle 3. They 

allow readers to download documents for the class and they provide references and 

additional links.  

4 Conclusion 

Through the answers to the two surveys and some official texts, we have seen that history 

of mathematics has been maintained last years in the initial training, or even developed in 

some regions including mine. We can hope that the recent projects of the curriculum can 

contribute to the recovery of the in-service training in this field. For now, some teachers 

wanted to use history of mathematics, if the projects of curriculum is carried out, teachers 

will therefore need knowledge and ideas to construct activities for students. Particularly, 

the members of the IREM will be able to propose training sessions to help them. 

However, even if there is more training, it will take time for as many teachers as 

possible to be trained. The issue of the diffusion of the resources is at stake. Of course, 

books will be written but a lot of teachers will keep on finding resources online. But how 

can we work on our own from a old text found online? How can we find additional 

information among the multitude of websites? How can we promote reliable and well-

documented websites? These questions will be part of the challenges of the future training 

sessions.  

                                                           
15

 http://www.univ-

irem.fr/spip.php?rubrique163&debut_article_numerotes=5#pagination_article_numerotes  
16

 http://culturemath.ens.fr/  
17

 https://images.math.cnrs.fr/-Histoire-des-mathematiques-.html 
18

 https://www.apmep.fr/-Histoire-des-maths-  
19

 https://irem.unicaen.fr/spip.php?article104  
20

 see the article of Hombeline Languereau and Annie Michel-Pajus, in this volume (ch. 2.6). 
21

 http://www.univ-irem.fr/spip.php?rubrique505  
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Annex: Example of oral exam in Master degree “MEEF” (Poitiers) 

 

Etude d’une méthode de résolution d’équation du second degré par Al Khwarizmi  

 

(traduction Ahmed DJEBBAR dans L’algèbre arabe, genèse d’un art, Vuibert Adapt, 2005) 

Quant à la justification de un bien et dix racines égal trente-neuf dirhams, sa figure est une surface carrée de 

côtés inconnus, et c’est le bien que tu veux connaître et dont tu veux connaître la racine. C’est la surface 

(AB), et chacun de ses côtés est sa racine. Chacun de des côtés, si tu le multiplies par un nombre parmi les 

nombres, quels que soient les nombres, sera des nombres de racines, chaque racine étant comme la racine de 

cette surface. Comme on a dit qu’avec le bien il y a dix de ses racines, nous prenons le quart de dix – et c’est 

deux et un demi – et nous transformons chacun de ses quarts < en segment> avec l’un des côtés de la 

surface. Il y aura ainsi, avec la première surface, qui est la surface (AB), quatre surfaces égales, la longueur 

de chacune étant comme la racine de la surface (AB) et sa largeur deux et un demi, et ce sont les surfaces 

(H), (T), (K), (J). Il <en> résulte une surface à côtés égaux, inconnue aussi, et déficiente dans ces quatre 

coins, chaque coin étant déficient de deux et un demi par deux et un demi. Alors ce dont on a besoin comme 

ajout afin que la surface soit carrée, sera deux et un demi par lui-même, quatre fois ; et la valeur de tout cela 

est vingt-cinq. 

Or nous avons appris que la première surface, qui est la surface du bien, et les quatre surfaces qui sont 

autour de lui et qui sont dix racines, sont <égales à> trente-neuf en nombre. Si on leur rajoute les vingt-cinq 

qui sont les quatre carrés qui sont dans les coins de la surface (AB), la quadrature de la surface la plus 

grande, et qui est (DE), sera alors achevée. Or nous savons que tout cela est soixante-quatre, et que l’un de 

ses côtés est sa racine, et c’est huit. Si on retranche de huit l’équivalent de deux fois le quart de dix – et c’est 

cinq – , aux extrémités du côté de la surface la plus grande qui est la surface (DE), il reste son côté trois, et 

c’est la racine de ce bien. 

 

Questions :  

1) Présenter l’auteur. 

2) Le problème posé est, en écriture moderne, la résolution de l’équation : x
2
 + 10x = 39 

Comment est désignée la quantité x
2
 ? Comment est-elle représentée géométriquement ? 

Comment est désignée la quantité x ?  

3) Exposer la résolution proposée par Al Khwarizmi en langage actuel. 

4) On trouve dans l’ouvrage d’Al Khwarizmi une deuxième méthode pour résoudre la même équation : 

 

(traduction de J. Høyrup, reproduit dans KOUTEYNIKOFF Odile, « Regard historique 

sur la résolution des équations du second degré », Repère IREM n°28, juillet 1997) 

Il y a une autre figure qui conduit à la même chose. C’est la surface (AB) qui représente le 

trésor. Nous voulons donc lui ajouter ses dix racines. Pour ce faire, nous divisons les dix en 

deux, ce qui devient cinq, et nous construisons deux surfaces sur deux côtés d’AB, à savoir 

les surfaces G et D, dont les longueurs égalent cinq, ce qui est la moitié des dix racines, 

tandis que la largeur de chacun d’eux égale le côté du carré AB. Alors cinq sur cinq nous 

manque opposé au coin de AB : ce cinq étant la moitié des dix racines que nous avons 

ajoutées à deux des côtés de la première surface. Nous savons donc que la première surface, 

qui est le trésor, et les deux surfaces sur ses côtés, qui sont les dix racines, font ensemble 

trente-neuf. Pour compléter la grande surface en carré, seul cinq sur cinq, ou vingt-cinq, fait 

défaut. Nous ajoutons à ceci trentre-neuf, pour compléter la grande surface SH. La somme 

est soixante-quatre. Nous extrayons sa racine, huit, qui est une des côtés de la grande 

surface. En lui enlevant la même quantité que nous lui avons ajoutée antérieurement, à 

savoir cinq, nous obtenons trois comme reste. Ceci est le côté de la surface AB, qui 

représente le trésor ; c’est la racine de ce trésor et ce trésor lui-même est neuf. Ceci est la 

figure 

a) Faire la figure correspondant à cette deuxième méthode. 

b) Comment peut-on utiliser cette figure en classe de 1
ère

 S ? 
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ABSTRACT 

This paper describes a teaching experiment on the notion of Proportion to a Sixth Grade class in Greece. The 

teaching was based on the incorporation of History into Mathematics teaching through the study of a 

primary historical source and the use of a reconstructed 16th-century historical instrument of Errard de Bar-

le-Duc (Errard, J., 1594). Prior to the intervention the pupils’ personal geometric knowledge was 

investigated with the help of a pre-test, consisting of the ability to solve verbal and numerical proportions, to 

solve analogue tasks and to distinguish proportional and non-proportional situations. This was followed by a 

didactic intervention, which included a series of eight lessons. The collection of data during the series was 

done with field observations, recordings and worksheets. Upon completion, the pupils' personal geometric 

knowledge was rechecked through a post-test. Also, with the help of a questionnaire, the students' view of 

the teaching series and the integration of the History of Mathematics were explored. The results of our post-

test showed that there was a clear improvement in the ability to formulate the students' mathematical 

proportional thinking. They improved their performance, used more strategies to solve the problems, gave 

examples of recognition and problem-solving, developed the capacity to analyze quantities in a given 

situation, and applied the multiplication relationship to their data. They have also been able to work together 

and harness the benefits of teamwork.  

Keywords: Ratio and Proportion, History of Mathematics, historical tool, Primary Education 

1 Introduction 

Ratios and proportions are widely used in mathematics, science, and everyday life 

(Karplus, Pulos & Stage, 1983). 

However, out of the fifteen chapters of the section dealing with Ratios and Proportions 

in the School Manual of the sixth grade, two activities only approach the subject 

geometrically. 

Researchers such as Lawson & Chinnappan (2000) argue that Geometry offers the 

framework for resolving various problems and developing learning strategies to solve 

problems in other thematic areas. 

On the other hand, the use of the History of Mathematics and its integration into 

teaching is almost non-existent in Greek reality. It is limited only to some historical notes 

at the beginning of the chapters, which are usually left unused in teaching. 

At the same time, the new Curriculum (Pedagogical Institute, 2011) provides for the 

inclusion of handwritten and digital tools in the teaching of mathematics. 

We therefore consider a geometric teaching approach of ratios and proportions useful 

and constructive, from the perspective of History and the use of a historical tool. 
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2 Research Methodology 

The design of the interventions was based on the hypothesis that students can learn 

mathematical notions by following a history-based teaching approach that uses History as 

a “tool” (Jankvist, 2009). Our work follows the principles of the “modules approach”. 

They may consist of material focused on a particular subject of the curriculum, suitably 

adapted for short-term classroom intervention. However, they may have a larger extent, 

requiring more teaching hours, and are intended to study a subject that is not included in 

the curriculum. The use of History of Mathematics through teaching courses can be done 

in a variety of ways, such as studying texts from original sources or working with students 

with worksheets. The worksheets conduct students to work on the mathematical notions 

and they can contain also historical information, biographies and other material for the 

didactic situations. Finally, on a larger scale, this approach may consist of courses or a 

study of books, or extensive research work by students. The historical material is the 

object of a project, in our case the study of a primary source and reconstruction of the 

historical tool is the entry, which will ultimately lead to the discovery of its properties by 

the students.  

Bussi (2000) argues that History of Mathematics can be applied to school activities by 

studying and constructing copies of ancient tools and other artifacts that are reconstructed 

with the help of historical sources. She believes that almost all the tools of ancient and 

modern technology incorporate a lot of mathematical knowledge that is accessible through 

a careful and targeted study. They can be used as a major mobilization for both young and 

old students, but also adults. Particularly students, who do not love Mathematics, enjoy 

working with physical objects that are closest to their everyday experiences. Cerquetti – 

Aberkane (1997) has already proposed some activities with a tool from Errard’s book. 

The main research question was: How effective in shaping the students’ Proportional 

thinking, can be an experimental geometric approach that uses the study of a primary 

historical text and a reconstructed historical instrument? 

Eight didactic interventions were designed aiming at studying translated primary 

sources and constructing the tool based on the historical text to discover the properties of 

Proportions incorporated in the use of the instrument and ultimately to implement these 

properties for measurements on the real space. During these interventions’ students 

worked alternately in small groups on outdoor activities and individually in classroom. 

3 The implementation 

The implementation started in the school yard, where groups of students were assigned a 

measuring distance assessment. The diversity of the results demonstrated the need to use 

an instrument to measure them with greater precision. Then, we presented a translated 

excerpt of the historical text, entitled La géométrie et pratique générale d'icelle, (Errard, 

J., 1594) which describes an instrument suitable for measuring inaccessible distances. The 

pupils constructed a similar instrument, according to the instructions of the text and used it 

during their experimental work to discover the properties of Proportions of the similar 

triangles formed via the use of the tool.  

Finally, they used these properties to resolve problems of measuring inaccessible 

distances and moreover to design a scale plan of the school surroundings.  
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Our main path was to use and evaluate the idea of passing from the experiment in the 

real space into the paper-pencil classroom environment and from the real space drawing 

into geometrical figure. Via these interventions we have tried to see how our students 

developed their geometrical – proportional thinking by passing from experimental 

geometry (Natural geometry) into a deductive way of thinking (Natural axiomatic 

geometry-Euclidean geometry). 

3.1 First Teaching Intervention 

Students were divided into groups of 4-5 people. The teams went to the school yard, 

where they were given a worksheet. They were asked to work in whatever way they 

wanted and make estimations for the height of different objects from their own 

environment, such as the flagpole in the yard of the school or a tree in the courtyard. After 

initially locating objects in real space, students tried to estimate the heights visually, by 

using various objects of known length as a measure. Then they tried to describe how they 

worked to get the most accurate estimation. After completing the process and the 

worksheet, they returned to the classroom where they had to present their assessments and 

discuss their documentation. The diversity of the results demonstrated the need to use an 

instrument to measure them with greater precision: 

Harris: Yes, but if we had something to measure it (a tree), we wouldn’t have had so many 

variations. 

Teacher: What do you mean? 

Harris: Yeah, an instrument ... 

George: Yes, but how? Would we go over the tree to measure? 

Teacher: Do you think it is difficult to measure the tree because it is tall? 

George: Yes. 

Teacher: And if there was a tool that we could measure from a distance, would we have 

variations in our measurements again? 

George: Yes, but fewer. 

Teacher: Why is this? 

Harris: Someone might hold it wrong, another slightly above ... 

Teacher: Does it depend on the use of the tool 

Harris: Yeah. 

3.2 Second Teaching Intervention 

In this phase we attempted to integrate the History of Mathematics into the teaching. For 

this purpose, an authentic 16th-century text by Jean Errard de Bar-le-Duc had been 

selected. This was the first and second chapter of his work “Géométrie et pratique 

générale d'icelle”. The text was in French and it was accompanied by a translation in 

Greek as children did not know the language. For the sake of clarity, those parts that were 

considered to be particularly difficult for children were simplified. Using the projector and 

photocopies, Errard's historical text and tool was presented to students. The children 

showed great interest in Errard's book and began to ask questions about its authenticity, its 

origin and if there were any similar texts printed at that time in Greece: 

Thomas: What does it write in the title, sir?  

Teacher: “Geometry and General Practice” 
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Raphael: Is it printed in Paris? Is it authentic? 

Teacher: Yes. In Paris and it is the authentic one. 

Thomas: Did we (the Greeks) have such books back then? 

Teacher: It would be very difficult, since we were in a period of Ottoman rule. But since 

you mention it, I want you to look at some of the references later in the text and discuss 

them. 

 

 

 

Figure 3.1: The cover page of the Book’s 

2
nd

 edition 

 

Figure 3.2: One image of tool’s use 

 

The presentation aimed at students to find out the purpose for which the text was 

written, and that similar concerns about measuring inaccessible distances have occupied 

man from very old age. It also helped pupils to realize that the use of such a tool could 

solve the problem they faced in the previous phase and stimulated their interest in the 

construction of this tool:  

Spyros: The tool in the first image looks different than that in the second image.  

Teacher: It's the same tool. Just the first one shows how to use it. 

Panagiotis: It measures from the one side of the river to the other. 

Teacher: Right. It targets a particular point, the tree. 

Eleni: Some triangles are formed ... 

Teacher: Yes, not really. They are conceivable. But for these we will talk below. 

3.3 Third Teaching Intervention 

The aim here was to carry out the construction of the tool by the students themselves. For 

this purpose the teacher ensured that each group had the materials for the construction of 

the instrument: three numbered bars, two by one meter and one by hundred and twenty 

centimeters, a movable connector for the vertical bar and a foldable joint with a 

viewfinder for the moving rod. We also used a photocopy of the historical text for each 

child, with translated instructions for constructing the instrument: 

“So I would like the construction to be as follows: two brass bars completely straight be 

linked to diabetes as AB, AC, and each one and a half each foot approximately, and one 

inch wide, moving and rotating in center A. Next, on the AB bar (which we will call a 
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position), there is an engraving on which will apply a semicircle labeled here as D, on 

which one stands another EF bar (called base) which will be of similar length but equal 

width with the others, or a little narrower, and applied with the semicircle against length 

of AB, and in a way that in the center of E (which will be right on the straight line AB), we 

can close and make the angle we want with rod AB, along and joining the surfaces of the 

rods of the seat and its movable AC bar, and which, however, can be stabilized through a 

screw applied to the so-called semi-ring. Being so made, and the binoculars are focused 

on the ABC points (as we usually do in all instruments) each of the so-called three bars 

will be divided into 300 equal parts or in any other number we would like”. 

 

 

Figure 3.3: The picture for the description of 

the tool 

 

The children’s attention was greatly gained 

by the images of the historical text, which in 

addition to their artistic value, were able to 

provide a wealth of information on the 

construction material and how it was 

assembled: 

 

Figure 3.4: The parts of Errard's tool in 

modern scheme 

Konstantinos: It's made of metal and it has a screw on it... it looks like a machine. 

Helen: This ball, here, what is it?  

Teacher: It's the joint. He presents it in detail in the text below. 

The whole construction was generally considered simple and it was completed in four 

simple steps. The assembly of the tool caused great satisfaction to students and stimulated 

their creative mood: 

Vertical bar 
120cm 

Movable 

connector 

Foldable joint 

with a viewfinder 

Foldable bar 
100cm 

Movable 
horizontal 
bar 100cm 
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Thomas: This is the same as in the 

picture! 

Teacher: But of course, and you made 

it yourself! 

Marianna: When will we use it? 

Teacher: From the next lesson. 

At the same time, teamwork and 

interactions between team members 

created the appropriate conditions for 

exploring the attributes of the tool 

provided in the next interventions. 

 

Figure 3.5: Picture of the tool assembled by 

the students 

3.4 Fourth Teaching Intervention 

At this point we tried to train students to use the Errard’s tool, by measuring accessible 

distances in the schoolyard, transfer their measurements onto the paper, find that two 

rectangular triangles are formed and that the distance requested is the basis of the big 

triangle.           

           A 

 

 

           B D 

 

 

 

           C E 

 

Figure e 3.6: Using the tool to measure accessible distances in the schoolyard 

 

Students worked with the Errard’s tool using a worksheet, confirmed their 

measurements with a tape measure and transferred the triangles formed on a sheet of 

paper. They kept a record of all the measurements done in the yard. In order to simplify 

the process, we took AB=20cm. in all measurements: 

 

  

segment 

1
st
 measurement 

in cm 

2
nd

 measurement 

in cm 

3rd measurement 

in cm 

 

Group 

A 

AB 20 20 20 

AC 120 120 120 

AD 50 65 70 

CE 300 400 450 

 

Group  

AB 20 20 20 

AC 120 120 120 
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Table 3.1: The results of the measurements in the yard 

Although students used the tool for their measurements, its properties were yet 

completely revealed. They will be discovered in the next lessons. 

3.5 Fifth Teaching Intervention 

This time pupils worked in the classroom, using their notes and schedules from their 

previous session. They presented their findings in class and discussed the results. The 

comparison led to the conclusion that the sides of the triangles are associated with a 

proportional relationship. 

At this point, we looked back at the historical text to find references about the property 

of Proportion that we had just discovered. It was a real surprise for students to realize that 

some other people, centuries ago relied on this piece of knowledge of mathematics. 

3.6 Sixth Teaching Intervention 

The knowledge just gained from the previous activity had to be verified in practice and 

applied to a multitude of cases so as to be generalized and formalized in the consciousness 

of students. 

So, we asked the children to work in groups, alternating roles to get the proper 

familiarity with using the tool. They placed a variety of objects (cones) at accessible 

distances in space and then targeted them with the tool and tried to measure their distance. 

Then they measured the distances by a tape measure and confirmed their calculations: 

 

Group Distance measured with Errard tool Distance measured with tape measure 

A 4,60m. 4,80m. 

B 2,40m. 2,40m. 

C 3m. 3m. 

D 3,90m. 3,80m. 

Table 3.2: The divergence in pupils' measurements 

When recording the results, it was found that there was little variation in the 

measurement results between the instrument and the confirmation with the tape measure. 

The students were able to give some good explanations for this: 

Marianna: Maybe we did not just target correctly the cones (objects). 

Panagiotis: The horizontal bar is divided by 5cm. Our measurement can be between those 

spaces… 

B AD 60 77 62 

CE 420 520 450 

 

Group 

C 

AB 20 20 20 

AC 120 120 120 

AD 85 75 100 

CE 330 540 480 

 

Group 

D 

AB 20 20 20 

AC 120 120 120 

AD 50 35 65 

CE 300 250 370 
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Angelina: The instrument has to be upright, otherwise you get a false measurement! 

3.7 Seventh Teaching Intervention 

The students at this lesson worked in groups in the yard of the school. They placed various 

objects, as indicators, on the four corners of the building, as well as other selected parts of 

the courtyard. Then they made the measurements with Errard’s the tool and recorded their 

results. The teams took different points and worked alternately. 

 

Figure 3.7: The students working with the tool in the yard 

The results of the measurements were not any longer confirmed by metric 

measurements, as the distances were considered to be inaccessible and the functionality of 

the tool to measure such distances had also been confirmed: 

 

 

 

 

 

 

 

Table 3.3: The measurement results of the building 

3.8 Eighth Teaching Intervention 

In this last session the students worked individually in the classroom. They had a draft of 

the school from the previous activity with its dimensions and now they had to transfer 

their measurements to the paper and to scale the ground plan of the building and the yard 

of the school using their geometric instruments.  

4 The evaluation 

The results of the post-test gave us an insight into the configuration of the pupils' personal 

space as it was formed after the didactic intervention. Overall, the results showed a 

significant variation in pupil’s performance compared to the pre-test results.  

If we look at the results of the post-test in general and compare it to the pre-test, we can 

say that there is clearly an improvement in both quantitative and qualitative results. 

Group Type of measurement Measurement result 

A Width of the building 28m. 

B Width of the schoolyard 85m. 

C Length of the building 54m. 

D Length of the schoolyard 130m. 
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The tests were based on four main axes: a) the distinction between proportional and 

non-proportional situations; b) the ability to solve analogue projects; c) the ability to solve 

numerical and verbal proportions and d) the ability to compare ratios. 

The post-test gave us useful information. In the first axis, students had to distinguish 

proportional from non-proportional situations such as, for example, the price and the 

quantity of a product. Here we had no significant improvement since the correct answers 

increased from the pre-test from 110 to 114. 

In the second axis where we examined the ability to resolve proportional projects, we 

had a significant improvement. Here, the right answers grew in the post-test from 21 to 38, 

the wrong answers decreased from 32 to 24 and the students who did not respond at all, 

also dropped from 16 to 7. Apart from the quantitative data, we also had a significant 

improvement in the qualitative characteristics of the pupils' abilities. Thus, in most cases, 

students used multiple heuristic methods to solve the exercises, adopted the multiplicative 

reasoning to solve the problems, motivated their choices and tried to solve even those 

problems that could not control. Characteristic is the case of Konstantinos, who, after 

seeing a tree with a height of 1.5 m makes a shade of 3m and the height of another tree 

shading 9m is being sought, says: “The height of the tree is half, i.e. 4.5m.” 

We also had the same improvement in the third group of exercises where we looked at 

the ability to solve numerical and verbal proportions, where for example pupils had to 

complete the fourth term of a proportion with a number or a word. Here the correct 

answers to the post-test increased from 45 to 58, the errors dropped from 33 to 30, while 

students who did not respond at all dropped from 16 to 4. 

The last group of exercises that examined students' ability to compare ratios gave us the 

following comparative results. The correct answers to the post-test increased from 19 to 

27, the errors decreased from 18 to 13 and the students who did not respond at all dropped 

from 9 to 6. 

Improving performance can be seen in the diagram below, which compares student 

performance in both pre-test and post-test: 

 

 

Diagram 4.1: Students' performance in pre- and post-test 

Thus, we see that most students after the intervention have made significant progress, 

with about one third of them approaching excellent performance. 
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Summing up the above and attempting to answer our research question, we would say 

that our experimental geometric approach to Ratio and Proportion has succeeded in 

bringing positive results to the development of the proportional thinking of our students. 

5 The evaluation of the teaching series by the students 

The evaluation of the teaching series was based on a questionnaire and aimed at the 

following axes: the general evaluation, the historical text, the tool and the usefulness of 

the series. 

Summarizing the children's answers to the general assessment of the teaching series, all 

students responded positively. The answers they gave to justify their point of view were 

quite interesting and seem to converge to the following: 

Eleni: They (the lessons) were useful, educational and entertaining. 

Harris: It gave me an incentive. 

Angelina: I like to spend my time with Mathematics 

Chronis: I liked that we all worked together 

Konstantinos: It helped us in Mathematics. 

We see, therefore, that all students have positively evaluated the possibility of other 

similar practical teaching interventions because they believe that they have a different 

benefit in their learning work. 

In the second part of the questions, where the text was evaluated, students were given 

the opportunity to give multiple answers. The first question asked students to characterize 

the text. According to their answers, all 23 students in our sample, found the historical text 

interesting, 21 students found it pleasant, 18 found it comprehensible, while one added 

that he found it detailed. In the second question, the children had to answer if the text was 

related to Mathematics. All students responded positively and completed what concepts 

were included in the text. The most typical answers were: “rectangular and equal triangles, 

angles of the triangles, ratios and proportions of triangle sides, distance measurement, 

straight lines and Euclidean Geometry”. 

We see that most students have responded positively to the text, since they considered 

it interesting, enjoyable and comprehensible, while everyone was able to understand the 

relationship of the text with mathematics and to distinguish the mathematical concepts 

included in it. 

The next category of questions involved the evaluation of the tool itself. Generally, 

their experience of building and using the tool seems to be positively evaluated by the 

students themselves, since most of them found the construction and use of the tool easy, 

they feel it helped them and they would like to construct similar tools in the future: 

Stefanos: I like to see things I've construct with my classmates. 

Angelina: Nice experience and helps you learn. 

Panagiotis: Tools are interesting and you learn a lot from their use 

Harris: I want to discover new things and go deep into the magic of mathematics. 

Vasiliki: It was fun. 

Nikos: I want to learn about other tools. 
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Great impression also made to the students that a 16th century tool was used to teach 

mathematics. Thus, 7 students were surprised that with a historical tool they were able to 

measure inaccessible distances, 5 others that they had the experience to see in practice a 

16th century idea and other 2 that they did not know the existence of such a tool. 

The last question in the questionnaire attempted to assess the pupils' view of the 

usefulness of the teaching series and its practical use. Here, 19 students estimated that they 

will use what they have learned in their daily lives.  

The following responses of the children, who responded positively, stand out: 

Spyros: I will need them if I become a mathematician, engineer or topographer. 

Sophia: I can appreciate distances better. 

Harris: I can measure distances without a measure. 

Marianna: I can calculate the actual distance of two areas on a map. 

Raphael: To calculate inaccessible distances. 

6 Conclusion 

By making a general assessment of the eight didactic interventions, we would say that the 

goals were largely achieved. The pupils worked together, discovered the benefits of 

incorporating the History of Mathematics into their work, construct a historical tool with 

their own hands, used it, discovered the properties of similar triangles, and led to the 

discovery and use of scales. They therefore met, in an experiential way, the ratios and the 

proportions our research sought. 

It is true that the use of History in this work was relatively limited. This happened 

because we had chosen to approach the subject in a way that History is mainly used as a 

“tool”. Also, the extent of the teaching intervention was limited and there was always the 

risk of getting away from our original goal which was, developing geometric proportional 

thinking to 6th Grade Students. 

Nevertheless, a descent attempt was made to rebuild the critical steps of the historical 

development of the tool, by leading a sequence of mathematical problems of scalar 

difficulty in order for the student to build his/her knowledge on the previous experience 

(Tzanakis et. al 2000). 

There is, of course, much space for a deeper and more detailed discussion on the key 

points of the historical evolution of the subject we are examining and the way they have 

affected mathematical knowledge. We hope, however, that we will have the opportunity to 

develop them further into some other project. 
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ABSTRACT 

In last few years in Turkey, it has been suggested and emphasized that giving details of 

history of mathematics in the curriculum may help increasing students' attitudes towards 

mathematics and success (Ministry of Education, 2013). In addition to this it is a known 

fact that science lessons, which are integrated with not only scientists' successes but also 

experiences and challenges, have a potential to increase the students' science success (Lin-

Siegler, Ahn, Chen, Fang, and Luna-Lucero, 2016). In this context, the lives and study of 

mathematicians and scientists may make mathematics lessons more meaningful for the 

students. But when we examine mathematics curriculum from primary school to high 

school grades, we cannot see such an emphasis on primary school mathematics program 

as well as with those in other grades. For these reasons, this study aims to investigate the 

density and effectiveness of the context and content of the history of mathematics and 

science in Turkish mathematics textbooks across all grades. For this purpose, two 

independent researchers analyzed 21 mathematics textbooks for 1st grade to 12th grade. 

All of the textbooks are still used in mathematics classes even if they were published after 

2013 (the revision year of the mathematics curriculum). The data in the textbooks were 

classified by grade level; name of the mathematician/scientist; the delivery of information 

(non-historical, anecdotes, notes with daily use of/application the historical knowledge, 

notes without daily use of/application the historical knowledge, etc.), and learning area 

(geometry, numbers, algebra, etc.). By clarifying the criteria for the textbooks, the 

researchers discussed the conflicts of their work and opinions after working on the data 

separately. At the end of the study it was determined that neither the content about 

mathematicians and scientists nor information about the origins of the mathematical 

concepts or symbols are sufficiently given in the textbooks. It was also seen that the 

limited context of history of mathematics and science was primarily given at the beginning 

of the new subjects and meant only for reading and not to use along with the lesson. 

Scholars have noted that the weakest way of using historical content in mathematics 

lessons is giving them as short historical anecdotes at the beginning of the new chapters 

(Baki & Bütüner, 2013; Erdoğan, Eşmen & Fındık, 2015). Lastly, it was found that the 

textbooks written collaboratively by scholars, teachers, and experts were better than those 

by means of history of mathematics and science. According to the findings of this 

research, it can be said that history of mathematics and science contents are not enough to 

nurture the students' mathematical knowledge and increase attitudes towards mathematics 

(Ministry of Education, 2013). Thus, it is suggested that the authors of the mathematics 

textbooks need to be trained on how to connect the history of mathematics and science 

with mathematics curriculum in effective and useful ways. 
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ABSTRACT 

As usual we used textbook approach to introduce the imaginary unit i, whose square 

equals to -1. When class ended, a student asked if negative numbers could have 

logarithms. Does log(-1) exist? His question reminded us to reconsider how to make more 

sense of the imaginary unit i. There must be some more natural and intuitive alternative to 

define it. The historical development of mathematical concepts and the way that they 

develop in an individual mind are observed to be very much alike (Jankvist 2009). With 

an exploration of a history-based classroom practices and students' performances in non-

routine problems solving, our research aims to examine when and how, and in what 

context to introduce the imaginary unit and what geometric intuition can serve to enhance 

students’ understanding.  

The case study took place with a class of 11th grades students (16-17 year old) in our 

high school. The theoretical framework used to study the teachers’ classroom practices is 

the double approach (Vandebrouck 2012). We articulate both the analysis of students’ and 

teachers’ activities in order to identify, understand and interpret the link between the 

teaching of complex numbers using original sources and the corresponding students’ 

activities. In the highlight of theoretical framework, we attempt to answer the following 

two research questions:  

1. Can students’ own solutions to a cubic equation together with Cardan’s attempt, 

Leibniz’s doubt and Bombelli’s discovery pave the way for the introduction of the 

imaginary unit i?  

2. Can geometrizing the imaginary unit by Wessell, Argand, and Gauss enable students 

to visualize the concept and acquire an intuitive understanding on dealing with non-

routine, open-ended “real-life” challenges thereafter? The data that we collected consists 

of videos of classroom sessions and interviews with students.  

Our research indicates that teachers themselves first need to be well equipped with the 

history of mathematics so as to better judge how students should acquire such knowledge. 

The concern about the logarithms of negative numbers raised by the student mentioned 

above can be encouraged to be an interesting after-class historical project. Meanwhile, we 

confirm that the utilization of original sources in mathematics classroom can activate 

students’ engagement to make mathematical discoveries, when different strategies flash 

into their minds and a repertoire of diverse representations are compared and the best is 

then chosen. Also, we address some obstacles to overcome. In the presentation, a detailed 

teaching scenario with the historical package, teachers' implementations and students' 

activities as well as implications for teaching and research will be presented and 

discussed. 

Questions discussed in our class included the following: 

Question 1: Find the solution to the equation
3 15 4x x  .  
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Question 2: Calculate the above cubic equation with Cardano’s formula; share what 

you discover.  

Question 3: Leibniz considered the following situation: Let x and y be positive values, 

and 2 2 4x y   as well as 5 5xy  . Can you find the value of x y and x, y respectively? 

Explain why. 

Question 4: With Bombelli’s equation 

3 31 1 1 1 2a b a b c d c d c            , can you shed new light into 

3 32 121 2 121x       (this is what we got when we applied Cardano’s formula to 

solve the cubic)?  

Question 5: Comparing with the number -1, what conclusion can you draw about the 

algebraic and geometric representation of the imaginary unit i?  

Question 6: Share your ideas about Wessel’s work with your classmates and infer the 

geometric representation for 1  (Ever since Wessel, then, multiplying two directed line 

segments together has meant the two-step operation of multiplying the two lengths, with 

length always taken to be a positive value, and adding the two direction angles. These two 

operations determine the length and direction angle of the product, and it is this definition 

of a product that gives us the explanation for what 1  means geometrically).  

Question 7: A treasure hunt with imaginary numbers (quoted from one two three… 

infinity by George Gamow.) 
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ABSTRACT 

The paper addresses the potential of using history of mathematics in combination with ICT to illustrate the 

notion of proof and proving, including also the role of examples and counterexamples, to undergraduate 

students and relates such use to research findings regarding students’ difficulties. The historical case used to 

illustrate this is Tschirnhaus’ transformation from 1683, suggesting a presumed method for solving n-degree 

algebraic equations, and we draw on a small empirical example from a Roskilde University undergraduate 

mathematics student project report. Based on this example we further discuss the potential use of history in 

combination with CAS in a classroom setting drawing on the notions of justificational mediations, 

sociomathematical norms and scientific debates. 

 

Keywords: History of mathematics, original sources, CAS, mathematical proof and proving, 

counterexamples, “the mathematical underworld”, justificational mediations. 

1 Introduction 

It has been pointed out previously that HPM research often do not make use of general 

mathematics education research frameworks (Jankvist et al., 2015). This is a pity for at 

least two reasons. Firstly, mathematics education research frameworks have a variety of 

lenses to offer HPM. Secondly, it may make it easier to communicate HPM research to the 

rest of the mathematics education community. In this paper, we shall address the topic of 

mathematical proof, examples and counterexamples under the assumption that HPM has 

much to offer in this regard – and that digital tools may also have a significant role to play. 

Before we begin, a warrant should be provided to the reader, which is that this is a 

theoretical paper. Taking our departure in what the literature states regarding students’ 

difficulties regarding mathematical proof and counterexamples, we outline a selection of 

theoretical constructs to potentially be used in relation to using elements of the history of 

mathematics in this endeavour. We also address elements of potentially using digital 

technologies in this respect, this in particular in relation to an illustrative and empirical 

example which serves as an invitation to think further. The example draws on the history 

of the so-called “Tschirnhaus’ transformation” from 1683. 

2 Students’ difficulties with mathematical proof 

As phrased by Duval (2007, p. 137), “Proof constitutes a crucial threshold in the learning 

of mathematics. Why do so many students not succeed in truly crossing it?” One reason is 

given by the Education Committee of the EMS (2011, p. 51) in their series of “Solid 

Findings” articles: “Mathematical thought concerning proof is different from thought in all 

other domains of knowledge, including the sciences as well as everyday experience; the 

concept of formal proof is completely outside mainstream thinking.” Dreyfus (1999, p. 94) 
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has observed that “[i]ndeed, research results on students’ conceptions of proof are 

amazingly uniform; they show that most high school and college students don’t know 

what a proof is nor what it is supposed to achieve. Even by the time they graduate from 

high school, most students have not been enculturated into the practice of proving or even 

justifying the mathematical processes they use”. Besides the differences to everyday 

reasoning, students’ difficulties with the notion of proof also stem from that they may 

have never learned what counts as a mathematical argument (Dreyfus, 1999). This is 

backed by Duval (2007, p. 159), who distinguishes two kinds of failures on students’ 

behalf: (1) “Dysfunctions in valid reasoning, such as status confusion, non-distinction 

between a statement and its converse, etc.” (2) “Gaps of deficiencies in the progress of a 

proof”. (For Duval, “status confusion” not only refers to different forms of reasoning in 

mathematics, but also to the different status of statements within a proof, e.g. hypothesis, 

property, and conclusion). 

One type of status confusion is that of proof vs. example. Harel and Sowder (2007) 

have coined the notion of empirical proof schemes. The empirical proof schemes come 

into play when using examples to justify the truth of general (universal) statements, which 

is what Bell (1976) refers to as empirical justifications. Balacheff (1987) distinguishes 

between two subcategories: the naïve empiricism, which consists in the checking of 

assumed special cases, e.g. the first two or three instances; and the crucial experiment, 

which consists in checking for assumed general cases, e.g. if it is true for the numbers 1, 

17, and a billion, it is true for all natural numbers. 

Counterexample is yet another difficulty for students related to mathematical proof and 

reasoning, and one which is also subject to status confusion. Iannone and Nardi (2005) 

distinguish three, at times conflicting, roles that counterexamples play in learning and 

doing mathematics: (1) In the affective role the “counterexample has to be emotionally 

convincing for the students (strengthen their certainty). If it is based on what the student 

perceives as some minor technicality [...] the counterexample may not convince the 

student that the proposition is false.” (Nardi, 2008, p. 89) (2) The cognitive role “consists 

in conveying to the students that all counterexamples are the same, as far as mathematical 

logic is concerned; that a single counterexample can refute a proposition; that a 

proposition does not need to be always false in order to be false; and, that one occasion of 

falsity suffices.” (p. 89) (3) The epistemological-cum-pedagogical role “has to do with 

what can be learned from a good counterexample – for example in mathematics we use 

counterexamples to identify which elements of a false statement would need to be 

amended in order to transform this statement into a theorem.” (p. 89) (see also Peled & 

Zaslavsky, 1997). 

If, for example, the textbooks do a poor job in enabling students to distinguish between 

different forms of reasoning – and their status – in mathematics, the job is left entirely to 

the teachers. Often, they might do this by asking students to “explain” and “justify” their 

reasoning. But this is a task which is related also to the students’ perception (or beliefs) of 

mathematics and what it means to do mathematics. Dreyfus (1999, p. 106) says: “...the 

requirement to explain and justify their reasoning requires students to make the difficult 

transition from a computational view of mathematics to a view that conceives of 

mathematics as a field of intricately related structures. This implies acquiring new 

attitudes and conceiving of new tasks: The central question changes from ‘What is the 

result?’ to ‘Is it true that...?’”. 
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3 Question and hypothesis 

Indeed, it is a “solid finding” that empirical proof schemes are widespread among 

students. Still, this also builds on a rather rough picture of what mathematics is – e.g. 

abstract vs. concrete – and often underplays the role of examples. Teaching students a 

sharp distinction between examples (that serve the purpose of generating ideas for 

propositions) and proofs (that serve the purpose of validating these propositions) might 

lead to a somewhat sterile image of what mathematics is – e.g. a collection of proved 

theorems as well as experience in finding theorems by investigating examples and proving 

them deductively. The history of mathematics has something to offer here: Firstly, in 

terms of original sources on methods and examples. Secondly, in terms of providing 

students with an idea about how mathematics has evolved over time (Jankvist, 2015). 

Hence, the aim of this paper is to explore the relationships between proof, examples 

and counterexamples through a use of history and historical sources in the classroom. 

The hypothesis we build upon is that we firmly believe that digital technology may have a 

role to play in such an exploration (and we shall return to this later). We shall provide one 

example of an original source, or excerpt of one such, that may to some degree illustrate 

this. The source is that of Tschirnhaus’ transformation from 1683, where he proposed a 

method which he apparently believed could be generalized to solve algebraic nth degree 

equations. 

4 Tschirnhaus’ transformation 

Ehrenfried Walther von Tschirnhaus (1651-1708) was a German philosopher and 

mathematician, who among other things in the summer of 1675 established a very close 

relationship with Leibniz (1646-1716) while in Paris. Tschirnhaus is acknowledged for 

four major contributions: 

 On catacaustics (1682) 

 On quadrature or integration (1683) 

 On the Tschirnhaus transformation (1683) 

 His (philosophical) logic, Medicina mentis (1687) 

We are concerned with the third, which is entitled Methodus auferendi omnes terminos 

intermedios ex data æqvatione, which in English translates to Method for eliminating all 

intermediate terms in a given equation. 

With reference to Descartes’ Geométrie, Tschirnhaus builds on the fact that it is always 

possible to eliminate the second degree term of any third degree equation. He considers a 

third degree equation in y: 

          and          , 

for appropriate a and b. By eliminating y between these two, Tschirnhaus finds “the 

resulting equation” which is what is displayed in Figure 4.1. 
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Figure 4.1: Excerpt from Methodusauferendi terminus intermedios ex data aequatione 

The columns in Figure 4.1, arranged according to the degree of the z-term, are the key to 

Tschirnhaus’ observations. The   terms in column 2 are eliminated if 

         

The z-terms in column 3 are eliminated, if 

                    , 

a second degree equation in b with a = 2q/3. Tschirnhaus thus arrives at an equation of the 

form 

      , 

which has roots  
 

,    
 

, and     
 

. 

As remarked by Kracht and Kreyszig (1990, pp. 17-18), in “the remaining portion of 

his paper, Tschirnhaus discussed expressions a and b suitable for eliminating the third 

term in an equation of degree 4, 5, or 6 from which, just as in the cubical case, the second 

term is already absent” and that the “paper was supposed to explain a general method, and 

one wonders to what extent the author himself believed his claim: ‘Et sic idem processus 

observaturadtres, qvatuor, qvinqve & terminus auferendos’. In the continuous 

correspondences between Tschirnhaus and his old friend, Liebniz, the latter certainly 

expressed his doubts in relation to the generality of Tschirnhaus’ method. Already as early 

as in 1678 or 1679, Leibniz challenged Tschirnhaus’ idea:  

Concerning your ... method for finding the roots of an equation, which for solving 

                        

consists in assuming 

                            [q should read y] 

and then eliminating x by y and ... eliminating the middle terms in the resulting 

equation. ... I do not believe that it will be successful for equations of higher degree, 

except in special cases. I believe that I have a proof for this. (Leibniz, 1678-79, 

quoted from Kracht & Kreyszig, 1990, p. 27) 
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As noted by Kracht and Kreyszig, Leibniz’ last sentence of course refers to the 

transformation under consideration, not to a forerunner of Abel’s famous proof for the 

insolvability of the quintic by radicals. 

5 An empirical case from a mathematics undergraduate program 

In a Roskilde University mathematics bachelor’s thesis on algebraic equation solving from 

Cardan (1501-1576) to Cauchy (1789-1857), three students describe and discuss 

Tschirnhaus’ transformation in the light of other and related events in the history of 

algebraic equation solving (Backchi, Jankvist & Sağlanmak, 2002). Besides the original 

source from 1683, they relied on the research by Kracht and Kreyszig (1990) as well as 

Tignol’s (2001) book about Galois theory. The students work through both the historical 

presentation, i.e. that of Tschirnhaus, of the transformation, and the modern by Tignol, 

which relies on calculating determinants and using matrices. 

As pointed out by the students, the reason that Tschirnhaus’ method works for n=3 is 

that “the system of the n-1=3-1=2 equations, in this case only leads to a second degree 

equation in b, since (n-1)!=(3-1)!=2” (Backchi et al., 2002, p. 43). For n=4 and n=5, the 

intermediate equation “will in worst case become an equation of degree (4-1)!=3!=6 or (5-

1)!=4!=24” (p. 43). 

From our perspective the interesting aspect of this thesis is the way that the students 

“test” Tschirnhaus’ transformation. The students use CAS (Maple) to empirically “test” 

Tschirnhaus’ transformation for n=4 and n=5 in order to further their understanding of 

what “goes wrong”. For n=4 they obtain a third of page long expression for the 

intermediate equation, visually illustrating the inefficiency of the method (pp. 152-153). 

For n=5, Maple crashes before completing the calculations (p. 165). 

Surely, the students “test” can also be done in CAS without the modern day notation 

and use of matrices introduced by Tignol (2001), although it undoubtedly will be a more 

cumbersome task. Our purpose in this particular paper, however, is not to discuss and 

compare modern day mathematical notation to that of previous times. Rather we seek, as 

previously mentioned, to illustrate that digital technologies can be used to empirically 

“test” mathematical conjectures, as a kind of “technological un-likelihood test”. This is to 

say, the technology does not provide a traditional counterexample in the usual sense, but it 

can play the role of illustrating to the students why it is unlikely that a given mathematical 

conjecture holds - in the example above, because the intermediate equations simply 

increase so much in complexity.And unlike modern day mathematics, the history of 

mathematics is full of conjectures which has already been proven wrong, and which for 

that reason can act as illustrative examples in the teaching and learning of mathematics. 

6 The “mathematical underworld” 

With outset in this example, it makes sense to look at the distinction between deductive 

and inductive reasoning in mathematics. The classical picture that we as educators try to 

convey is that of mathematics as a pure deductive discipline, where inductive or 

experience-based reasoning is “wrong”, “problematic” or “superfluous”. However, the 

example of Tschirnhaus’ transformation – as it is described above – can help us unpack 

this notion of mathematics as “pure”, or phrased in another way; introducing Tschirnhaus’ 

transformation and using CAS to explore his conjectures allows us to open up another 

323



 

layer of mathematical practice in relation to education. The students in the example above 

do not follow the classical image of mathematics. Rather they explore through computer 

work the likelihood of Tschirnhaus’ hypothesis in an informal way. 

If we distinguish examples from counterexamples, and again from proofs and 

conjectures, the mainstream story of mathematics is that examples allow for inductive 

reasoning, but only in a heuristic manner. Nothing is proved by example! Hence, 

examples are thought of as ways to generate ideas for further exploration and formulation 

as theorems and proofs (Johansen & Sørensen, 2014, p. 140). On the other hand, 

counterexamples are part of deductive reasoning as ways of rejecting propositions or 

proving converse statements (by contradiction or counterexamples). This means that the 

only “allowed” inductive reasoning in a mainstream view of mathematics is in relation to 

heuristic treatments of examples. But this mainstream story leaved out two forms of 

reasoning that are relevant, and that we believe it is worthwhile focusing on; namely 

inductive reasoning in relation to proofs and in relation to counter-examples. Our interest 

here is howfailed attempts to proof, or difficulties with conducting calculations, build 

mathematical intuition, both within the individual mathematician and mathematics student 

and in the mathematical society at large.We know from the literature on mathematical 

practice that inductive reasoning in mathematics is not limited to the heuristic work with 

generating conjecture through examples. Several autobiographical accounts (e.g. 

Thurston, 1994) as well as work in the philosophy of mathematical practice (Misfeldt & 

Johansen, 2015) point to the importance of development of strategic ideas and intuitions 

about routes to be pursued in mathematical research as well as dried out areas and 

problems in which one can be stuck for so long that it challenges one’s career. 

This phenomenon, i.e. that mathematicians and the mathematical society are 

accumulating inductive knowledge about proofs and counterexamples, is on the one hand 

a critically important part of mathematical practice, and on the other hand not a part of the 

official mainstream story about mathematics. We shall refer to such use of inductive 

reasoning and knowledge generation in relation to mathematics in ways that are not solely 

related to heuristic treatment of examples as “the mathematical underworld”. This term is 

close to what Reuben Hersh (building on Goffman 1978) describe as the backside of 

mathematics (Hersh, 1997). The backside of mathematics is defined in relation to the front 

side, and where the front side is described as formal and precise ordered and abstract, the 

backside is fragmentary, informal, intuitive and tentative (p. 36). Hersh describes how the 

philosophy of mathematics tends to not see the backside of mathematics (of course new 

approaches in the philosophy of mathematical practice tries to address this) and we can 

add to this that mainstream teaching of mathematics, has the same problem. How do we 

address the backside of mathematics in teaching? The informal and intuitive nature makes 

the backside hard to point to in a precise manner. We can define the “mathematical 

underworld” as the object of teaching when trying to address the backside of mathematics 

in teaching. The underworld is where the backside lives and can be studied. In that sense, 

the mathematical underworld represents knowledge generation in the mathematical field 

that transcends the clear distinction between modes of discovery and of justifications. 

This leads us to the question of how to understand and teach the mathematical 

reasoning process in a way that does not neglect this mathematical underworld. In order to 

do that we base ourselves in a model developed with an outset in Lakatos and Polya and 

published in the proceedings of the previous ESU (Misfeldt, Danielsen & Sørensen, 
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2015). This model describes an ideal reasoning process, focusing on the relation between 

inductive reasoning (from example to conjecture) and deductive elements such as 

counterexamples and refinements of proofs. 

 
Figure 6.1: This figure taken from (Misfeldt et al., 2015, p. 437), describes the reasoning 

process in mathematics from ideation to proof. The model shows the interplay between 

proofs and counterexamples, based in Lakatos, but the model does not capture inductive 

reasoning that is not involved in working with examples. The yellow labels designate 

inductive reasoning, and are intimately connected to examples. 

 

The model in Figure 6.1 formalizes the mainstream image of the role of examples in 

mathematical proof work (Misfeldt et al., 2015). But the role of inductive and 

instrumented reasoning in the mathematical underworld is not clearly described here. If 

we apply the model to the way the students use CAS to work with Tschirnhaus’ 

transformation, we see the phenomenon these students experience is not completely 

captured by the model, and in particular by the wording applied in the model. The attempt 

to create examples arguing for the potential conjecture fails and this sparks interest in 

understanding the limitations of the methods rather than proving the general claim. 

We now take a look at some of the circumstances related to how the considerations 

discussed above may find their application in a classroom setting. We do so by outlining a 

selection of theoretical constructs that we deem potentially relevant for such an endeavour. 

These are Misfeldt’s and Jankvist’s (2018) notion of justificational mediations, Yackel’s 

and Cobb’s (1996) notion of sociomathematical norms, and finally Alibert’s(1988) notion 

of scientific debate.  

325



 

7 Justificational mediations 

The use of CAS for learning mathematics is often understood with the instrumental 

approach to mathematics learning (Trouche, 2005), which focuses on how students 

transform CAS tools to personal instruments. One critical concept in the instrumental 

approach is that of mediation that designates the way in which tools support goal directed 

activities and hence mediate between a student and his/her goal. The literature highlights a 

critical distinction between epistemic and pragmatic mediations referring to whether the 

students aim at understanding certain phenomena or at solving specific tasks (Artigue, 

2002).  

When working with the use of CAS in the context of proofs and proving activities, we 

have described four core questions/aspects about how CAS mediate proving (Misfeldt & 

Jankvist, 2018). Aligning with the instrumental approach, this can be conceptualized as 

using CAS for justificational mediations (Misfeldt & Jankvist 2018). These four aspects of 

justificational mediations are: 

1. Does the CAS use establish truth? This is the core function of a justificational 

mediation. To what extent does the CAS output act as warrant in an argument?  

2. Does the CAS use allow interaction and experimentation? This highlights the 

degree to which students can change parameters, explore phenomena etc., and 

therefore to what extent the students still have agency when working with CAS in 

relation to proofs. 

3. Is the argumentation inductive, deductive or authoritarian? What type of proof 

scheme is in play and what type of warrant do CAS provide. 

4. Does the argument highlight important aspect of the proof or the mathematical 

relationships?  

Both the second and the fourth aspects are to some extent related to epistemic mediations. 

Still, we suggest that these four aspects of justificational mediations more or less capture 

the important aspects of using CAS tools in proving activities.  

Looking at the case of the students’ work with the Tschirnhaus transformation, we 

can make the following observations related to the four questions/aspects: 

1. The CAS use does not establish truth in the usual sense – what we do learn from 

the use of CAS, however, is that the computations of the Tschirnhaus 

transformation in the case of fourth and fifth degree polynomials become very 

lengthy and complicated and do not seem to work in the sense of providing a 

mathematical result. This is not the same as establishing truth in a classical sense.  

2. The use of CAS is a case of experimentation, in the sense that the reported activity, 

more or less is an experiment where the students could – and did – play with 

attempts to calculate the Tschirnhaus transformation for specific polynomials of 

higher degree than 3. In the case, there is a direct continuity between calculating 

the general case (as attempted in the student project) and experimenting with 

specific examples.  

3. The argumentation here is both deductive and inductive. In a sense the attempt is 

to calculate the general Tschirnhaus transformation, for polynomials of degree 2, 

3, 4, …. In cases where this strategy works, the argument is straightforward 

deductive and fulfils all mathematical standards in the classical sense. Yet, when 

this plan breaks down (from polynomials of degree 4 and onwards) the argument is 

different. The CAS breakdown is not by any means a valid mathematical argument 
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for the impossibility of Tschirnhaus’ hypothesis. Still, it does support the idea that 

this hypothesis might not hold water, in an inductive fashion. This type of non-

valid/non-kosher mathematical knowledge is what we have designated “the 

mathematical underworld”. 

4. The relation to the main ideas in the proof of the Tschirnhaus transformation is 

slightly awkward here; since we are looking at a negative result (the general 

Tschirnhaus transformation cannot be calculated). However, CAS provide a good 

idea about the reason why the result is unobtainable. 

8 Sociomathematical norms 

Sociomathematical norms were observed and named by Yackel and Cobb (1996), who in 

a teaching situation noticed that aspects which could neither be described as purely 

mathematical norms nor purely as classroom social norms were in play. Yackel and Cobb 

(1996, p. 461) define sociomathematical norms as “normative aspects of mathematics 

discussions specific to students’ mathematical activity” and describe the difference to 

social norms as “The understanding that students are expected to explain their solutions 

and their ways of thinking is a social norm, whereas the understanding of what counts as 

an acceptable mathematical explanation is a sociomathematical norm. Likewise, the 

understanding that when discussing a problem students should offer solutions different 

from those already contributed is a social norm, whereas the understanding of what 

constitutes mathematical difference is a sociomathematical norm”.  

Sociomathematical norms are negotiated between the students and the teacher, and may 

thus vary from classroom to classroom. This negotiation builds on already “taken-as-

shared” perceptions within the classroom, and as such they are “… intrinsic aspects of the 

classroom’s mathematical microculture. Nevertheless, although they are specific to 

mathematics, they cut across areas of mathematical content by dealing with mathematical 

qualities of solutions, such as their similarities and differences, sophistication, and 

efficiency. Additionally, they encompass ways of judging what counts as an acceptable 

mathematical explanation.” (Yackel & Cobb, 1996, p. 474). Hence, explanations and 

justifications are themselves made the objects of reflection. 

The case highlights a type of inference in mathematics, different from the established 

and accepted reasoning. This “mathematical underworld” poses an educational problem, 

since exploring the Tschirnhaus transformation and realizing that there seems to be a 

breakdown when attempting to calculate the transformation for the general polynomial of 

degree 4 and 5, is not a proof or even an established mathematical result. However, it does 

constitute a type of mathematical knowledge that should be object for teaching, namely 

establishing sociomathematical norms that both allow for discussing and working with the 

type of phenomena described as the “mathematical underworld”, while avoiding the type 

of student mistakes and misconceptions that easily result from working with inductive 

reasoning and non-formal mathematical work. This dilemma calls for specific teaching 

strategies allowing students and teachers to discuss the epistemological status of various 

pieces of knowledge and intuitions about mathematics. We suggest that the combination 

of historical sources and CAS is a good context for developing such discussion, and in the 

following section we will describe one pedagogical strategy that develops this discussion. 
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9 Scientific debates 

Under the heading of generating scientific debate Alibert (1988, p. 32) provides three 

steps for making this happen in the mathematics classroom: 

1. The teacher initiates and organizes the production of scientific statements by the 

students. These are written on the blackboard without any immediate evaluation of 

their validity. 

2. The statements are put to the students for consideration and discussion. They must 

come to decisions about their validity by taking a vote; each opinion must be 

supported in some way, by scientific argument, by proof, by refutation, by 

counterexample. 

3. The statements that can be validated by a full demonstration become theorems; 

those found to be incorrect are preserved as “false-statements” associated with 

appropriate counter-examples. 

In an empirical example of a classroom scientific debate described by Alibert (1988), 

students came up with counterexamples to a proposed statement, which then resulted in 

new hypotheses, empirical observations, derived conjectures, and eventually an argument 

which required a formal proof. 

Although our small empirical example with the undergraduate student report is not one 

of classroom interactions, we do see a resemblance to the activities. Here, however, it was 

neither the students nor the teacher who as part of step 1 provided the scientific 

statements, but the history of mathematics! This approach could easily be transformed into 

a classroom activity, where the teacher posed a mathematical conjecture from the history 

of mathematics on the blackboard. In the case of Tschirnhaus’ transformation, the voice of 

Leibniz could play the role in framing the scientific debate. 

In our empirical example, CAS came to act as a justificational mediator in terms of 

judging the potential validity of Tschirnhaus’ transformation. The same could certainly be 

the case in a classroom setting. Also, here CAS would have a significant role to play in 

order to guide the students’ discussions in step 2. One sociomathematical norm to be 

established here would be that a “technological un-likelihood test” certainly is not the 

same as an actual counterexample. This is to say, step 2 of the scientific debate provides, 

as mentioned above, the opportunity to discuss the epistemological status of mathematical 

statements and arguments, i.e. the combination of both history and technology here comes 

to serve as a way of counteracting the “status confusion” as described by Duval. 

Step 3 in Alibert’s scientific debates would in our example correspond to the students’ 

reasoning of the degree of the intermediate equations in Tschirnhaus’ transformation. 

Depending on what historical conjecture, false or true, was posed by the teacher in step 1, 

step 3 will result in a theorem with a proof or an actual counterexample. 

Such scientific debates may be used to establish “healthy” sociomathematical norms in 

a classroom by: developing students’ deductive proof schemes; assisting in discarding 

their empirical proof schemes and/or external conviction proof schemes; illustrating the 

difference between proofs that prove and proofs that explain; illustrating the difference 

between different types of mathematical arguments (cf. Dreyfus) and the status confusion 

of which Duval talks. 
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10 Final remarks 

The example described above as well as the way that it can be viewed through the lenses 

of three different mathematics education frameworks allows us to suggest that the relation 

between history of mathematics and the use of technology can be mutually fruitful.  

As mentioned, the history of mathematics is rich on examples of conjectures that turned 

out not to be true. By having students look at and work with such examples they may 

come to grasp not only some of the differences in mathematical statements, but also the 

very need for formal proof to begin with. In that sense, the history of mathematics has a 

role to play in assisting students in overcoming the “status confusion” of which Duval’s 

speaks. But apart from motivating the need for formal proving, historical examples can 

also open up new perspectives on what types of mathematical knowledge is relevant to 

address from an educational perspectives.  

In this paper, we have brought light on the “mathematical underworld” of inductive 

reasoning in relation to hypothesis testing and theorem proving. Hereby we have come 

closer to understand types of reasoning and knowledge that have played (and still are 

playing) a role in developing mathematics, but are not considered as part of mainstream 

mathematics. We have been able to activate “computer evidence” to open up and discuss 

historical examples that would be too laborious to address using classical algebraic 

methods. We have labelled this computer evidence as justificational mediations, aligned 

with the instrumentational approach of mathematics education (Trouche, 2005). 

Furthermore, we have used the concepts of sociomathematical norms as well as the 

didactical idea of scientific debates to unfold the pedagogical challenges that the 

mathematical underworld poses to teaching. By developing sociomathematical norms that 

value working with examples and counterexamples, and in a complex way includes 

inductive reasoning, we argue that it is important to fully grasp the nature of mathematics 

as a discipline (e.g. Jankvist, 2015) and that historical sources in combination with digital 

tools are useful for that.  

Yet, the problems of status confusion and development of empirical proof schemes 

persist, and hence we end the paper by suggesting deliberate teaching strategies based in 

scientific debates to support students’ understanding of all the different natures of 

mathematical knowledge that has been and still are important for mathematical practice. 
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ABSTRACT 

Secondary school students (16 – 17 years old) face difficulties concerning the creation of a structured mental 

scheme about the concepts of logarithm and logarithmic function. This paper focuses on a didactic 

intervention following the Jankvist’s modules approach and utilizing the History of Mathematics (HM) as a 

tool for the conceptual understanding of mathematical notions and more broadly as a goal for the perception 

of the human evolving nature of Mathematics. The use of HM, through studying historical texts and the 

awareness of the concept historical evolution, combined with the collaborative teaching method and the 

Geogebra software. This case study aimed to address the following research questions: a) Does the use of 

HM as a tool affect students' conceptual understanding of the logarithmic concepts? b) Does the HM also be 

promoted as a goal for students even merely to approach Mathematics as an evolving cultural product? 

 

Keywords: History of Mathematics, Semiotic Instrumental Discursive dimensions, Geogebra, Collaborative 

teaching model, logarithm, logarithmic function. 

1 Introduction 

The abstract nature of mathematical concepts is considered as a central source of 

difficulties for students in the process of mathematics’ conceptual understanding. 

Mathematical concepts are the main subjects of instructional approaches mainly through 

their representations, which cannot often be perceived by the senses (Sfard, 1991). What is 

required in mathematical education is the kind of comprehensive understanding, which 

focuses on the knowledge not only of ‘what I have to do’ but also of ‘why should I do it’ 

(Skemp, 1976). In every attempt to observe the learning path of a mathematical concept, 

the separation of mathematical knowledge into procedural and conceptual divisions lies in 

the forefront. The execution of routine algorithms, as well as the usual manipulations 

performed on mathematical objects, refers to the procedural knowledge which is necessary 

for the accomplishment of a mathematical work but is not capable of acquiring a fully 

integrated cognitive structure relating to the particular mathematical concept. At a higher 

level, conceptual knowledge is required to fill in the answer to ‘why’. Conceptual 

knowledge is not an isolated part of knowledge but includes the necessary links to create a 

structured and flexible cognitive scheme (Gray & Tall, 1994). The adequately structured 

communication between the epistemological and cognitive content of the mathematical 

concept through the development of semiotic, instrumental and discursive dimensions, is 

achieved by developing two qualitatively different and at the same time complementary 

approaches of this concept: the operational and the structural ones (Sfard, 1991). 

Operational approach perceives the concept as a process, giving a dynamic character and 

is expressed by performing actions, whereas structural considers the concept as an object 

and it is the product of self reflection processes. 
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The concepts of logarithm and logarithmic function are basic parts of the curriculum 

content of the educational system. Logarithm is a notion with a long evolutionary course. 

Being at first an auxiliary tool for the calculation of difficult and time-consuming 

operations, has become, in its functional form, an instrument for explaining various kinds 

of phenomena applicable in many and varied scientific fields. However, students usually 

face difficulties in constructing a concept image that incorporates the exponential process 

into the mathematical object - the numbers called logarithms (Thomaidis, 1986; 

Vagliardo, 2006; Panagiotou, 2014). 

 In parallel, students are also called to deal with the concept of the logarithmic function. 

Function is considered to be a fundamental concept of mathematics while at the same time 

the effort of its conceptual approach faces a variety of challenges (Sfard, 1991; Sierpinska, 

1992; Hitt, 1998; Artigue, 1999; Gagatsis & al., 2006). Difficulties are located in points 

such as the idea of functional dependence as a co-variation, the understanding of the role 

of the independent and dependent variables, the manipulation of functional symbolism, the 

use of different semiotic registers and various representations, the transition from 

algebraic to functional thinking, as well as the dual nature of the concept as a process and 

as an object (Artigue, 1992; Gagatsis & al., 2006; Kieran, 2007; Lagrange & Psycharis, 

2014; Minh & Lagrange, 2016). Therefore, the teaching of logarithmic function faces two 

major obstacles: the first concerns the difficulty of understanding the logarithmic concept 

and the second is the one that emerges from the concept of function itself. 

The reasons justifying the utilization of History of Mathematics (HM) in instructional 

approaches are varied and widely discussed (Fauvel, 1991; Furinghetti, 1997; Tzanakis & 

al., 2002; Fried, 2008; Jankvist, 2009; Tzanakis & Thomaidis, 2012). Characteristically, it 

could be said that mathematical discipline is not exhausted in its final results, as its 

development path involves years of efforts, doubts and revisions (Tzanakis & Thomaidis, 

2000). The knowledge of the evolution trajectory of a mathematical concept can 

contribute positively to overcoming epistemological and didactic obstacles so as to 

achieve conceptual understanding. Teaching the concept in its final refined form, 

according to the current Curriculum, is an example of what Freudental calls ‘anti – 

didactical inversion’ (Barbin, 2015).  

2 Methodology 

This intervention was designed in the context of Jankvist’s modules approach, using a 

PowerPoint file, an introductory worksheet and 3 main worksheets. It was applied to a 16-

student class (17 years old) in the upper secondary school. The role of the HM in this 

intervention is twofold. On the one hand, from a macroscopic point of view, through the 

negotiation of the historical evolution of logarithms, history was used as a goal to 

highlight as far as possible the dynamic and evolving nature of the content of 

mathematical discipline, its links with the social and cultural environments in which it 

develops, as well as its connection to other fields of science. On the other hand, history 

was used as a tool to achieve a more wholistic approach to mathematical concepts, 

focusing on key components of the historical evolution that are necessary in constructing 

an integrated image of these concepts. The most important stages in the historical 

evolution of the logarithms were presented emphasizing the necessity for estimating 

difficult numerical operations in the historical context of 17
th

 century, as though the 

reasons that led to the invention of the concept, the importance of logarithms in the 
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modern reality, as well as the individuals who determined with their contribution the 

development of this historical route. The method of Prosthaphaeresis in the arithmetic-

geometric progressions’ correspondence was also studied in the Napier kinematic model. 

The logarithm was defined as the 'number of ratios' in a continuous ratio within the 

bounds of a historical context in which the notion of power had not yet been clarified. The 

way that Napier constructed his logarithmic tables and the potential of estimating the 

logarithm of any positive number by the hyperbolic areas were also discussed. The 

historical review was completed by presenting and discussing logarithmic applications in 

various fields. The students then worked on translated historical texts by Leonard Euler 

from his book “Introductio in analysin infinitorum” (1748) which contained the definition 

of the logarithm and the logarithmic rules as well as the definition of the function as 

analytical expression with reference to the reverse function. 

A combination of various teaching tools was used in this instructional approach for the 

creation of a structural mental scheme by the students concerning the specific concepts. 

The collaborative teaching method favored the exchange of views, the development of 

arguments and the active participation of students. At the same time, the digital 

environment of the educational software Geogebra, in combination with the historical 

texts provided a proper environment for experimentation and exploration, driving the 

development of the instrumental dimension of work for conceiving the logarithmic 

function as a co-variation reverses to the exponential. Through the observation of the 

development of the groups’ work along the axes of semiotic, instrumental and discursive 

dimensions and the analysis of students’ individual answers in two questionnaires 

completed after the end of the intervention, the following questions were addressed: a) 

Does the use of HM as a tool affect students' conceptual understanding of the logarithmic 

concepts? b) Does the HM could be also promoted as a goal for students to even merely 

approach mathematics as an evolving cultural product?  

2.1 Worksheets 

2.1.1. Introductory, first and second worksheets - logarithms 

The introductory worksheet contained difficult and time-consuming numerical 

calculations (multiplications, divisions, cubic root extractions) which students were asked 

to estimate. After their initial failed attempts and in the course of the intervention they 

managed to make the same calculations using logarithms. 

The first worksheet contained Leonard Euler's text (1748), concerning the symbolism of 

logarithms and the definition as a power exponent and as a function value, approaching 

the logarithmic concept as a process and at the same time as a result: 

“Just as, given a number a, for any value of z, we can find the value of y [α
z
] so in 

turn, given a positive value for y, we would like to give a value for z, such that α
z 
= 

y. This value of z, insofar as it is viewed as a function of y, it is called the 

LOGARITHM of y” (Down & al., 2004). 

The knowledge of the text was intended to enrich the theoretical frame of reference in the 

workspace of the groups. The following tasks in this worksheet aimed at the acquirement 

of a comprehensive understanding of the definition and the symbolism through the 

clarification of the exponential and logarithmic relation of the variables involved and the 

application of the definition in order to deal with relative activities. On the other hand, the 
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first worksheet aimed at the investigation of students’ knowledge about basic components 

concerning the concept of function such as the set of values and the domain of the 

function. The responses of the groups were used to design the third worksheet, which 

focused on the concept of the logarithmic function in order to examine in detail the nature 

of function as a co-variation, the notion of reversibility and the alternating roles of 

dependent - independent variables. The groups were asked to apply the exponential 

process, included in the definition, in order to activate the operational nature of the 

logarithmic concept. Through these actions, it was expected that students would make a 

first step towards the internalization of the process and the identification of the loga 

symbol as an autonomous mathematical object. 

On the same wavelength as the first worksheet, the second one contains Euler's text, 

focusing on the logarithmic rules which proof is indirectly given to the text as a result of 

the definition: 

“In like manner if log y = z, then log y
2
 = 2z, log y

3
 = 3z, etc., and in general log y

n
 

= nz or log y
n
 = n log y, since z = log y. If follows that the logarithm of any power of 

y is equal to the product of the exponent and the logarithm of y… If we already know 

the logarithms of two numbers, for example log y = z and log v = x, since y = α
z
 and 

v = α
x
, it follows that log vy = x + z = log v + log y. Hence, the logarithm of the 

product of two numbers is equal to the sum of the logarithms of the factors” (Down 

& al., 2004). 

The usefulness of rules for estimating logs of many numbers using logarithms of few 

ones is also emphasized without providing clear reference on the ease of numerical 

operations that is achieved through the rules. Students were expected to delve deeper into 

the internalization of the logarithm concept by using the definition in constructing proof of 

logarithmic rules and developing the required justification on answering the questions 

were posed. 

1.1.2. Third worksheet – logarithmic function 

The third worksheet contained two phases. In the first one, a historical text including the 

Euler’s definition of the function as analytical expression constituted the core of the work. 

There was also reference to the uniqueness of the dependent variable for each value of the 

independent one and the existence of the inverse function, switching in fact the roles of 

dependent and independent variables. 

“a function of a variable quantity ...[as] an analytic expression composed in any 

way whatsoever of the variable quantity and numbers or constant quantities … a 

single-valued function is one for which, no matter what value is assigned to the 

variable z , a single value of the function is determined …  If y is any kind of 

function of z, then likewise z will be a function of y” (Down & al., 2004) . 

The tasks following the text were structured so as to lead the focus of the students’ 

work on the concepts of co-variation, dependent and independent variables and inverse 

function. Through a real problem in the seismology field, students were also expected to 

deal with the notions mentioned above, focusing on the exponential and logarithmic 

functions. 

The second phase of the worksheet was characterized by the involvement of the 

Geogebra mathematical software for studying the logarithmic function. Students had to 

swift independent with dependent variables finding out the mathematical formulas of 
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inverse functions, to get to the proper formula from the graph of the logarithmic function, 

to create graphical and algebraic resolutions of the logarithmic equations and to justify the 

symmetry of the inverse functions’ graphs in terms of the roles of variables. The questions 

aimed at the construction of a transparent mathematical meaning by the students 

concerning the concept of the logarithmic function and its relationship with the reverse 

exponential one. 

2.2 Questionnaires 

Two questionnaires were distributed to the students without advance warning, one week 

after the end of the intervention, that means about one and a half month since the 

beginning of the course. The aim was to examine at what extend students could use their 

knowledge, without preparation and repetition, to solve logarithmic equations and 

inequalities and to gain an understanding on the logarithmic function with proper 

application of logarithmic rules. At each step justification was required. 

The first questionnaire was designed to enable students to express their personal views 

about: 1) the use of history in the didactic intervention, 2) the initial necessity leaded to 

the invention of logarithms as well as their use in modern reality and 3) the dynamically 

evolving character of mathematical concepts. The second questionnaire focused on finding 

out current students' knowledge of the logarithm and logarithmic function as well as its 

applicability to resolve related activities as already been mentioned. 

3 Analysis of results  

3.1 First and second worksheets - logarithms 

Students took advantage of the texts’ dynamics, through the manipulations they used. 

More specifically, the symbols were decoded and the relative information was 

constructed, the exponential process was used in experimentation and researching 

frameworks to resolve the activities, and at the same time, based on the contents of the 

texts, formal and non-formal arguments were developed during the justification of the 

manipulation of the symbols and of the procedures proposed by the students in the groups. 

Characteristically, concerning the question about the definition of logarithm as a 

functional expression, groups used initially the exact words of the text to answer the 

question and indeed the sentence in which the word logarithm had been written in capital 

letters, without mentioning the exponential relation that links the variables, which means 

that at this initial stage they were unable to clarify the definition. As it may be seen from 

the discussions in the groups, students probably carried away by a norm that 'requires' the 

formulation of a short and formal definition. As students continued working on the 

remainder activities the inadequacy of the initial, automated approach to the definition was 

highlighted. Groups were forced to revert to the definition of the text and to examine 

relations of variables and constants as well as the range of acceptable values that variables 

could get. They used specific numerical values and processed algebraic notation using 

generalized variables, even by changing labels of the variables of the text, thus the 

semiotic dimension of the work was developed. Groups produced a verbal expression of 

the definition: 

- If the number rises to an exponent, then, the exponent is the logarithm of the 

outcome. 

335



The typical exponential procedure and its rules, well-known to the students, were used 

as artifacts for constructing the definition in the developing of the instrumental dimension 

of work. A representative dialogue in a group concerning the phrase of the text “Just as, 

given a number α, for any value of z, we can find the value of y [= a
z
], so, in turn, given a 

positive value for y, we would like to give a value for z, such that α
z
 = y” follows: 

- If I know z and also the α, then I can find y. If I know y then how can I find z? 

What does it mean? 

- Then say that z is the logarithm of y. Is it a result of estimation or a 

correspondence? 

- The logarithm counts the ratios. It is a number. Is it both? 

Although the last question was not answered by the members of the group at this stage, the 

previous dialogue demonstrates a creative progress of the work towards both the view of 

logarithm as an object and the dual nature of the function as a process and result. The 

etymology of the word ‘logarithm’, which was a key element in the presentation of the 

logarithm historical evolution, seems to have contributed positively to the attempt of 

constructing, according to Tall & Vinner (1981), the appropriate ‘concept image’. In 

parallel, the correspondence of arithmetic and geometric progressions was used by the 

groups to justify and verify the solution of logarithmic equations such as log24 = x, which 

initially were solved by using Euler’s definition. 

However, although the definition had already been clarified and was applied 

successfully, students were struggling to accept log5112 as a number that was a solution to 

a given equation (5
x 
=112). Similarly, the question of “what is equal to

ualog ?” proved to 

be of high difficulty for all groups. This is a fact which demonstrates the kind of obstacles 

students need to overcome when dealing with the logarithmic concept. The groups were 

experimented by applying specific 'convenient' numerical values to the variables and by 

using the Euler’s definition both as a tool and as a component of the reference framework 

for validating the results. In this way the discursive dimension of the work was developed. 

It is noteworthy however, the formation of reflective abstraction in students’ learning as it 

characteristically came from a student’s point of view about the outcome of
ualog : 

- The outcome is u because the logarithm is an exponent ... That is, here is the power 

of base α which is raised to the exponent that equals u ... so the outcome is u. 

The evolving development of the work from the first to the second worksheet indicated 

a dynamic course of internalization of the definition and integration of the exponential 

process into the object - logarithm. In the second worksheet students analyzed the 

equalities of the text and led to the construction of proof of the logarithmic rules by 

flexible manipulations of the definition: 

- Since logy = z, α is raised to z, so α
z
 = y ... y

2
 = (α

z
)
2
, y

2
 = a

2z
 ... 2z is the exponent 

to the base α and thus the log of y
2
. That is, logy

2
 equals to 2logy. 

The semiotic dimension of the work developed without any problems in the 

manipulation of the symbols and the decoding of the relations of the text. The use of the 

definition activated the instrumental dimension of the work and the validation of the 

construction of proof contributed to the development of the discursive dimension. 

Characteristically, a student stated: 

- If I know the logarithm of two numbers then I know the logarithm of their quotient 

... because if I know that the logarithm of y is equal to z then α
z
 is y and in the same way α

x 
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is v. If I divide them, the result is α
z-x

 ... that is, z-x is the exponent of α, hence the 

logarithm of the quotient. 

It should be noted that groups distinguished the simplification of estimations in Euler’s 

rules due to the reduction of multiplication to addition and division to subtraction, which 

was the basic reason leaded to the invention of logarithms and a significant element in the 

presentation of the historical evolution of logarithmic concepts. Hence, the 

correspondence of arithmetic and geometric progressions was brought to the forefront of 

the groups’ work one more time. This finding was used by students for justifying the 

usefulness of logarithmic rules. 

3.2 Third worksheet – logarithmic function 

In the third worksheet, except of the Euler’s text with the definition of function as 

analytical expression and a reference to the concept of the inverse function, a function of 

exponential formula (Ι = Ι0 10
R
,
 
Ι0 > 0) involving the earthquake magnitude (R) and 

intensity (I), in the context of a real problem in the field of seismology was also included. 

Groups were asked to decide if this expression was a function according to Euler’s 

definition and to define the dependent and independent variables. They created functional 

expressions that were either the result of a specific application of their knowledge in 

context of a discipline like physics, e.g. the displacement in a uniform linear motion, or 

were given in the typical form of a functional symbolism, e.g. y = z + 1. They also focused 

on the uniqueness of the y value (value of function) obtained for each z value. Groups used 

elements of the history of logarithms, trying to relate the meaning of function with the 

Euler’s and Napier’s logarithmic approximations. They found out that there is a co-

variation of variables in both approaches. Groups analyzed the functional symbolism of 

the text and used it in their experimental efforts. The discussion focused on the role of 

independent and dependent variables and constants in the expressions that students 

presented. They had no problem to recognize the relationship between magnitude and 

intensity of earthquakes as a functional expression and to identify dependent and 

independent variables. They stated: 

- Changing values of magnitude results in change of corresponding values of 

intensity ... the intensity is depended on the magnitude that changes. The intensity is y and 

the magnitude is z. 

They compared and contrasted the Euler’s definition with the one which they had 

already been taught regarding function as correspondence of values. Specifically, they 

said: 

- Each numerical value of x is assigned to only one numerical value of y. In the text 

x is z. Saying that for any value of z is defined a single value for the function, it means that 

every x is assigned to a single y that is the value of the function. 

Afterwards the preceding process, the members of the groups concluded that the given 

relation of earthquake magnitude and intensity was consistent with Euler's definition of 

function: 

- It is an expression formed by the variable R and constants ... is the way in which 

the intensity changes when the magnitude changes. 

The given relation was also examined as co-variation of variables, in which R is 

arithmetic and I geometric progression. It was found that the arithmetic change in values 
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of magnitude results in a geometric change of intensity. The result was the expected 

appearance of logarithms while shifting variables as it was requested in the worksheet: 

- R is arithmetically altered and I geometrically … R is the logarithm of intensity. 

Groups agreed that shifting the variables leads to a new expression that retains the 

properties of function definition mentioned in the text: 

- The switch of the variables leads to the inverse function. 

At the same time they criticized the phrase of the text: “if y is any function of z, then z 

will be a function of y”. They argued that this may not be the case and justified their claim 

using contradictory examples like y = z
2
. 

Subsequently, the work was transferred to the digital environment of the Geogebra 

mathematical software. Students constructed graphical representations by matching pairs 

of independent and dependent variables to points using the Cartesian axes. Conversely, 

they managed to match the graph appeared on the screen as an illustration of exponential 

function points, where the coordinates were reversed, to the appropriate logarithmic 

formula despite the initial difficulties faced at this point. Groups had to return to the text 

and the definition: 

- The expression solved with respect to the dependent variable is the formula of 

function ... now the dependent is magnitude, R. 

At each step of the work students combined the elements of the historical text 

concerning the concept of function and the reverse function, with the supervision of 

multiple representations of function (formula, graph, value table) in the digital 

environment of Geogebra in order to accomplish graphical and algebraic resolution of the 

worksheet’s activities: 

- In the spreadsheet (value table) there is just a single value of the dependent 

variable for each value of the independent one, either when the dependent is I or when is 

R. The same is apparent in graphs too, as each number on the horizontal axis (horizontal 

coordinate) corresponds to a single point of the graph. 

Groups concluded that logarithm is a monotonic increasing function when base α is 

greater than1 and a decreasing one when α < 1 both in a graphical way, using the software, 

and in an algebraic way using the definition and suitable numerical values. They also 

studied the domain and the set of values of the logarithmic function as a reverse co-

variation of the exponential and explained the symmetry of the graphs about the line y = x: 

- The horizontal coordinates of the points on the logarithmic graph are the vertical 

ones of the points of exponential function. This is because reversion of functions means 

reversion of the variables.  

The development of the discursive genesis of the work, as a result of attempting to 

produce adequate logical explanation, was either based to the exponential process and the 

operation of its rules 

- If  c < k then logc < logk because if logc = x and logk = y, since c < k, it is α
x
 < α

y
 

so x < y, 

or to direct references to logarithm as a number -  exponent: 

- If b > c then logb > logc because greater power means greater exponent when there 

is the same base higher than one. 

Groups analyzed relationships and dependencies between elements of graphs, assigned 

the values of dependent and independent variables to point coordinates and used the 

elements of the enriched referential framework, i.e. the definition of the logarithm and the 
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logarithmic function set of values, in developing lines of argumentation to support their 

conjectures. The use of the software promoted the development of the instrumental and 

discursive dimensions of work. 

4 Conclusion 

The knowledge of historical elements concerning the logarithmic concept prompted the 

use of the definition as a tool for the working on the activities as well as for the decoding 

of the symbolism, developing the instrumental and semiotic dimensions of the work and 

helping, in that way, the integration of the exponential process into the subject - logarithm. 

The correspondence of arithmetic and geometric progressions and the etymology of the 

word ‘logarithm’ were complementarily used along with the latest Euler’s definition when 

attempting to deal with the activities required in the worksheets. Although this process 

was not followed by all groups and in every phase of the work, the knowledge of the 

historical evolution of the concept, since the initial role of logarithm as a tool and the 

necessity leaded to its invention until the latest definition and its functional form, provided 

a more wholistic approach to mathematical concepts, which favored the development of a 

conceptual understanding. According to students' responses to the questionnaires, the 

familiarization with the historical evolution activated their interest and triggered their 

motives, as through the presentation of historical data, frequently asked questions by the 

students about the necessity of existence of the mathematical concepts and their usefulness 

in modern reality were answered. 

The second pole of ΗM utilization in this didactic approach concerned the study of 

historical texts. It is true that students’ responses to the questionnaires have shown that 

they faced difficulties processing the texts. This is a fact that could be expected as, 

through the texts, they dealt with concepts at their source, studying in a different 

‘language’, more authentic and less ‘refined’ than these they are used to in school 

textbooks. They developed a kind of dialectical relationship with texts. As it appeared in 

the transcripts, the ‘rhetorical’ formulation of mathematical relations in a significant part 

of the texts was a challenge for students, depriving the "facilitation" of an automatic and 

purely procedural perception of concepts. As shown in the course of the work during the 

intervention and in the transcripts, the collaborative teaching method functioned 

supportively to overcome the difficulties that arose. The cognitive abilities of the text were 

exploited by the groups, not only through study and analysis, but even through criticism of 

the provided information such as the prerequisites for the inverse function. Therefore, 

historical texts functioned as cognitive tools in the course of students' conceptual 

understanding of logarithm and logarithmic function as they were used as levers of work 

development along the axes of the semiotic, instrumental and discursive dimensions. In 

parallel with using historical texts, the digital software functioned in an auxiliary way for 

studying the logarithmic function and its properties, thus its contribution to this 

instructional approach was considered positive by the students. The transcribed 

conversations in the groups and the successful respond to the activities of the 

questionnaires have demonstrated a satisfactory degree of integration of the exponential 

process into the mathematical object - logarithm as well as the approximation of the 

logarithmic function as inverse co variation. 

At the same time, students seemed to realize that mathematical discipline is an evolving 

product that is linked to the general social context in which it develops. Therefore, from a 
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macroscopic point of view it can be said that HM contributed, in this case, in students’ 

approaching to mathematics not as a mockery of definitions, theorems and exercises of 

unjustifiable existence, but as a human cultural product. However, it is natural that the use 

of HM specifically in a particular subject, in this case the logarithm, is not sufficient for an 

overall and conscious review of students’ opinion about mathematics discipline. This was 

partly reflected in some of the students’ responses who, on the one hand, agreed about the 

evolving nature of Mathematics but, on the other hand, they still doubted whether the 

didactic intervention influenced significantly their views. Despite the fact that this 

research is a case study which may have limitations in generalization, we could say that 

the utilization of HM facilitates the teaching of logarithms in secondary education and also 

provides an alternative way to approach mathematics from a different perspective. 
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ABSTRACT 

Flipping classroom is a new teaching mode. It comes from America, changing the 

traditional teaching mode. Students watch the teaching video produced by their teacher 

and do some exercises before class. In class, the teacher uses some exercises to test 

whether students understand the knowledge in the video they have watched, and if they 

even have some problems, teacher helps them to master and understand this knowledge. 

On the other hand, in the traditional classes, students learn the knowledge in class and 

internalize the knowledge after class by doing some exercises. Flipping classroom 

interchanges the two stages. Students learn the knowledge before classes by themselves 

using the teaching video, and internalize the knowledge in the classroom. 

 In China, the practice of using flipping classroom mode began in 2011. Many primary 

and secondary schools are using flipping classroom mode in their classes now. It has 

become a hot topic in China. In the process of applying the flipping classroom mode, there 

are many problems, such as teachers just let students doing much more difficulty exercises 

in classes. There are teachers, who are confused arguing that since their students have 

acquired the knowledge before classes, what can they teach in class except doing more 

exercises? 

 We believe that the integration of the history of mathematics is a good way to solve 

these problems. In this context, we started a study in a junior middle school in Shanghai. It 

is a private junior high school, students of it all having a good level of self-study ability. 

The school has used flipping classroom for three years. All teachers in the school have the 

ability to make micro-video.  

The lesson “the midsegment of a triangle” is our case study of using the history of 

mathematics in flipping classroom. Before the class, the teacher produced a micro-video 

to introduce the definition of the midsegment of a triangle and the property of it, and she 

gives a way that comes from the textbook to prove the property. Then she gives for 

homework to students: are there other ways to prove this property? In the class, students 

give feedback from the micro-video first, then share the other methods they have thought, 

and finally the teacher guides the students to use the median of the triangle to make 

different small triangles in the big triangle in order to prove the property (fig. 1). After 

five minutes discussion in groups, students share their way of proof (fig. 2). The way they 

used is the same with the method of Euclid. Then, the teacher uses another video to show 

that we can use the method of calculating the area of triangles given by Liu Hui in the 

“Nine Chapters” in order to prove the property. Finally, the students do some exercises to 

remember this property.  

After the class, the questionnaire shows that students are very interested in this lesson, 

can understand the historical material we used, and know the mathematical concept of 
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transformation. They are impressed by the cut & paste method of Liu Hui, and marvel at 

the wisdom of the ancients. 

 

Figure 1:  The teacher guides students using areas of small triangles to prove the property 

 

Figure 2: The way students given to prove the property 

 

Figure 3: The way Liu Hui used to prove the area of triangles 
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ABSTRACT 

It is claimed in this study that “mathematics in culture” (MiC, a macro-view of the development of 

mathematical knowledge) and “culture of mathematics” (CoM, a micro-view of the development of 

mathematical knowledge) are the two main dimensions of mathematical culture. This study has two 

purposes. First, I attempted to identify the constituents of mathematical culture in terms of the 

interrelationship between mathematics and culture, particularly the interaction of mathematics with Eastern 

and Western culture. Second, I selected three sets of high school mathematics textbooks from Taiwan, 

China, and the United States respectively to investigate how, if any, mathematical culture is implemented. A 

quantitative analysis revealed that: (1) Taiwanese and Chinese textbooks have many features in common. 

Both sets of textbooks stress applications of math in daily life and provide several opportunities for 

exploring, but ignore ethnic features, mathematical dialogue, and the evolution of mathematical concepts. In 

contrast, the US textbook employs a lot more problems of applications of math in daily life and in nature, 

with nearly half of the examples and exercises devoted to promoting students’ problem-solving abilities to 

resolve authentic problems. However, as with the other two sets of textbooks, a treatment of ethnic features 

is absent. 

 
Keywords: International comparison, textbook analysis, mathematical culture 

1 Introduction 

The United Nations Educational, Scientific and Cultural Organization (UNESCO) 

proposedthe years of 2003~2012 as the United Nations Literacy Decade 

(UNLD) (UNESCO, 2003). Its slogan “Literacy as Freedom” aims to increase literacy 

levels and to empower all people everywhere. The original meaning of literacy is being 

able to read and write. But in the modern sense, “Literacy is about more than reading and 

writing – it is about how we communicate in society. It is about social practices and 

relationships, about knowledge, language and culture.” (UNESCO, 2003, p.1).School is 

not a place for cultivating all kinds of literacy, but it is well-recognized that one of the best 

approaches of empowering students’ literacy, particularly for those that are knowledge-

based, is school education. Tarr et al. (2008) indicated that though teachers’ teaching 

practices may be influenced by their beliefs, knowledge, and students’ responses, the 

textbook is still one of key factors determining their instructional decisions. Since 

mathematical culture is an essential component of mathematical literacy, this study aims 

to investigate and compare how mathematical culture is implemented in the high school 

mathematics textbooks of Taiwan, China, and the United States. 

2 Constituents of Mathematical Culture 

Historically, mathematics education in various countries initially focused on elite 

education and vocational education, and rarely considered the relationship among 

mathematics, society, history and philosophy. However, due to the increasing popularity 

of higher education in the late twentieth century, the advocacy of "mathematics for all" 
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has arisen. Mathematics is no longer viewed just a practical instrument, but also as a 

discipline for lifelong learning. The cultural facet of mathematics thereafter begins to 

receive increasing attention as well. However, the scope of mathematics culture is broad, 

and it is necessary to clarify the content of literacy for mathematical culture. 

Based on their review of 164 definitions of culture, Kroeber and Kluckhohn (1952) 

proposed the following definition of culture:  

Culture consists of patterns, explicit and implicit, of and for behaviour acquired and 

transmitted by symbols, constituting the distinctive achievement of human groups, 

including their embodiments in artifacts. (p. 181) 

According to Kroeber and Kluckhohn, the essential core of culture consists of 

traditional ideas and attached values, and culture systems may, on the one hand, be 

considered as the products of human action, on the other as decisive factors of further 

action. Following Kroeber and Kluckhohn’s conception, this study defines mathematical 

culture as follows: 

Mathematical culture consists of patterns, explicit and implicit, inductive and 

deductive, logical and illogical, of and for problem solving behavior acquired and 

transmitted by symbols, constituting the distinctive achievement of human groups in 

general, the mathematician in particular. 

This definition stresses the inductive and deductive features of mathematical 

knowledge in the making, and the logical and illogical development of mathematics. 

While searching for the cultural basis of mathematics, Wilder (1950) reminded us that 

mathematics is a part of, and is influenced by, the culture in which it is found. In this 

manner, the culture dominates its elements, and in particular its mathematics. For instance, 

a Chinese mathematician living about the year 1200 C.E. would mainly focus on 

computing with numbers and solving equations without paying attention to geometry as 

the ancient Greeks understood it. In contrast, a Greek mathematician of 200 B.C.E. would 

focus more on geometrical proofs than on algebra and numerical computation as the 

Chinese practiced it. This depicts the mathematics in culture. On the other hand, 

mathematicians in different cultures share some common methodological views and 

paradigms for working on mathematics that ensure their creations can be recognized by 

other mathematicians. These common methodological views and paradigms shape a 

working academic culture, which is the culture of mathematics. This study therefore 

proposes two major constituents of mathematical culture: mathematics in culture and 

culture of mathematics. 

Mathematics in culture (MiC) is a macro-view description about how mathematical 

knowledge as a whole has expanded in various cultures, and includes three components: 

 Historical development: mathematics developed throughout the history to establish 

its distinguished features. 

 Social needs: mathematics grew along with the society to meet various demands. 

 Ethnic features: mathematics evolved over time with the influence of its host 

culture and gradually established distinct ethnic-characteristics. 

On the other hand, the culture of mathematics (CoM) refers to the emergence and 

construction of mathematical concepts, which is a micro-view description about the 

dialectical methodology by which a mathematical idea is created and validated through 

conversation among mathematicians. This methodology includes the following three 
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components: 
 Inductive conjecture: This component is the very beginning of how a mathematical 

idea is revealed and created, which can be seen as a thought experiment (Polya, 

1954).  

 Deductive validation: An isolated fact may not be seen as a generalized truth 

without a logical verification. Deduction is a significant feature of mathematics. 

 Social construction: It has been generally held that mathematical knowledge not 

only is a product of self-construction, but also a polished outcome of public 

dialectic (Ernest, 1998). 

Note that a clear distinction between MiC and CoMis impossible and both are 

intertwined with each other. This suggests the framework for the constituents of 

mathematical culture shown in Figure 2.1. 
 

 
Figure 2.1: The constituents of mathematical culture 

Furthermore, based on theoretical consideration, several indices for MiC and CoM 

were created for coding the components of mathematical culture in the textbooks. There 

are 13 indices for Mic (Table 2.1) and 8 for CoM (Table 2.2). The validity and 

appropriateness of each index has been checked and validated by a historian of 

mathematics and a HPM researcher. 

Table 2.1: Indices for MiC 

MiC  Index Definition 
 

History 

Concept (H-C) The origin of concepts 

Method (H-Me) Different methods in history  

Problem (H-P) Famous problems in history 

Episode (H-E) Significant events in history  

Mathematician (H-I) Distinguished mathematicians in history 

 Nature (S-N) Applications of math in nature 

Living (S-L) Applications of math in daily life 
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Society Economy (S-E) Applications of math in economy 

Politics (S-P) Applications of math in politics 

Arts (S-A) Applications of math in arts 

Ethnic 
Context (E-C) Concepts different cultural context  

Difference (E-D) Approaches in different cultures 

Philosophy (E-P) Concepts and their philosophical background  

Table 2.2: Indices for CoM 

CoM Index  Definition 

I & G
* 

Survey (I & G-O) Providing opportunities forobserving examples 

or data 

Pattern (I & G-P) Leading students to look for patterns  

Conjecture (I & G-C) Encouraging students to make conjectures 

D&P
** 

Intuition (D & P-I) Explaining properties by intuitive observation 

Example (D & P-E) Explaining properties by particular examples 

Logic (D & P-L) Proving properties by logical deduction 

C&D
*** Community (C & D-C) Mathematical dialogue among mathematicians 

Evolution (C & D-E) Evolution of mathematical concepts 

*I & G: Induction and Guessing, **D & P: Deduction and Prove, ***C & D: Community and Dialectic 

3 Target Textbooks 

Three high school mathematics textbook series produced inTaiwan (T-textbook), China 

(C-textbook), and the United States (US-textbook) were selected for review. T-textbook 

and C-textbook are the most popular textbooks in Taiwan and China respectively, and US-

textbook is purchased by the National Academy for Educational Research in Taiwan, and 

is therefore accessible by the researcher. T-textbook has 6 volumes and C-textbook has 5 

volumes. US-textbook consists of 2 volumes of algebra and 1 volume of geometry. All 

examples and exercises in these textbooks were coded. 

4 Inter-Rater Reliability 

To insure the reliability of the analysis, in the pilot stage, two raters with mathematics and 

mathematics education background were trained to do the categorization of each index. 

Their analyses were not regarded as reliable until the agreement rate was above 

90%.During the subsequent analysis stage, the third rater (a high school mathematics 

teacher with a master’s degree in education) and the researcher made final decision if there 

was any inconsistency between the two raters. 

5 Results 

5.1 T-textbook 

Table 5.1 shows the frequency and percentage for each index in the Taiwanese T-textbook 

textbook. It appears that, for MiC dimension, S-L (applications of math in daily life) is the 
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most common index (26.7%) among all. For instance, following the introduction of Law 

of sine and Law of cosine, students are asked to determine the location of a cellular base 

station by applying the two laws such that the cellular base station has equal distance from 

three campus buildings A, B, and C. In another example, lengths of the football (i.e., 

soccer) field and football net are given, and a player on the point P that is 35 meters away 

from the bottom edge of the diagram is set to kick the ball. The student is then asked to 

find the tangent value of the kicking angle APB. Though the two examples can be solved 

by applying trigonometric identities, they are not realistic because it is impossible to build 

a cellular base station in the campus and the football player’s main concern is the kicking 

angle itself, but not the tangent value of that angle. As for CoM dimension, I&G-O 

(providing opportunities for observing examples and data) is most widely used (23.9%). 

Note that the History index (H-C) receives less attention, with only 15.7% of the 

examples and exercises related to it. For instance, an example related to the application of 

Apollonius Circle is given to find the running trajectory of two hunting dogs. Furthermore, 

both the Ethnic features and the C&D index (mathematical dialogue and evolution of 

mathematical concepts) are totally absent in the text. 

Table 5.1: Frequencies and percentages for each index in T-textbook 

Index S-L 
I&G-

O 
D&P-E H-I D&P-I I&G-P H-C S-N 

Frequency 56 48 34 17 16 12 8 7 

Percentage 26.7% 23.9% 16.2% 8% 7.6% 5.7% 3.8% 3.3% 

Index I&G-C H-P H-E H-M S-A  
 

 

Frequency 3 3 3 2 1  
 

 

Percentage 1.4% 1.4% 1.4% 0.95% 0.47%    

 

Figure 5.1: Determine the location of cellular base station 
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Figure 5.2: Find the tangent of kicking angle 

5.2 C-textbook 

Table 5.2 indicates the frequency and percentage for each index in the Chinese C-

textbook. Similar to the T-textbook, S-L (applications of math in daily life) is the most 

common index (25.7%) among all MiC indices. Of the CoM indices, I&G-O (providing 

opportunities for observing examples or data) and D&P-E (explaining properties by 

particular examples) are two generally adopted strategies. Even though the percentage of 

S-L in the C-textbook is almost the same as that in the T-textbook, S-L problems in the C-

textbook are more realistic in nature. This appears to be due to a greater use of 

mathematical modeling as a means for increasing students’ problem solving ability. For 

instance, in the beginning of ‘The Concept of Functions’, an example is given below: 
 

If you plan to do investment and there are three different proposals. 

1. Proposal A gets $40 reward every day. 

2. Proposal B gets $10 reward on the first day, $20 on the second day, $30 on the third 

day, and so on. 

3. Proposal C gets $0.4 reward on the first day and double reward thereafter.    

Which one do you prefer? 
 

This example is followed by a table indicating the reward for each proposal in 30 days 

and a graph showing the tendency for growth of each proposal. Students are then led to an 

algebraic representation for each proposal, thereby fully demonstrating the rule of four 

(verbal, numerical, graphical, and algebraic representation) for introducing the concept of 

functions. 

Analogous to the data for the C-textbook, it was found that only 14.3% of the examples 

and exercises are related to the History index, and that the Ethnic features and the C&D 

indices are also lacking. 
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Table 5.2: Frequencies and percentages for each index in P-version 

Index S-L 
I&G-

O 
D&P-E S-N D&P-I H-I H-C H-P 

Frequency 54 36 34 28 16 10 7 6 

Percentage 25.7% 17.1% 16.2% 13.3% 7.6% 4.8% 3.3% 2.9% 

Index H-M S-E I&G-P I&G-C H-E D&P-L 
 

 

Frequency 5 5 4 2 2 1 
 

 

Percentage 2.4% 2.4% 1.9% 0.95% 0.95% 0.47%   

 

 

Figure 5.3: Table and graph of the reward for each proposal 

5.3 US-textbook 

Similar to the cases of the C-textbook and T-textbook, the US-textbook employs many S-

L (applications of math in daily life) problems (35.4% as shown in the Table 5.3), 

intended as a meansto promote students’ interest and increase their understanding. This 

percentage is significantly greater than that of either the C-textbookor the T-textbook. It 
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was further noted that the S-L problems in the US-textbook are more realistic in nature. 

For instance, in a demography problem (Figure 5.4), the population in the year 2007 and 

growth rate of several states are given, and students are asked to determine in how many 

years it will take for each state to reach a specified population. 

Table 5.3: Frequencies and percentages for each index in US-textbook 

Index S-L D&P-I 
I&G-

O 
S-N D&P-E I&G-P D&P-L H-P 

Frequency 258 143 116 84 68 12 12 12 

Percentage 35.4% 19.6% 15.9% 11.5% 9.3% 1.6% 1.6% 1.6% 

Index I&G-C S-P S-A S-E H-E C&D-E 
 

 

Frequency 6 6 4 3 2 2 
 

 

Percentage 0.8% 0.8% 0.55% 0.41% 0.27% 0.27%   

 

 

Figure 5.4: The population and growth rate of several states in the US 

Furthermore, the US-textbook apparently stresses the role of observation while working 

on the problems since D&P-I (explaining properties by intuitive survey) and I&G-O 

(providing opportunities for observing examples and data) percentages are19.6% and 

15.9% respectively. In one “looking for a pattern” exercise, the first five rows of Pascal 

Triangle are given (Figure 5.5), and students are asked (a) to predict the numbers in the 

seventh row and (b) to find the sum of the numbers in each of the first five rows and 

predict the sum of the numbers in the seventh row. Another particular feature of this 

textbook series is that, as compared to the other two textbooks, the US-textbook tends to 

emphasize the S-N index (applications of math in nature). A sample problem about 

Exponential Functions that is related to archaeology is shown below: 

Archaeologists use carbon-14, which has a half-life of 5730 years, to determine the 
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age of artifacts in carbon dating. Write the exponential decay function for a 24-mg 

sample. How much carbon-14 remains after 30millennia? 

However, the percentage of History index of the US-textbook is extremely low at 

only1.87% total. 

 

Figure 5.5: Pascal triangle 

6 Conclusions and Discussions 

This study aimed to investigate how mathematical culture is implemented in high school 

mathematics textbooks from Taiwan, China, and the United States. We defined 

mathematical culture and created a framework consisting of mathematics in culture (MiC) 

and culture of mathematics (CoM) to serve as a guideline for the analysis. Results show 

that the T-textbook from Taiwan and the C-textbook from China have many features in 

common. Both sets of the textbook stress S-L (applications of math in daily life), use 

I&G-O (providing opportunities for observing examples and data) widely, and totally 

ignore Ethnic features and the C&D index (mathematical dialogue and evolution of 

mathematical concepts). Additionally, it was found that the C-textbook is likely to use 

mathematical modeling as a means for increasing students’ problem solving ability. In 

contrast, S-L problems in the T-textbook are more unrealistic. Compared to the T-

textbook and the C-textbook, the US textbook employs more problems of Society index 

(35.4% of S-L and 11.5% of S-N). Nearly half of the examples and exercises in the US-

textbook are devoted to promoting students’ problem-solving abilities to resolve authentic 

problems. However, as in the other two versions, the index Ethnic features is absent. 

Introducing in what ways an identical mathematical concept was implemented in different 

cultures may trigger learners’ critical thinking and mathematical understanding. Though 

ethnic features are also related to History index, examples and exercises would not be 

counted as the Ethnic index if a cultural comparison was not made.  

Owing to the ways in which mathematical culture reflects the true nature of 

mathematics, it should receive consistent attention from teachers and students, and the 

mathematics textbook is an appropriate agent for achieving the purpose. However, the 

present study found that certain components of mathematical culture are not employed 

very widely or profoundly in the high school mathematics textbooks from Taiwan, China, 

and the United States that were analyzed. The three sets of textbooks overwhelmingly 

emphasize S-L index, which is expected, but overlook the evolution of mathematical 

concepts, ethnic features, and the social construction of mathematical knowledge, which 

are all related to the history of mathematics. In this manner, mathematics is treated more 

like an instrument than a particular kind of cultural wisdom. As a preliminary stage for 

entering college, high school students are further supposed to realize that mathematics not 

only can be applied to resolve daily practical problems, but may be advanced to an 

abstract level for its own sake. For instance, a historical and inductive approach may 
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connect the Fibonacci sequence with the golden ratio. Further, while introducing the 

concept of infinite series, the problem of determining the length of coastline can be 

associated with geometrical fractal. Unfortunately, the three sets of textbooks in the 

present study also fail to meet that purpose. The role of history of mathematics in teaching 

has been advocated for decades (Jankvist, 2009, 2011; Liu & Niess, 2006; Liu, 2009; 

Radford, 1997). Only history can address the ways in which concepts were created and 

polished through the ages, reveal the distinctive mathematical characteristics of different 

cultures, and demonstrate the dialectical nature of mathematical knowledge. When 

studying the textbook, students usually spend more time on doing examples and exercises 

than reading the text. To show the full essence of mathematical culture, a mathematics 

textbook should therefore include examples and exercises that refer to history of 

mathematics as a means to shed more light on the nature of mathematical thinking and 

knowledge construction. 
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ABSTRACT 

The jug problem is a famous historical problem, which can be found in both the Eastern 

and the Western literature. The problem is also called the Tartaglian vessel puzzle, 

Poisson's jug problem or Han Xin's Oil dividing problem, etc. There are various ways to 

solve this problem, such as the heuristic methods, the search methods or the graphical (or 

billiard) methods, which can often be found in the textbooks or reference books of 

problem solving, discrete mathematics, recreational mathematics, number theory, 

computer programming or artificial intelligence, etc. In this presentation, we will report 

how to introduce this interesting problem in a mathematics problem solving class, as well 

as the strategies adopted in finding the optimal solution of the problem, in the sense that 

the number of steps involved will be the least possible. 
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ABSTRACT 

Dividing the level of curriculum helps us to analyze the issues that arise in the 

implementation of the curriculum. Mathematics curriculum can be divided into four 

levels: the “intended” curriculum, the “intended implemented” curriculum, the 

“implemented” curriculum and the “attained” curriculum (Garden, 1987). This paper 

mainly studies the “intended” curriculum, the “intended implemented” curriculum and the 

“implemented” curriculum of the history of mathematics in mathematics curriculum. 

In Mainland China, the “intended” curriculum is the goals and requirements in 

mathematics curriculum standard. Reflecting on the cultural value of mathematics is one 

of the basic ideas. The curriculum standard states: “Mathematics is an important part of 

human culture. Mathematics curriculum should properly reflect the history, application 

and development trend of mathematics, the role of mathematics in promoting social 

development, the social needs of mathematics, the ideological system of mathematical 

science, the aesthetic value of mathematics, and the innovative spirit of mathematicians. 

Mathematics curriculum should help students to understand the role of mathematics in the 

development of human civilization, and gradually form the correct view of mathematics.” 

In order to achieve the “intended” curriculum mentioned above, the “intended 

implemented” curriculum sets up some teaching materials in textbook, which aims to 

provide teachers with abundant teaching resources, and help students to construct a better 

understanding of mathematics knowledge. Among the most widely used math textbook in 

China, there are 24 teaching materials, 12 of which are about the history of mathematics. 

Table 1: Historical Materials 

 English Title 

1 The development of function 

2 The invention of logarithms 

3 Solving equations in history in China and foreign countries 

4 Descriptive geometry andMonge 

5 Euclid’s Elements and axiomatic methods 

6 Descartes and analytic geometry 

7 Cyclotomic method 

8 Probability and cryptology 

9 Trigonometry and astronomy 

10 The origin of vector and vector notation 

11 Helen and Qin Jiushao 

12 Fibonacci sequence 

Below is the main content of the material on “The invention of logarithm”. 
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Figure 1: Teaching Material of Logarithm 

The “implemented” curriculum refers to the implementation of curriculum in practical 

teaching. What is the use of historical materials in textbook since 2004? Taking the 

historical material about logarithms as an example, this study surveyed 315 teachers from 

secondary school in China and interviewed 8 of them. 

Question 1: How much attention do teachers pay to historical materials in teaching? 

In the survey result, 1.9% of teachers are always concerned about historical materials, 

and 23.5% of teachers often concerned, 49.5% of teachers sometimes concerned, 21.9% of 

teachers seldom concerned, while 3.2% of teachers never concerned. 

Question 2: How do teachers use historical materials? 

The use of historical materials can be divided into three categories: positive, neutral 

and negative.72.4% of teachers are positive; they will integrate the appropriate historical 

materials into teaching to create a situation or introduce the process of the development of 

relevant mathematical concepts. 25.4% of teachers are neutral; they will ask students to 

read, understand and think after class. Unfortunately, there are 2.2% of teachers who have 

a negative attitude towards historical materials. They have no requirement for materials, 

and even think that integrating them into teaching will impede progress. 

Question 3: Why do teachers use or not use historical materials? 

The relationship between

logarithm and exponent

Briggs's improvement

and common logarithm

 Napier's model of

motion and logarithm

The source of

logarithmic thought

The background of

the logarithm
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In the interview, teacher T1 said: “Historical material about logarithms can stimulate 

students’ interest in learning and help students understand the invention of logarithms”. 

Teacher T2 said: “Since class time is limited, there is no time to arrange the teaching of 

historical materials. And there is a lot of supplementary work to do, so I have no choice 

but to let students read by themselves”. Teacher T3 said: “Mathematics is so difficult. 

Integrating the historical materials into class will greatly influence the progress of 

teaching.” Therefore, the factors that influence teachers’ use of historical materials mainly 

include the correlation between materials and examinations, the correlation between 

materials and mathematics, the progress of teaching and the basis of students’ knowledge. 

The survey result of the “implemented” curriculum shows that the use of historical 

materials is not ideal; teachers are less concerned about them. Even if some teachers tried 

to use such materials, the implementation mostly stayed at a fairly low level, such as 

“complementation” or “replication”, and failed to fully realize the requirements in the 

“intended” curriculum. From the perspective of historical material itself, we need to 

develop more resources to improve the use of it. Here are some suggestions: (1) To focus 

on the interesting stories that happened to Napier to make the material more interesting; 

(2) To make more natural the transition from discrete arithmetic progressions and 

geometric progressions to a continuous motion model, so as to improve learning and meet 

the students’ cognitive basis; (3) To reveal the significance and practical value of 

logarithms in order to improve the effectiveness of teaching. (4) To show Napier’s 

persistence, responsibility, modesty and cooperation in order to enhance the humane 

nature of mathematics. 
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ABSTRACT 

This study reports on the level of trigonometry history-based specialized content 

knowledge (HSCK) of senior high mathematics teachers (n = 153) at Yi Xing senior high 

school in China. The aim of the study was to determine if this sample of senior high 

school teachers has an appropriate level of HSCK to teach trigonometric concepts. The 

development of an instrument to measure senior high school teachers’ HSCK of 

trigonometry with respect to teaching trigonometric concepts is detailed in this report, and 

the subsequent findings from its administration to the sample are discussed. The findings 

indicate that the sample has gaps in their HSCK of trigonometric concepts that are on 

higher mathematics syllabi and are underprepared to teach those concepts for 

understanding. This study reveals that the majority of the sample does not have enough 

HSCK to teach trigonometry concepts of the senior high school. The strengths and 

shortcomings of the sample in relation to their HSCK of trigonometry are presented. The 

author concludes that senior high school trigonometry content should be taught in initial 

mathematics teacher education in order to deal with this issue. 
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ABSTRACT 

A Lesson Study (LS) is a practice-based, research-oriented, collaborative mode of 

professional development (Huang & Shimizu 2016), so we usually use Chinese LS to 

conduct HPM lessons at elementary and secondary schools. However, even though 

teachers conduct LS with support from a professional learning community (PLC), they 

usually encounter some difficulties from other aspects. As the problems teachers meet in 

teaching are important issues to pursue an investigation on the effectiveness of history in 

the classroom (Barbin et al., 2000), it is necessary to investigate the issue deeply. Tzanakis 

et al (2000), Clark et al (2016) sum up arguments against the integration of history: at least 

two types of difficulty are included; philosophical and practical. Clark and Lisa (2013) 

think the greatest challenge in planning lessons informed by history of mathematics is to 

deal with the resources available. Poh and Dindyal (2016) describe similar difficulties to 

Clark and Lisa’s difficulties in developing a lesson package infused with the historical 

development of calculus by using an LS approach. But they do not mention factors 

coming from different members of PLC; especially in China, where the community, 

consists of a school-based group, a teaching experts group, and an HPM academic group. 

So, the research question in this paper is: what are the factors that influence teachers’ 

HPM LS? 

We use Wang, Qi and Wang’s (2017) procedure of HPM LS, constructed from Gu and 

Wong’ Keli Model (2003; one popular type of LS in China), and built on theories of HPM 

in China to conduct teaching “Double digit divided by multiple digit”, “Parallel” in grade 

4 in Shanghai. Four procedures are included in this model: Selecting a Topic & Preparing, 

Discussing & Designing, Implementing & Evaluating, Analyzing & Writing, and there are 

cycles among the former three procedures based on feedback of an implementation of 

teaching. The implementation of teaching before demonstrating is called rehearsal 

teaching, and rehearsal teaching is repeated multiple times until teachers involved feel 

satisfied with the goal they set out to achieve (Huang & Bao, 2006). We collect lesson 

plans, videotaped lessons, post-lesson debriefing, the discussions among members in PLC, 

the demonstrating teacher’s and HPM experts’ design feedback worksheet and teaching 

feedback/reflection worksheets, the pre- and post- questionnaires about students’ learning, 

interview after two lessons, and use 3-level coding to organize data and use them as 

evidence to descriptive research. Based on the data after coding and interview, we form a 

report with 6 parts. The following gives a sketchy description of each part: 
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Figure 1: Wang, Qi and Wang’s procedure of HPM Lesson Study 

Part 1: The case teacher M firstly designed teaching herself. The historical resources 

she used are “Shang Shi Fa” in Ancient China (Fig. 2 5984÷16) and evolution of long 

division in western society since 17
th

 century (Fig. 3 732÷6), and M regarded them as 

exercises after students learned how to divide. The purpose of the former is to make 

students understand culture in ancient China; the latter is to improve students’ ability to 

understand. After being provided with other resources and advice, M slightly revised her 

design, adding the idiom “Ban Jin Ba Liang” (be six of one and half a dozen of the other) 

in background of weight units in book “Yu Zhi Shu Li Jing Yun” (Empire Kangxi, 1722), 

and attended a plan meeting to communicating & discussing. In the meeting, she accepted 

with pleasure the advice put forward by the HPM academic group (namely, to use two 

lines in the teaching design: the one is the relationship between comprehending, and 

building the relationship between “quotient is one-digit” and “quotient is two-digit”; the 

other is the background of using “Ban Jin Ba Liang” under a theory of “variation”).  

 

Figure 2: “Shang Shi Fa” in ancient China     Figure 3: The evolution of division  

(Eugene,1982) 

Part 2: After communicating with a teaching expert in her school, she revised the 

design to cater to the HPM academic group and the teaching expert. At the beginning of 

the design, M used “Zhi Chu Fa” (a method used in ancient China; namely, using 

subtraction to calculate division), and did not use the background “Ban Jin Ba Liang” in 

the whole process, as the teaching expert mentioned “Since the weight units used today (1 

Jin =10 Liang, 2 Jin = 1 kg) are different from these (1 Jin = 16 Liang, so half 1 Jin = 8 

Liang) in ancient practice, students would mix them up. I was surprised to read the design, 

which was different from what we had discussed, so I invited M and one expert in the 
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HPM academic group to fill in a design feedback worksheet, and send the expert’s 

worksheet to M to make her change the design, but failed”.  

Part3: M conducted rehearsal teaching using her design, but the outcome was not good, 

and the teaching expert’s and her colleagues’ comments in post-lesson debriefing made 

her sad. Since M had not adopted the HPM academic group’s advice, she again slightly 

revised her design and taught again, but the outcome was still not good. 

Part 4: Finally, M decided to adopt the HPM academic group’ advice. Firstly, she used 

idioms to build links between Chinese and mathematics, since it is thought that no or few 

such links exist. Secondly, she introduced an exploratory task, which is adapted from 

problems in “Yu Zhi Shu Li Jing Yun”, in order to explore the relationship between Jin and 

Liang in ancient China. Then, assigning the task of finding the links between Zhu and 

Liang, which is also adapted from problems in “Yu Zhi Shu Li Jing Yun”, to introduce 

idiom “Zi Zhu Bi Jiao” (haggle over every ounce 1 liang = 4 zi, 1 zi = 6 zhu). In exercises, 

M used True or False Questions (third calculation method in fig. 2 is included) in order to 

introduce the development of division (fig. 2), played micro-video to introduce “Shang Shi 

Fa”, and put all methods together to compare their advantages and disadvantages.  

Part 5: Through “Double digit divided by multiple digit”, M gained some experience 

and tried to transfer these experience to teaching the concept of “parallel lines”. Firstly she 

attended a plan meeting, in order to introduce her analysis of the textbook, the historical 

source and her students’ cognition. Through communicating and discussing with the HPM 

academic group, she decided to integrate into her design, the definition of parallels in 

Euclid’s Elements (c.300 BC; Definition 23: Parallel straight lines are straight lines which, 

being in the same plane and being produced indefinitely in both directions, do not meet 

one another in either direction) and in Mohism “Mo Jing” (388 BC; “Ping, Deng Gao Ye”; 

that is, if the distance between two lines is equal, the lines are parallel), and the idiom “No 

straightedge and compasses, no square and Circle” (meaning “Nothing can 

be accomplished without norms or standards”). Secondly, M finished her design. We were 

surprised by her good work after reading the design, although we gave some advice. Her 

design included 6 parts: (1) To recall from knowledge already acquired on “intersection or 

no-intersection of two lines”; (2) to use intuition in order to introduce the definition of 

parallels in Euclid Elements, and visual illusion of graphs to trigger students’ 

consideration into the limitations of Euclid’ definition, and introduce the definition given 

in the textbook: “If two lines are perpendicular to one same line, they are parallel”; (3) to 

use many tools in order to draw two parallel lines and students’ method to introduce 

Mohism’s definition, and play micro-video in order to introduce drawing tools in ancient 

China and the idiom “No straightedge and compasses, no square and Circle ”; (4) before 

introducing notations of parallel in history (fig. 4), students take part in an activity of 

creating a notation for parallels, and through comparing the notations in history and 

notations they created, students know about the required characteristics of notations – for 

instance uniqueness and universality; (5) to experience the usefulness of parallel lines in 

real life. (6) Summary. 

 

Figure 4: The notations of parallel in History (Cajori,1993) 
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Part 6: Through four trial teachings and post-lesson debriefings, discussions with 

members in PLC, revision and re-revision, M demonstrated her lesson successfully.  

Combining the report of descriptive research with the interview after the lessons, we 

find that the teacher’s self-efficacy and teaching feedback are the decisive factors 

influencing the HPM practice. Besides, teaching experience, teaching experts, teaching 

researchers, colleagues and the HPM research group also have different impacts on 

individual teacher’s HPM practice. 
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ABSTRACT 

The Chinese nine linked rings puzzle (Chinese rings puzzle) are one of the oldest known 

mechanical puzzles. It consists of a long loop with a handle on one end that is interlocked 

with nine rings (cf. fig.1). It is thought to have been invented originally in China. The 

origins are obscure. Stewart Culin records a story that the Chinese rings puzzle was 

invented by the famous Chinese hero Hung Ming (A.D. 181 - 234) in the book “Games of 

the Orient” (Culin, p. 31).  

 

Figure 1: Nine linked rings solution in Bits of Wisdom by Zhu Xiang Zhuren, ca. 1821 

The purpose of this study is to investigate high school students’ strategies for solving 

the Chinese rings puzzle. We design a lesson plan to evaluate students’ strategies and 

mathematical statements. In this study, 15 Taiwanese vocational high school students (1 

female and 14 males) were involved. We assigned students into eight groups. For a 

Chinese ring to be removed it needs to meet certain requirements, which involve 

constantly taking the rings off and on. Students need to disentangle the long loop from all 

nine rings, and the solution takes 341 moves, so lots of patience is required. We expect 

students can find the procedure goes through when one of the steps of the procedure 

involves invoking the procedure itself using recursion and derive the minimum number of 

moves to solve an n-ringed puzzle
1
. 

                                                           

1
The minimum number of moves to solve an n-ringed puzzle is 

(2 )2 3 ( 1)

6

n n   
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After this lesson, all 15 students can take the rings off and on. Each group can find the 

minimum number of 5 rings move (fig. 2).  

 
Figure 2: Example of finding the minimum number of 5 rings move 

 

Our results demonstrate five groups can find the procedure goes through when one of 

the steps of the procedure involves invoking the procedure itself using recursion (fig. 3). 

Among these five groups, three groups can find the correct recursion with  0=1,  1=2,  

1

1

2 1, 3,5,7,

2 , 4,6,8,

n

n

n

a n
a

a n





 
 


. 

       
Figure 3: example of involves invoking the procedure itself using recursion 

 

According to the worksheets, two groups find the recursion with wrong mathematical 

statements (fig. 4). Indeed, it is highly likely that students did not used to write 

mathematical expressions. We need to strengthen the practice of students in mathematical 

statements. 

 
Figure 4: example of wrong mathematical statements 

 

In summary, our studies show that puzzle solving is a good way to treat mathematical 

theories, but students’ mathematical statements needs to strengthen. Ultimately, what is at 
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stake here is learning by doing an active learning method for the teaching of mathematics 

to students. 
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RESUMÉ 

L’Histoire des Mathématiques (HM) a été considérée comme une ressource attirante pour 

l’enseignement des mathématiques avec des arguments du type: contextualiser et 

problématiser les concepts, stimuler la lecture, humaniser les mathématiques, etc. À partir 

de l’étude ICMI History in Mathematics Education (Fauvel & van Maanen, 2000), une 

communauté de chercheurs dans le domaine de l’éducation, de l’histoire, de la philosophie 

et de l’épistémologie des mathématiques s’est consolidée, et est devenue une référence 

internationale. Avec le renforcement de cette communauté, nous voyons des efforts pour 

systématiser les recherches autour des cours de mathématiques dans lesquels l’HM est 

utilisée comme principale ressource didactique (Clark, 2006; Arcavi et Isoda (2007); 

Dorier (2008); Jankvist (2009); Smestad (2012); Matthews (2014); Barnett, Lodder et 

Pengelley (2014); Smestad (2017)). En parallèle, il est possible d'identifier certains 

travaux (Guacaneme (2016); Fried, Guillemette et Jahnke (2016); Jankvist, Mosvold et 

Clark (2016)) qui cherchent à définir des cadres conceptuels et théoriques qui soutiennent 

l’étude de l’intégration de l’HM dans l’enseignement des mathématiques. Dans cette 

recherche nous nous sommes intéressés à identifier et étudier les compétences 

professionnelles essentielles à l’exercice du métier, afin de mieux comprendre le potentiel 

de l’HM dans la formation d’un enseignant des mathématiques.  

Dans ce cas là, nous présenterons le sous-domaine du Pedagogical Content Knowledge 

de Shulman (1987), proposé par Ball (2009) comme Horizon Content Knowledge, 

essayant d’établir une connexion entre un tel sous-domaine, l’HM et les compétences 

professionnelles nécessaires pour la tâche d’enseignement. En établissant cette connexion, 

il est possible de faire l’hypothèse que l’HM influence le sous-domaine Horizon Content 

Knowledge, et que cela peut trouver son expression dans la culture mathématique de 

l’enseignant de mathématiques, autrement dit, dans ses conceptions et ses attitudes.  

Il suit que les premières questions qui guident cette recherche sont: Comment les 

conceptions se développent-elles ? Quels sont les leviers susceptibles de les faire évoluer? 

L’HM, en tant que discipline, influence-t-elle les conceptions des futurs enseignants sur 

les mathématiques ? Ces conceptions, influencent-elles les compétences professionnelles 

d’un enseignant ? Parmi les différentes compétences professionnelles, quelles sont celles 

sur lesquelles un cours d’HM peut avoir une influence dans le cadre de la formation d’un 

enseignant de mathématiques? 

Cette recherche a pour objectifs principaux d’effectuer une analyse des conceptions des 

futurs enseignants de mathématiques, à priori et à posteriori d’un cours d’HM; d’identifier 

l’influence de ce cours sur les conceptions des futurs enseignants; d’étudier les liens entre 

conceptions de la discipline et conceptions de son enseignement, par rapport au 
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développement des compétences professionnelles. Les analyses seront faites à partir de la 

mise en œuvre des questionnaires et des entretiens, par rapport au cours d’HM. Le cours 

d’HM est donné de manière magistrale par l’historienne Rossana Tazzioli de l’Université 

Lille 1. Les objectifs du cours sont de promouvoir la réflexion sur des sujets tels que: le 

besoin de différents systèmes de numération; l’activité mathématique en tant que partie 

d’une société; et la relativisation de la démonstration. 

REFERENCES (10pt fonts) 

Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice, Educational 

Studies in Mathematics, 66(2), 111–129. 

Ball D., Bass H. (2009) With an eye on the mathematical horizon: Knowing mathematics for teaching to 

learners' mathematical futures. Universitätsbibliothek Dortmund. 

Barnett, J. H., Lodder, J., & Pengelley, D. (2014). The pedagogy of primary historical sources in mathematics: 

Classroom practice meets theoretical frameworks. Science & Education, 23(1), 7–27. 

Clark, K. (2006). Investigating teachers’ experiences with the history of logarithms: A collection of five case 

studies (Unpublished doctoral dissertation). University of Maryland, College Park. Available online at 

http://drum.lib.umd.edu/handle/1903/3379  

Dorier, J. L. (1997). Recherches en histoire et en didactique des mathematiques sur l'algebre lineaire - 

perspective theorique sur leurs interactions. Université Joseph-Fourier, Grenoble I. Disponible en ligne à 

https://tel.archives-ouvertes.fr/tel-00338400/document 

Fauvel, J., & van Maanen, J. (Eds.). (2000). History in mathematics education: The ICMI Study, New ICMI 

Study Series, vol. 6, Dordrecht: Kluwer. 

Fried, M. N., Guillemette, D., & Jahnke, H. N. (2016). Theoretical and/or conceptual frameworks for 

integrating history in mathematics education. In L. Radford, F. Furinghetti, & T. Hausberger (Eds.), 

Proceedings of the 2016 ICME Satellite Meeting – HPM 2016 (pp. 211–230). Montpellier: IREM de 

Montpellier. 

Guacaneme, E. (2016). Potencial formativo de la historia de la teoría euclidiana de la proporción en la 

constitución del conocimiento del profesor de matemáticas .(Doctoral dissertation). Universidad del Valle, 

Colombia. 

Jankvist, U. T. (2009b). A categorization of the “whys” and “hows” of using history in mathematics education. 

Educational Studies in Mathematics, 71(3), 235–261. 

Jankvist U., Mosvold R. & Clark K. (2016) Mathematical knowledge for teaching teachers: The case of 

history in mathematics education. In L. Radford, F. Furighetti, & T. Hausberger (Eds.), Proceedings of the 

2016 ICME Satellite Meeting of the International Study Group on the Relations Between the History and 

Pedagogy of Mathematics (pp. 441-452). Montpellier, France: IREM de Montpellier. 

Matthews, M. R. (Ed.) (2014). International Handbook of Research in History, Philosophy and Science 

Teaching. Dordrecht: Springer.  

Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard educational review. 

57(1), 1-23. 

Smestad, B. (2012). Teaching history of mathematics to teacher students: Examples from a short 

intervention. In É. Barbin, S. Hwang, & C. Tzanakis, (Eds.), Proceedings of HPM 2012 – The HPM Satellite 

Meeting of ICME-12 (pp.349-362). Daejeon, South Korea: Korean Society of Mathematical Education 

&Korean Society for History of Mathematics. 

Smestad, B. (2017). Design research with history in mathematics education. CERME 10, Dublin, Ireland. 

Disponible en ligne à https://hal.archives-ouvertes.fr/hal-01938803/document 

372

http://drum.lib.umd.edu/handle/1903/3379
https://tel.archives-ouvertes.fr/tel-00338400/document
https://hal.archives-ouvertes.fr/hal-01938803/document


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Original historical sources in teaching and learning of 

and about mathematics 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



BETWEEN WORDS AND ARTEFACTS 

Implementing history in the math class 

from kindergarten to teachers training 

 
Frédéric MÉTIN 

University of Burgundy, ESPÉ & IREM, Dijon, France 

frederic.metin01@u-bourgogne.fr 

 
ABSTRACT 

This article presents several ways to introduce a historical perspective into mathematical activities at school 

level. First highlighting usual difficulties encountered by beginners in implementing a historical approach to 

their mathematics sessions; it then suggests different modes of appropriation of a variety of sources, from 

original texts to artefacts described in these texts. For instance it revisits the use of counting tokens of the 

medieval period as well as two-colored tiles various combinations of which were studied by Sébastien 

Truchet in 1704. Going back to texts, it is finally suggested another use of old pages as support for marginal 

writings, allowing comments and appropriation of their contents. 

1 Introduction 

For the first time in France, history of mathematics becomes a significant part of the 

national high school curriculum in 2019. As the general introduction of the curriculum 

suggests: “It may be wise to enlighten the course with elements of historical or 

epistemological contexts. History can also be considered a fruitful source of problems 

clarifying the meaning of certain notions”. Thus, many items are followed by examples of 

possible original texts that can be used in the classroom, along with mentions of famous 

mathematicians’ biographies. My aim in this paper is to convince the readers of the 

relevance of an historical approach to mathematical notions from primary school to 

university, despite many obstacles faced by anyone using original sources in the 

classroom. 

Sometimes we are led to use attractive anecdotes at the expense of rigor, in order to 

give a historical perspective to our course on mathematics. Then the usual aridity of our 

mathematical discourse gives way to a pleasant coloration. Isn’t it worth this slight 

sacrifice? Historians themselves cope with an evolving historical truth. Even in 

mathematics, contemporary myths die hard. For instance, many stories about the golden 

ratio persist (Neveux, 1995), and the use of the so-called thirteen-knot-rope still prevails 

when medieval geometry is discussed. Between historical rigor and pedagogical benefits, I 

try to find my way focusing on objects, artefacts which can be proposed for study. I will 

first point out usual pitfalls faced by beginners, and then suggest several ways of using 

original sources in the classroom, balancing between historical texts and artefacts we can 

find in these texts.  

2 Common pitfalls of the historical approach 

The historical approach in mathematics is not common. It even presents several 

impediments, which are often put forward by the teachers who practiced it: time required 

to prepare activities that must often be completely created; lack of historical culture about 

the content to be taught; fear about additional difficulties for students who are not 
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interested in these “useless” subjects: mathematics and history. But these impediments are 

often offset by a real light shed on students by the use of old resources. Moreover, reading 

original texts generates a change of view on mathematics, which is discovered much more 

human than it was thought. 

For instance recalling the historical context of the invention of decimals helps to 

strengthen the link between mathematics and the real world, since Stevin addresses his 

Thiende (Stevin, 1585) to a whole range of crafts that are likely to use it: astrologers, 

surveyors, tapestry measurers, gaugers, and so on. But as a consequence of this link to the 

real world, reading the text of the Thiende raises questions outside the mathematical field 

as Peltier and Briand have shown in their study of Stevin's text (Briand & Peltier, 2003). 

But another problem arises from this study: the authors date the Thiende to 1582, while its 

first edition dates back to 1585. Despite deep bibliographic researches, I have never been 

able to find any 1582 edition of this book. The confusion may come from Georges Ifrah’s 

Universal history of numbers (Ifrah, 1998), which mistakes the Thiende for Stevin’s 

Tafelen van Interest (Stevin, 1582). This is a tiny detail. It shows however the difficulty of 

being perfectly rigorous, even for specialists of the subject. Let us raise some other 

difficulties posed by the practice of the historical approach. 

2.1 Words, words, words: the dangers of storytelling 

One of the most common uses of the history of mathematics in the classroom consists 

in humanizing the concepts through anecdotes from the great inventors’ lives. More 

and more often, it is also done by showing and reproducing daily use of mathematical 

notions at various times by ordinary people, and not only geniuses. However, simple 

anecdotes out of context would not have a great impact, so it is essential to take time 

to contextualize the concept and to promote a multidisciplinary activity. This 

supposes a certain historical and epistemological culture for teachers as storytellers. 

It is partly the reason why the new EFEC
1
 Bachelor’s degree of the University of 

Burgundy includes a teaching unit on history and epistemology of mathematics. In this 

unit, I privilege a narrative hook, a form of storytelling, in order to attract the attention of 

my second year students, most of whom have a very small scientific background
2
. For me, 

presenting history of mathematics as part of the history of humankind was the ideal means 

to give a general perspective on the notions of number, size, geometric shapes, as well as 

on measuring and solving problems. 

But the reception of these great stories by my audience did not comply with my 

objectives. Most students do not have a solid knowledge in both mathematics and history, 

and the wealth of information provided during the sessions was likely to blur the overall 

message. A revealer of the difficulties associated with this “grand narrative” approach is 

obviously the moment of evaluation. Let us give a typical example, which shows how vain 

it may be to imagine that a great saga in the manner of the Lord of the Rings facilitates the 

mastery of mathematical notions.  

One of the questions of an MCQ test was: Who invented algebra, when, and in which 

geographic area? I admit now that these questions were ambiguous, but I thought at that 

moment that I could gather unequivocal answers. To the contrary, the anthology of results 

                                                           
1 Acronym for Education/Training/Teaching/Culture. It is based on the former Science of Education 

Bachelor’s degree. 
2 One of the teaching units in Year 1 is devoted to scientific culture. 
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surpassed expectations: both for the people (Archimedes, Plato, Aristotle, Egyptians, 

Babylonians, Pythagoras, Diophantine, Fibonacci, etc.) as for the period (from ancient 

Egypt to the 17th century) or places (Western or Eastern Europe, Middle East, China), 

everything seemed mixed up to the point of absurdity. My conclusion would be: telling 

math stories to young adults lacking historical landmarks is not always fruitful. 

2.2 Wingardium Leviosa: the dangers of magic wands 

The magic wands of teachers do not have the powers of Hogwarts wizards’ wands. 

The first one is not rigid, but flexible: it is called the thirteen-knot-rope, or the 

arithmetic rope. For unexplained reasons, this modern myth has taken root in the 

teaching and teacher training worlds. It has even met there with some success, fueled 

by online documents which claim the historical reality of this object without great 

hindsight. 

Let's first explain what this artifact is. It is a cord divided into twelve equal parts by 

thirteen regularly spaced knots. Both ends of the cord carry a knot. By superimposing 

these two knots, then stretching the string by the 5
th

 and the 8
th

 knots, you obtain a triangle 

whose sides measure 4, 3 and 5 equal intervals respectively. The Pythagorean Theorem 

ensures that the triangle is right-angled and consequently you have constructed a right 

angle! 

This thirteen-knot rope gives substance to the theorem. This is probably what seduces 

the teachers (and others) who peddle this myth. The corresponding Wikipedia page 

(“Arithmetic Rope”) shows that there are still unattended leaflets on that non-academic 

encyclopedia. Actually, the main illustration comes from a now missing manuscript in 

which it was captioned Arithmetica (Figure 2.1, truncated on Wikipedia).  

 

But the original picture shows the use of a 

counting device for calculation with tokens. On the 

webpage it is also stated, without any serious 

documentation, that the thirteen-knot rope was 

widely used in Egypt on the building sites of the 

pyramids, and in the Middle Ages by cathedrals 

builders. This unverifiable piece of information is 

taken up by several French pedagogues on their 

personal websites. 
Figure 2.1 

Anyway, the wondrous aspect of this artifact makes it an educational attraction, since it 

materializes a Pythagorean triplet in a minimalist and elegant way. So why cast doubt on 

its existence? For a long time, many French IREM groups on history of mathematics have 

worked on practical geometry of the Middle Ages and Renaissance, up to the modern era. 

The list of perused books and manuscripts is very complete, even if it can’t claim to be 

exhaustive. It turns out that so far none of the works studied by these groups for years 

mentions any knotted rope whatsoever, while the use of other instruments (false square, 

geometric square, astrolabe, ropes and stakes, etc.) is very frequently described. By the 

way, why would cathedral builders have bothered creating thirteen knots in a rope when 

only the fifth and eighth ones were used? Or that the use of removable flags or simple 

marks on the rope would have been equally effective? There are very old testimonies of 

the use of ropes for practical geometry, in Egypt by arpedonapts (literally “rope 
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stretchers”, the surveyors) or in the Sulbasutras in India (Sen & Bag, 1983). In the old 

texts that have survived, we find no traces of knots on the ropes, except possibly at their 

ends to attach them to stakes. 

As a modern myth of the educational world, the knot rope does not require any 

philosophy of history, contrarily to the second magic wand, which is another theory that 

teachers also echo without precaution: the obscure role of the Golden ratio. 

Once again, Egypt is the imaginary place of a mysterious science of the Great Old 

Ones. The fascination with the secrets of making pyramids began at the end of the 19
th

 

century with the publication of a study (Smyth, 1864) who founded pyramidology. One of 

the great finds of pyramidologists is the discreet presence of the Golden number (Φ) or π 

in the architecture itself. These values were obtained after playing with measures of 

certain lengths, even sometimes setting the value of the units arbitrarily. Many 

publications have shown the vacuity of such assumptions (Markowsky, 1992), but the 

golden number and its cosmic virtues retain some credibility among the general public. 

At school, the Golden number usually arises when it comes to cross-curricular activities 

between mathematics and the arts. How many times have I heard that classical aesthetics 

is regulated by the divine proportion invented by Fibonacci but used long before in 

architecture? Almost always, secondary school teachers invoke a statistical truth: when 

you present to the general public rectangles of various shapes by asking them which one is 

the most “beautiful”, the most often chosen rectangle would be the one whose dimensions 

are in proportion to the Golden number. This unfounded assertion has been denied more 

than once by actual polls (Jacquier & Drapel, 2005). Unfortunately it seems that Φ doesn’t 

play any special role in beauty. 

2.3 The dangers of handbooks inserts 

Let’s go back to Stevin’s Thiende. No doubt about its popularity more than four 

centuries after its publication, since a recent French primary school handbook quotes 

it in its chapter on decimal fractions and decimal numbers (Briand & Peltier, 2016, 

170). The sidebar is likely to be a pleasant illustration of the subject and to anchor 

Stevin’s portrait in the students’ imagination (Figure 2.2).  
 

 
Figure 2.2 

Beyond aesthetics, the sidebar can useful by the link given between three parallel forms 

of decimals, very precisely found in the original text and justified through it. In this sense, 

it is an example of a very relevant use of the original resource. But it reveals some 

blunders. For example, you could be surprised by the choice of a fanciful portrait of 

Simon Stevin to illustrate the inset when there exists an engraved portrait of the author's 
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life, which correctly mentions his identity (Simon Stevin) while he is presented in the box 

as “Stevin de Bruges” which might suggest to the students that this is a nobleman named 

Stevin. What is more annoying is that it can be read that Stevin “proposed writing 

fractions as numbers with commas” and that “that is how decimals are born!” which is 

incorrect. Finally the recommended spelling of number 3.52 in the form “three point five 

tenths two hundredths” seems inappropriate to us. 

Since this type of sidebar is not uncommon in secondary school textbooks, it can be 

assumed that the new high school programs will generate new productions in response to 

their explicit references to history of mathematics. Let us hope that the contents will not 

only be chosen as nice images, and that they will generate activities based on original 

resources. 

3 Beyond dangers: the use of original materials in the classrooms 

The pitfalls I mentioned about introducing a historical perspective into the classroom 

might confuse and distract teachers from the use of ancient resources left to specialists in 

history of mathematics. As we have seen above, using ancient texts in class offers no 

secure way from the point of view of historical accuracy, but it would be a shame to 

deprive anyone of the light shed by the introduction of a historical perspective on 

mathematical notions. A multidisciplinary approach contributes to a better understanding 

of possibly tough concepts and it stimulates the connections between several fields of 

knowledge for the learners. 

For the moment there are but few examples of using original texts in primary school 

mathematics. It is a recent but more and more frequent concern for teacher trainers, 

especially historians of mathematics who ponder on the implementation of primary school 

activities based on a reading of original sources. This is evidenced by the recently 

published Passerelles (Moyon & Tournès, 2018), which offers nine chapters on various 

approaches to mathematical concepts in reference to their story. The first activity paths 

that are presented below are in the same perspective as the chapters of the book. These 

activities have been mainly practiced in the last two years (2016-2018) in various 

classrooms, mostly with students of the Faculty of Education (ESPÉ) or elementary 

schools, as well as larger public or teachers during training courses or Popular Science 

events
3
. For activities at various levels there are many interesting HPM papers (Chorlay 

2016, Métin 2012, ). 

3.1 Floor tiling! Truchet’s patterns 

Our first activity has been tested both in nursery school and teacher training. Readers 

will agree that it is difficult to undertake activities based on reading original 

documents for kindergarten. But it is possible to take the content of a text both as a 

resource for an activity (in kindergarten) and as a problem subject in itself (at the 

university), insofar as this text exhibits materials which can be manipulated even 

outside their original context. First the historical context of the document is set, and 

then its content is described. Finally I show the way I used it with children and 

university sophomores. 

                                                           
3 For activities at various levels there are many available HPM papers (for instance Chorlay 2016 or Métin 

2012). 
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3.1.1 Sébastien Truchet’s Memoire  

Father Truchet was born in Lyon in 1657. Naturally focused on mechanics, he was 

quickly noticed by the king's entourage for his clockmaking skills. He was appointed 

honorary member of the Academy of Sciences after having probably participated in 

many hydraulic works in the parks of the castles of Versailles and Marly. As he 

recounts in his Memoire presented to the Académie des Sciences (Truchet, 1704), it 

was during an inspection visit of the canals in the Orleans area that he became 

interested in pavements. He had been lodged in a domain whose owner had decided to 

renew the chapel floor using simple two-colored square tiles separated in two parts by 

their diagonal (Figure 3.1(a)). In his Memoire, Truchet searches for all possible 

combinations of two such tiles (Figure 3.1(b)), and then he deals with compositions 

that can be made by putting two such combinations next to each other. 

  
 

(a) (b) (c) 

 
Figure 3.1: Truchet’s tiles 

 

3.1.2 The use of the Memoire at University level 

I found that this material was suitable for combinatorial exercises including 

experimentation. The interest of Truchet’s two-colored tiles lies in their material 

aspect that allows manipulation like “let’s do it and see what we get”, instead of 

trying to think first. In fact, most undergraduate students would have been unable to 

determine all the possibilities of contact of two sides of tiles. 

The group having been divided into four sub-groups, the students had a large number of 

two-colored squares of laminated cardboard. By assembling these squares in pairs, each 

group had to reconstruct one of the four columns of the original plate (Figure 3.1(a)), 

whose first cells only were displayed. So, the original material wasn’t left untouched. On 

the contrary, the words had totally disappeared, as well as a part of the original plates. 

What appeared clearly in this activity are the predominant places of visual observation 

and the faculty of manipulating objects. Furthermore the use of speech is at first 

counterproductive. For example, on the production of Figure 3.1(c), how can we 

determine the missing configurations? This question was a headache for the students of 

the group in question, who had to classify the configurations already present according to 

visual criteria, and name the classes obtained to be able to communicate with each other. 
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In the second part of this activity, the aim was to reduce the number of cases to its 

minimum by matching similar configurations. Students still used visual evidence, but it 

was sometimes difficult for them to identify the same configurations when in different 

positions. Note, however, that students tended to assemble tiles of the same color, as I 

gave indifferently black-and-white or orange-and-white tiles. I have not studied the impact 

of colors on students' success, as they did not initially plan to mix tiles of different colors. 

3.1.3 The activity in kindergarten 

Of course, there is no space for combinatorics in kindergarten. I nevertheless tried to 

use the cardboard material manufactured for the occasion. The proposed activity had 

to be supervised by students from the Faculty of Education. It consisted in the 

duplication of simple configurations inspired by those of Truchet’s Memoire. The 

main learning goal of this activity was to develop the children’s skills of spotting 

things in plane geometry without coordinate system, and determining relative 

positions of geometric shapes. The second objective was to lead pupils to feel the 

necessity and usefulness of an appropriate geometric descriptive vocabulary. 

In some groups, there were harsh discussions because many pupils did not agree on the 

success of their partners even if they had difficulty explaining the mistakes. Generally 

speaking, the troubles came from the figures’ orientation. University student helped the 

groups reconcile by leading configuration analysis and requesting expressions to 

characterize misplaced squares. The necessary manipulations were based on simple 

transformations: rotation and bilateral symmetry. It should be noted that two symmetrical 

assemblies were often taken as identical. This is perhaps one of the major disadvantages of 

two-colored tiles.  

I am far from having exploited the full potential of these artifacts for the study of 

geometric shapes in the classroom. It is even possible outside the classroom, as two-

colored tiles still exist today in real life; it is possible to buy them in DIY superstores, for 

example the “Dément” (that is: mentally ill…) collection in the French brand Leroy-

Merlin. The website of this big brand even offers a visualization of some arrangements for 

bathrooms, in which I had the surprise to find the configurations already present in 

Truchet’s Memoire.  

No school so far has accepted to host a restoration of the soil of its classes, but the 

computer generated images of the aforesaid store website
4
 let us hope that a virtual 

renovation project can be considered. 

3.2 Counting with tokens 

The second chapter of Passerelles (Moyon & Tournès, 2018) highlights the relevance 

of using token charts in primary school, in order to introduce pupils to the history of 

calculus techniques, from the practice using artifacts to the use of written signs. The 

authors set out the history of counting tables and their possible pedagogical use. The 

counting frames manufactured by Dominique Tournès and his IREM group are made 

of lines drawn on paper. The lines carry the tokens according to their order of units, 

tens, hundreds, etc. My practice of calculating tokens is quite different, as I draw it 

from books (esp. Anonymous, 1509 and Anonymous, 1551) which present the 

                                                           
4 https://www.leroymerlin.fr/v3/p/produits/carrelage-sol-et-mur-noir-blanc-effet-ciment-dement-l-20-x-l-20-

cm-e1500488011. Accessed: 15 November 2018. 
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calculations without lines. Moreover, I do not use tokens with beginners in calculus, 

but with pupils, students and adults already familiar with the decimal position system 

and usual operations. Confronting these audiences with that forgotten practice allows 

them to revisit their representations of numeration and calculations.  

It is often for pleasure when it comes to adults. However, it seems also conceivable to 

propose calculating tokens as remedial teaching in case of learning difficulties with 

counting and operations. As I will show, when you do not impose a particular technique, 

letting people appropriate the device, it allows them to question their personal 

representations of the decimal position system. 

3.2.1 Resources 

There are many arithmetic books printed at the beginning of the 16
th

 century, mainly 

in Lyon, which at that time was a major center for both trade and printing. My main 

reference is a very rare book, named Livre de Chiffres et de Getz
5
 (Anonymous, 

1509), of which remains only one known copy, owned by the Méjanes Library of Aix-

en-Provence. Its author is not identified, but the content is not entirely original since it 

is found partly in 15
th

 century manuscripts and other 16
th

 century printed works. The 

title page of the book bears only the identity of the printers, Pierre Mareschal and 

Barnabé Chaussard. As the printers’s mark is damaged down on its right side, we can 

guess that the book was printed between 1508 and 1510 (i.e. when the association 

between the booksellers stopped), that is the reason why I chose to date it back to 

1509. 

 
  

(a) (b) (c) 

 
Figure 3.2 

 

Except for its rarity, the Livre de Chiffres et de Getz follows the same pattern as other 

books of its time. The first part explains how to manipulate tokens, for the representation 

of integers (Numeration) as well as the four operations. The second part deals with 

problem-solving based on the rule of three. In my classroom activities or during public 

sessions, I only present the title page and the caption entitled “The figure of numeration, 

which demonstrates how to set down the tokens and their value” (Figure 3.2(c)). The first 

                                                           
5 Which means: Book on Numerals and tokens. 
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exercise consists of understanding how to put the tokens and find the value of the given 

number. Since no line is engraved on the board, the orders of the quantities are therefore 

indicated by a column of tokens, called “the tree”, to which the printers took care to add a 

legend that the practitioners of arithmetic obviously did not have at hand. 

3.2.2 Manipulating tokens in the classroom (and elsewhere) 

One of the greatest interests of this abacus without line lies in its very easy 

manufacturing and installing wherever wanted: just have a good amount of tokens (in 

my case, tokens from a game of draughts) and a flat surface. The participants in the 

activities themselves build their computational tree. In this respect, I advise beginners 

to have tokens of different colors, as can be seen on the pictures in Figure 3.2. 

First of all, participants must find the value of the number given as an example in the 

book. They have but little difficulty in associating each group of tokens with the 

magnitude of the “branch” it belongs to, and thus to reconstruct the number (which is 

214,112,138). Some numeration exercises are an opportunity to explain the role of the so 

called quinary token, placed in an intermediate position between two branches and 

representing five tokens of the lower branch. One possible explanation comes naturally: 

beyond five, there is little chance of being able to immediately perceive quantities without 

counting. In the context of monetary accounts, it would be easy for a virtuoso (but 

dishonest) arithmetician to take a token here and there and steal his customers. The 

quinary token allows all the protagonists a visual control of the operations. 

Simple operations, namely addition and subtraction, do not need any explanation: in 

order to add any two numbers in the tree, all you have to do is cumulate the tokens of the 

same order and, when a sum reaches ten, to place a single token on the branch 

immediately above them. 

When it comes to multiplication, the custom is to place the multiplicand on the left of 

the tree and the product on the right. The multiplier is not represented, and this is precisely 

the reason for the diversity of possible techniques. My first example is the multiplication 

by 20, often used in the old texts for conversions of money because a pound corresponds 

to twenty shillings (and a shilling to twelve pence). The task illustrated in Figure 3.3(a) is 

the conversion of 27 pounds (on the left) into shillings. The participants perform it very 

simply: each token on the left gives birth to two tokens on the right on the next branch up 

above. The quinary token will thus give two tokens between the tens and hundreds 

branches, replaced by a token on the hundreds branch. The main difference between the 

manipulators is their choice of leaving the multiplicand intact or, on the contrary, 

eliminating each token as it is replaced by the other two on the right. 

 
  

 

(a) (b) (c) (d) 

Figure 3.3 
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After this rather easy first exercise, I ask the participants to convert 27 shillings into 

pence, which is equivalent to multiply 27 by 12. Now, with this multiplier, we encounter 

different techniques. Let’s describe three methods illustrated by Figures 3.3(b), 3.3(c) & 

3.3(d) respectively: 

 3.3(b): Replacing each token on the left with twelve tokens on the right, that is two 

tokens in the same level branch and one token in the next branch up above. The 

quinary token makes no exception and it is only after placing all the tokens on the 

right that the simplification is carried out. 

 3.3(c): Number 27 is identically copied on the right, then all its tokens are raised by 

a branch (“we do: times ten”), finally each token on the left is doubled and moved 

to the right into the branch of the same order. The quinary token is simply raised to 

the branch of tens. The third pupil of the picture will find 374, because in his first 

raising, the quinary token was erroneously placed on the branch of the hundreds 

instead of being in the intermediate position. 

 3.3(d): The tokens on the left are reproduced on the right and doubled (but the 

student forgets to double the quinary token). Then, instead of raising the right stack 

of tokens from a branch, the students operate this move on the left tokens. Then 

they stop, puzzled (this is where the picture is taken). The strictly gestural aspect of 

the procedure led to a dead end. Resuming the procedure step by step, with 

discussions and comments, allows them to rectify the manipulation, by correcting 

the error on the quinary. 

These various techniques are guided by different decompositions of multiplier 12, 

either as a block (Figure 3.3(b)), as 10 + 2 (Figure 3.3(c)), or as 2 + 10 (Figure 

3.3(d)). The most interesting moment for the participants is the verification of their 

result and search for a possible error. For that purpose it is useful to film them after 

asking them to restart manipulations for the camera provided that they comment their 

actions, though it is not natural for them to speak while operating. 

I have observed many times that this tokens calculus activity can be conducted without 

using language, because the essence of the practice lies in gestures which anyone can 

reproduce in front of other people without a word. It could almost happen in complete 

silence. However, I systematically ask for the explanation of the manipulations, whether 

the operators are beginners or experts, because without the verbalization the exchanges 

would only be visual and they would remain at a technical level. Since practice is not 

science, neglecting words would condemn participants to act only as performers. 

3.3 Experiencing math oddity 

Let’s briefly mention classroom experiments based on arithmetic texts of the late 

Middle Ages and Renaissance. These texts do not use any algebraic formalism, but 

they expose problem solving algorithms without the use of letters. One of the works I 

have used the most is the Oeuvre Tressubtile et Proufitable
6
 by Juan de Ortega, the 

first printed Spanish arithmetic (Ortega, 1515). 

The simplest way to share the experience of math oddity with readers is to give them 

the original text of one of the reading / interpretation activities offered to high school 

students (Ortega, 1515, fol. XCIXr -our translation from French-) 

                                                           
6 Very Subtle and Profitable Work. 
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A man makes his will and he has 3000 crowns left and he leaves his wife pregnant. 

And so he orders that if he dies and after his death his wife gives birth to a son, the 

said son will have the three parts of his property and the mother the other part. And 

[if] she gives birth to a daughter, the mother will have the three parts of his 

possessions and the daughter will have the other part. What happens is that after the 

death of the father, the woman made two children together, namely, son and 

daughter. It is asked how the possessions of the deceased person shall be divided so 

that the will of the father be observed. 

This kind of problem is called “problems of will”, and it is often found in old books on 

commercial arithmetic. The popularity of these problems may come from the need to turn 

to arithmeticians or even algebraists for inheritance disputes, because the laws on 

inheritance were extremely complicated for ordinary men.  

In the classrooms, the first obstacle to understanding comes from typography. It is 

however surprising to realize that generally no students are upset by the fate of the 

daughter. Anyway, once the language barrier has been overcome, understanding Ortega’s 

solution can be quite uneasy: 

And you will do that way: start with the daughter because if the daughter has a part 

the mother must have the three parts. For this pose 1 for the daughter and 3 for the 

mother, and the son must have three times as much as the mother and it will be 9. 

Now, add these three sums that is to say 1, 3, 9 & are 13 for the divider. Now, say by 

the rule of three: if 13 gives me 3000, what will give me 9? Multiply and divide as 

the rule of three requires & you will find 230 crowns & 13
10

, which is the share of the 

daughter. And to the mother 692 crowns and 13
4

, and to the son 2076 crowns and 13
12

 

of a crown. 

Mathematics teachers will quickly grasp that these are proportional shares, but you 

must remember that these notions are far from the concerns and skills of contemporary 

French high school students. These stumble particularly on the coefficients 1, 3, 9 and 13, 

the role of which in solving the problem they hardly understand. Here the numerators and 

the denominator are not distinguished by their positions in a fraction but by the word 

“divider”, which qualifies the number 13. 

It is certainly not the most difficult text that I have proposed to high school students. As 

a rule, the initial lack of understanding, frustrating as it may be, nevertheless leads to the 

satisfaction of perceiving the meaning of the texts through their mathematical contents 

before grasping the words. For us, the best work in this perspective remains Valentin 

Mennher’s Arithmetique Seconde (Mennher, 1556), with its old fashioned algebraic 

resolutions of equations. For a more detailed study of that question, I will refer readers to 

another article (Métin, 2012). 

Even without words, old practices in mathematics can turn out to be strange for 

contemporary readers. For instance, Figures 3.4(a) to 3.4(c) are visual excerpts from 

Robert Recorde’s Ground of Arts (Record, 1543). Figure 3.4(a) shows a multiplication 

table that our contemporary students consider incomplete or halved. On Figure 3.4(b), the 

same students can’t recognize their multiplication algorithm, but it is their algorithm, with 

the exception of the carried numbers. Figure 3.4(c) is the most puzzling. It shows the 

method promoted by Recorde to avoid learning the multiplication table for numbers over 

5. For instance, if you want to know the product of 8 multiplied by 7, just evaluate the 
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differences between each of these two numbers and 10: the “rests” are 2 and 3 

respectively; firstly multiply 2 by 3 and you get 6; secondly calculate the difference 

between each initial number and the “rest” of the other one: 8 – 3, equal to 7 – 2, is 5. 

Concatenate the two results and you obtain 56, which is the result of the multiplication 8 × 

7. Amazing! After this element of surprise, the students invariably go through two steps: 

How (does it work)? Why (does it work)? 

 
 

 

(a) (b) (c) 

Figure 3.4 

To favor investigation and questioning, it is worth removing all words from the original 

excerpt, leaving only the operations. The surprise comes from the lack of information (“I 

don’t know the reason why it works”), so don’t provide the students with too much 

information. Even a simple picture can sometimes be useful, as I show now. 

3.4 Back to Louis XIV’s Versailles in primary school 

At primary school level, the history curriculum gives prominence to great French 

figures of the past. Many aspects of the Grand siècle can give birth to original 

activities about symmetry or geometrical construction programs. In the context of a 

lesson study workshop, I had to find documents adapted to young pupils who are in 

the process of discovering symmetry. As my homeland of Dijon is renowned for its 

culinary culture, I was prone to look for them in the feasts. 

3.4.1 The initial document 

An impressive table plan is displayed in the kitchens of Chantilly castle, which were 

the quarters of the famous cook Vatel (Figure 3.5). This is the plan of a table for King 

Louis XIV at the castle of Marly-le-Roi, as it had been submitted to him in 1699. At 

Marly, the king took his meals with the royal family and particularly distinguished 

courtiers. The single rectangular table had been replaced by two oval tables and the 

plan shows the layout chosen on a special occasion. This arrangement was surely 

guided by symmetry, not complete however since there are seventeen covers. Perhaps 

symmetry was not desirable? The king having no counterpart, he could only sit in a 

unique, distinguishable place, which may correspond to the isolated cover at the 

bottom center of the ellipse. 

The arrangement of dishes on the table is part of the aesthetics of the whole. The plates 

of the guests are represented by disks distributed around the entire circumference of the 

386



oval. At the center, a curvilinear hexagon must correspond to a centerpiece carrying spices 

and herbs. Between plates and centerpiece, the “Roast dishes” materialize an axis of quasi-

horizontal symmetry, while the circular soup tureens and the “Pots-à-oille”
7
 are arranged 

in a symmetrical way compared to the central one. The round plates of hors d'oeuvre 

complete the set to occupy a maximum of space on the table. 

 

Figure 3.5 

This document, strongly linked to the history of France (as far as butlers are 

concerned), was a useful starting point for discovery and deepening activities on 

symmetry in primary school. 

3.4.2 Activities in the classroom 

The colleague who welcomed me in his classroom was a highly qualified user of 

interactive whiteboard and computer technologies in general. After a short time of 

exchange on the historical context of Versailles in the time of the sun-king, the table 

plan of 1699 was dissected, insisting on the organization of the reception and the 

placement of the guests and dishes on the table. When a first “mirrored” idea of 

placement was formulated, the pupils were invited in turn to make this property 

appear by coloring: a first pupil chose an object which they painted, the next one must 

use the same color to paint one of the objects that corresponds to it and the result was 

submitted to the entire class. 

Introducing the notion of axis of symmetry was facilitated by the interactive coloring 

task and the final request: “Where could you cut this table to obtain two exactly identical 

parts?” 

The plenary activity generated but few errors as the exchanges within the class were 

successful and the incorrect proposals were immediately corrected. However it should be 

noted that a second axis of symmetry, this one being horizontal, had been accepted by all 

(including the teachers) on the basis of visual evidence, while the number of guests around 

the table did not allow it. It would have been necessary to agree on a partial symmetry, but 

                                                           
7 These tureens were both containers for meat in sauce and prestigious elements of decoration. 

387



the adults in the classroom preferred not to go too far with this notion which could cause 

some trouble among the pupils.  

Further activities have consisted in reconstituting incomplete figures by symmetry, all 

the symmetric objects chosen according to the royal theme: chandeliers, gardens, 

windows, facades, and so on. I even launched a more complicated activity on napkin 

folding, which proved to be as promising as this new field of research in history of 

mathematics (Friedmann & Rougetet, 2017). But to keep the promises, I still have to find 

a better way to use it in the classroom. 

In a simpler follow-up activity, I had the pupils reconstruct the king's table of which 

they had only one half and the tracing paper of the other half to color symmetrically. Some 

of them adopted a simplifying strategy of returning their tracing paper, reproducing 

identically the image given on the tablet, and finally restore the initial orientation of their 

paper. This strategy was clever in this case because I hadn’t been careful of creating table 

layouts with only one axis of symmetry. In addition, the pupils’ ability to estimate the 

success of their work at a glance made all point-by-point examinations useless. I had to 

find a trick to force them to analyze their production. 

Thus I decided to create brigades of waiters, butlers and wine waiters: the pupils would 

set the table for a royal banquet. Lacking porcelain and silver tableware, they prepared 

half-tables with plates and plastic cups, placemats and paper napkins, aluminum dishes, all 

usual school material. A red tube from the gym serving as an axis of symmetry, the 

brigades were ready to set the table. Given the length of the table (about ten meters) and 

the height of the pupils, it was not possible for them to supervise the work from above, 

especially since it was a collective task evaluated by a single Controller of the Menus-

plaisirs of the king. 

By themselves, pupils tend to perform the task in two stages, successively considering 

the position and then the orientation of the objects to be placed. They first assign a 

location to the various elements. Only in a second time they pay attention to the 

orientation of these objects, which generates discussions and even a contestation of the 

authority of the Controller. Some pupils consider that the first stage was sufficient for the 

task to be completed, thus focusing on the functional aspect of cutlery and dishes, while 

the aesthetic aspect was emphasized by the verifiers. 

4 Texts as artefacts 

We may consider old book as objects as well as sources of knowledge. As in most of 

school topics, many teachers and students refer to the written word as inarguable. So when 

you propose a text for reading, it is always taken as the honest truth. Fortunately, there are 

at least two manners of contradicting that postulate. 

First, you can choose obscure writers from the past, as I did with Juan de Ortega, 

Samuel Marolois or Jean Bullant (Métin, 2006) whose names and works are unknown to 

our French students. There are so many now forgotten texts, that we have a variety of true 

errors and mistakes close at hand. 

Secondly, you can partly remove texts or images from the original pages, even when 

the texts are perfectly understandable by themselves. For instance in 17
th

 century books on 

geometry, the names of points were often displayed before these points were actually 

defined. The readers were then supposed to follow the construction steps on fold-up 

plates. The complete figure being under the reader’s eyes, the points were used both as 
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mathematical points and as parts of an image. This way of describing figures before 

defining their components was also in use in manuscripts, whose writers sometimes set 

drawings apart. When the plates or illustrations are lost, then our task is to reconstitute the 

whole. But as this reconstitution leads us to dig deeper in the subjects, and offers the 

opportunity of an exciting investigation, why not provoke the absence? 

4.1 Doubling the square with or without Plato 

In Plato's famous dialogue Meno, when Socrates puts forward the duplication of the 

square, he does it to support his theory of reminiscence. The dialogue was the subject 

of an interdisciplinary mathematical / French research conducted by a Paris IREM 

team, and written by Renaud Chorlay as the fifth chapter of Passerelles (Moyon & 

Tournès, 2018). There are no figure dating back from the ancient times in the 

dialogue, it is not even sure that they might have existed at that time. The figures have 

for a long time been reconstructed by Plato's readers, but it is an exciting exercise to 

try to understand the text without them and to reconstruct them in the course of the 

reading. Despite the difficulties of the text, the chapter highlights the interest of the 

activity in French as in mathematics. In the Paris IREM group project, words and 

speech are at the center of learning objectives. 

It turns out that I had also worked on the duplication of the square, but in a different 

perspective. After discovering fractions, pupils in an elementary school in Dijon had 

troubles with dividing quantities. The very nature of fractions didn’t go without saying. I 

therefore took advantage of this moment of doubt to suggest a “little exercise”, namely the 

construction of a square whose area was double the area of a given square. 

As in the Paris experiment and as in Plato’s dialogue, the pupils’ first reaction was to 

double the side of the square, either numerically from its measurement, or by using the 

compass. How do you explain them that the area of the square they obtained is not twice 

the original area? They found by themselves a way of testing their solutions in subdividing 

each of the obtained squares into squares of equal or nearly equal areas (see Figure 4.1(a)), 

a process they called “areas technique”. 

 
 

(a) (b) 

Figure 4.1 

When the subdivision was accomplished according to the standards, it is the calculation 

that left something to be desired (Figure 4.1(b)): the preteen here considered that a square 

of side 4 had a “12 areas” area and that its double, whose side is 8, had an area of “48 

areas”. He could not explain his calculations, but he was happy with his result since, like 

his friends, he had obtained four times the area of the initial square! 
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Where were we, between text and artefact? I must say that no word by Plato was ever 

revealed to the pupils. Nevertheless, their own research directions followed the pattern of 

Meno’s slave’s ones. Of course, the teacher played the part of a modern Socrates, 

questioning preteens in the right direction. Meno’s initial square had served has an artefact 

source for a research activity. Here I had removed the text, but other experiments lie on 

the removal of pictures. 

4.2 Removing pictures 

Our main research field in history of mathematics is 17
th

 century military architecture. 

Of course, fortification is strongly linked to geometry, as it is a matter of lines and 

angles. But constructions are made under constraints and early modern fortifiers had 

to be able to compute the measures of lengths and angles, which implied a solid 

knowledge in Euclidean geometry. 

Even for pupils without great knowledge of Euclidean theorems, it is possible to 

propose mathematical activities based on old fortification treatises. Readers will find such 

activities in my other article in the present volume. The basic activity focuses on drawing 

the shape of a polygonal fortress according to the construction programs we find in 

original sources, as for instance La Fortification reduicte en art et demonstree by Jean 

Errard of Bar-le-Duc (Errard, 1620). 

During my researches on military architecture, I discovered a very special handbook 

written by a mathematics teacher of a French Artillery Academy (Famuel, 1684). What 

was special in this book was an almost white page, with an empty space facing the 

detailed construction program of the fortified hexagon. I realized that all illustrations in 

this handbook were handmade. It was used by his author as a pedagogical support: the 

students were given (or certainly must buy) the booklet with the complete text, but no 

illustrations at all, and they had to complete the empty spaces with the figures 

corresponding to the construction programs. It seems to be a trend in French Artillery 

Academies at the end of the 17
th

 century, because I found two other books of the same 

type from the same period and the same context. 

The natural challenge for use was to reconstitute the figure. As a teacher, I suggested 

my students to do it themselves, in order to complete the copy in the public library. This 

was such a funny and interesting activity that I decided from that day on to systematically 

remove pictures from fortification books. I already have mentioned the supplementary 

obstacle for contemporary students to follow instructions quoting names of points not yet 

defined. The advantage here is that the teacher from the past has created the text with full 

knowledge of his students’ blindness. As the original pages were intended as supports for 

drawing, I do the same now, turning the geometrical books of the past into a kind of 

modern coloring book (without colors, just lines). 

In case of dissatisfaction due to the lack of colors, you can turn to Oliver Byrne’s 

edition of Euclid (Byrne, 1847). If you do so, your task will be to remove the colors from 

both text and illustrations, and to invite students to reconstitute the colored illustrations 

along with the colored parts of the texts. It appears that this is not easier than reconstruct 

missing black-and-white figures in 17
th

 century fortification books. 

4.3 Mathematics in the margins 

Our last work lead about the use of original sources in the classroom deals with 
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teacher training. I have used written resources as writing artifacts, that is to say, as 

objects designed to serve as supports for written commentaries about the texts they 

carry. It was not for students to undertake a textual exegesis of obscure passages of 

ancient texts, but rather to question the mechanisms they use to understand the 

contents of these texts. 

Writing in the margins when studying a book is a well-established tradition in 

mathematics. Let’s mention at least the most famous example: Pierre de Fermat annotating 

his copy of Diophantine's Arithmetic and leaving a marginal mention that would become 

his famous conjecture. According to Fermat himself the margin was too small for his 

clever demonstration. During my wanderings in libraries, I discovered numerous marginal 

notes, certainly of smaller impact than Fermat’s ones, but witnessing the real interactive 

aspect of traditional books made of paper. In addition, whether written by well-known 

scholars or obscure readers, marginal mentions are manifestations of mathematics as 

human activities. 

One of my latest research projects at Dijon IREM deals with written traces of student 

activity. In its didactical part this project focuses on the mathematics rough book seen as a 

private journal for students. In its academic part, it relies on the marginal annotation of 

original texts facsimiles, ranging from commercial arithmetic to algebra, geometry and 

probabilities. My analysis of the productions is centered on three lines of research: the 

necessity of rewriting or not, the need for translation in familiar terms or usual notions, 

and the place of the diagrams. 

During University teacher training sessions, I propose students to work on photocopies, 

with instructions to jot down in their margins anything they had in mind (questions, 

reflections, astonishment) which they considered part of their learning mechanism.  

I gave for example this extract of a curious book on practical arithmetic (Cathalan, 

1566):  

A man has 3 windmills, one of which grinds 5 bushels a day, while the second one 

grinds 7 bushels, and the third one 8. Comes the seller who wants to grind 100 

bushels of wheat. I ask: how should the miller divide wheat between the windmills, 

so that all three windmills take the same time to complete the task? 

It is not that easy for young students to understand that a bushel is a measure of 

capacity (of eight gallons). Moreover, the French text mentions a specific measure, the 

setier; or “septier” as Cathalan writes it, which is a mystery to them. They finally hardly 

understand that this is a proportional sharing problem. 

This is probably the reasons why students need to rewrite the text. Unsurprisingly, the 

words are a first obstacle, and may need a complete reformulation of the text, even if some 

students neglect the crucial point of the question, the fact that the three mills must have 

finished at the same time. Productions often show the students’ efforts to stress the 

meaning of words, even if the text is not rewritten. Students use the photocopies to 

highlight words and redefine them. We must not be surprised by some students’ lack of 

understandings. I purposely indicated that it was not a matter of perfect understanding, but 

of writing down all the elements of their search. 
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5 Conclusion 

I have presented various activities related to the use of original texts in the classroom with 

the concern not to sacrifice rigor on the altar of the beauty of tales. Focusing on artefacts 

effectively saves us from controlling the historical context and precise circumstances. This 

could be summed up by this formula: not let oneself be locked in a historical horse collar 

when resources are relevant to mathematics, but allow oneself to explore the historical and 

social context of these resources. Let us try to summarize the lessons drawn from the 

various experiments I described. 

5.1 What is doing history of mathematics? 

In my opinion, doing history of mathematics is first of all practicing mathematics, 

provided that these mathematical activities are inspired by original sources that can be 

directly exploited with students or not. Therefore, it is not a matter of strictly historical 

methods. The questions are mainly aimed at understanding the concepts, even if the 

process of understanding includes domains off the beaten scientific track. However, 

calculating with tokens without questioning the medieval period and the link between 

objects and numbers would be a really dry activity. 

In the case of the tiles, there is such a small difference between 18th century objects 

and the contemporary model that it was quite possible not to refer to the Truchet’s text for 

the activity. However, the search for combinations of tiles is legitimized by the Memoire 

of 1704, whereas it could seem artificial or useless if it was simply asked as a research 

subject. This combinatorial exercise will be easily presented as a reconstruction of an 

ancient text, the existence of which generates verifications and comparison with the 

students’ solutions. 

5.2 An epistemological e(n)strangement 

The concept of an epistemological dépaysement was recently re-presented by David 

Guillemette (Guillemette, 2015a & 2015b). What is at work here is the transformation 

of a familiar object (mathematical knowledge) into another less familiar object. The 

history of mathematics disrupts the usual view of mathematics by confronting us with 

writings and practices in which we do not recognize our own knowledge. What 

ordinarily went without saying becomes surprising. 

In the examples I gave, the study of arithmetic texts of the Renaissance best allows the 

epistemological dépaysement of high school students and in training teachers. A major 

interest of the change of scenery here is to allow questioning new questioning by placing 

student in the dark in front of a text they do not understand at first glance. It happens then 

a triple effect for people in this situation: 

1° as students are forced to deepen their look into matters they do not appreciate much 

they can first say “I do not understand a word!” 

2° attempts to decode mathematics behind this foreign language leads them to reassure 

themselves about their own capacity for comprehension. Finally they discover they are 

able to interpret ancient languages (algebra) and methods; it is therefore a work of 

translation and commentary, because students have to insert complementary algebraic 

lines to take full advantage of the contents. 
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3° after being relieved, students will have to think about the mechanisms that allowed 

them to rediscover the hidden mathematical notions. In fact, this understanding has been 

favored by the X-rays of their understanding, which showed them the mathematical 

skeleton of the text. 

The dépaysement only makes sense if people change their views. As with travels, this 

change of view is due to meeting others. In other words, looking for the initial context of a 

mathematical notion or appropriating practices from another time brings us back to the 

experience of the unfamiliar. More than a change of scenery, it is a revolution. I had no 

words for this special concept, so I decided to create the neologism enstrangement to 

significate the ability of making strange what was familiar. 

5.3 A non-magisterial context 

Using original documents means that teachers have to accept not to be the unique 

source of knowledge. In fact, neglecting historical references leads teachers to 

presenting subjects as their own knowledge without mention of any third party. 

However it is possible to insert mathematics in the history of human progress. 

In the case of Truchet's tiles for example, it is pleasant to offer students the opportunity 

to solve a problem already studied in the 18
th

 century but still relevant and within their 

reach. Would they be interested in working on tile arrangements without the challenge of 

solving a question posed by an Academician of the Enlightenment? It is Truchet himself 

who asks the question to the students. This enquiry is a form of adventure that would not 

be allowed with the teacher alone.  

Teachers must even accept to become simple guides of their students in front of a 

research put by a third person. No longer the exclusive owners of knowledge, teachers 

become travel organizers, facilitators of discovery, as they are when they take their 

students to museums. In this case, mathematical activity can’t be reduced to problem 

solving. What’s more, students here can both use reasoning skills and non-brain skills to 

experiment end manipulate objects. Working with artefacts is a matter of gesture as well 

as reasoning; you can’t limit the scope of authorized skills, or you would restrict your 

students’ abilities, even in the case of a text study. Favoring the surprise (the How? that 

leads to the Why?) implies making space for students to choose all available means to 

succeed in the task. But what may not be usual in mathematics (at least in France) is that 

we are thus led to leave space for students’ expression. 

5.4  Personal expression 

It seems important to me to establish a dialogue with students about the studied 

mathematical concepts. Learners are well aware that they don’t invent the properties 

of objects or the techniques and methods they discover in their activities. But one of 

the major difficulties for novice teachers is to listen to what students have to say about 

what they are studying, and even to encourage questions. In scientific activities, these 

teachers tend to provide all the answers and do not favor the emergence of questions 

that could deviate from the already marked path. This often happens to ensure the 

success of the activity. 

In this case, teachers promote knowledge more than learning in general, and 

particularly methods. My proposal for an analysis of understanding based on marginal 

annotations of the texts is very recent and my working IREM group is in its early stages. I 
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hope my young fellow teachers will agree with the need to promote a personal 

verbalization of their own students’ path in the appropriation of methods or mathematical 

practices. By putting my trainee students in the position of exegetes, I try to help them to 

move away from the model of knowledge holders, an all-powerful posture linked to the 

status given by diplomas. 

My goal would be achieved if I could find with them the pleasure of a Joyful Wisdom 

and the adventure of the search for knowledge. For me, introducing a historical 

perspective through the use of ancient resources, texts and artefacts, is a means of 

achieving this goal. 

REFERENCES 

Anonymous (1509). Livre d’chiffres et de getz nouvellement imprime. Lyon: Pierre Mareschal & Barnabé 

Chaussard. (The Méjanes Library, Aix-en-Provence, Rés. S. 167, 3). 

Anonymous (1551). L’arithmetique & manière de apprendre a Chiffrer & compter par la Plume et par les 

getz en nombre entier et rompu, facile a apprendre & tres-utile a toutes gens. Paris: Jehan Ruelle. 

Briand, J., Peltier, M.-L. (2003). Étude de la disme de Stevin de Bruges. Concertum, Carnets de route de la 

COPIRELEM. Tome 2, 381-406. Paris: ARPEME. 

Briand, J., Peltier, M.-L. (Eds). (2016). Opération Maths - CM1 - cycle 3. Paris: Hatier. 

Byrne, O. (1847). The first six books of the Elements of Euclid, in which coloured diagrams and symbols are 

used instead of letters for the greater ease of learners. London: William Pickering. 

Chorlay, R. (2016) Historical sources in the classroom and their educational effects. In L. Radford, F. 

Furinghetti, & T. Hausberger (Eds.). Proceedings of the 2016 ICME Satellite Meeting of the International 

Study Group on the Relations Between History and Pedagogy of Mathematics. Montpellier: IREM de 

Montpellier, 5-23. 

Errard, J. (1620). La fortification demonstree et reduicte en art par feu J. Errard de Bar-le-Duc. 3rd edition. 

Paris: Pierre Delon. 

Famuel, C. (1684). L’Art héroïque ou l’Architecture militaire, divisé en deux traitez. Le premier apprend à 

bien fortifier les Places tant regulieres qu’irregulieres : l’autre parle de la maniere de les attaquer. Metz: 

Pierre Collignon. 

Friedman, M., & Rougetet, L. (2017). Folding in recreational mathematics during the 17th-18th centuries: 

Between Geometry and entertainment. Acta Baltica Historiae et Philosophiae scientiarum 5(2), 5–34. 

Guillemette, D. (2015a).  L'histoire des mathématiques et la formation des enseignants du secondaire : sur 

l'expérience du dépaysement épistémologique des étudiants. PhD dissertation. Montréal: Université du 

Québec à Montréal. 

Guillemette, D. (2015b). A conceptual and methodological framework anchored in sociocultural 

approaches in mathematics education for the investigation of dépaysement épistémologique. In É. Barbin, 

U. T. Jankvist, & T. H. Kjeldsen (Eds.) (2015). History and Epistemology in Mathematics Education: 

Proceedings of the 7th ESU (pp.195-204). Copenhagen: Danish School of Education, Aarhus University. 

Guyot, P., & Métin, F. (2006). Using history of mathematics and physics in teachers training: The Officer's 

sciences in the Ancien Regime. In F. Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings of HPM 

2004 & ESU 4: ICME 10 Satellite Meeting of the HPM Group & Fourth  European Summer University  

on the History and Epistemology in  Mathematics Education,Conference on History in Mathematics 

Education (pp. 340-345). Iraklion: University of Crete. 

Ifrah, G. (1998). The universal history of numbers. London: Harvill Press. 

Jacquier, C., Drapel, K. (2005). Le nombre d’or : réalité ou interprétations douteuses ? Lausanne: Swiss 

Federal Institute of Technology in Lausanne. 

394



Markowsky, G. (1992). Misconceptions about the Golden Ratio. The College Mathematics Journal, 23(1), 

2-19. 

Mennher, V. (1556). Arithmetique seconde. Anvers: J. Loë. 

Métin, F. (2006). Original sources in the classroom: Contribution to Plenary Panel Discussion. In F. 

Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings of HPM 2004 & ESU 4: ICME 10 Satellite 

Meeting of the HPM Group & Fourth  European Summer University  on the History and Epistemology in  

Mathematics Education, Conference on History in Mathematics Education (pp.188-189). Iraklion: 

University of Crete. 

Métin, F. (2012). Using history for Math in EFL teaching: Original texts and cultural approach in the 

classroom. In É. Barbin, S. Hwang, & C. Tzanakis (Eds.), Proceedings of HPM 2012 – The HPM Satellite 

Meeting of ICME-12 (pp. 313-322). Daejeon: Korean Society of Mathematical Education & Korean 

Society for History of Mathematics. 

Moyon, M., & Tournès, D. (Eds.) (2018). Passerelles. Enseigner les mathématiques par leur histoire au 

cycle 3. Paris: ARPEME. 

Neveux, M. (1995). Le nombre d’or. Radiographie d’un mythe. Paris: Éditions du Seuil. 

Ortega, J. (1515). Oeuvre tressubtille & profitable de lartz science de aristmeticque & geometrie translaté 

nouvellement despaignol en francoys… Lyon: Etienne Balland. 

Recorde, R. (1543). The ground of artes : teachyng the worke and practise of Arithmetike, moch necessary 

for all states of men. After a more easyer & exacter sorte, then any lyke hath hytherto ben set forth: with 

dyvers newe additions, as by the table doth partly appeare. London: R. Wolfe. 

Sen, S. N., & Bag A. K. (1983). The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava, with 

Text, English Translation and Commentary. New Delhi: Indian National Science Academy. 

Smyth, C. P. (1864). Our Inheritance in the Great Pyramid. London: A. Strahan. 

Stevin, S. (1582). Tafelen van interest, midtsgaders de constructie der selver. Antwerp: Christoffel Plantijn. 

Stevin, S. (1585). De Thiende Leerende door onghehoorde lichticheyt allen rekeningen onder den Menschen 

noodich vallende, afveerdighen door heele ghetalen sonder ghebrokenen. Leiden: Christoffel Plantijn.  

 English translation and commentaries in Struik, D. J. (1958). The principal works of Simon Stevin, vol. II: 

Mathematics, 371-455. Amsterdam: Swets & Zeitlinger. 

Truchet, S. (1704). Mémoire sur les combinaisons. In Histoire de l'Académie royale des sciences. Année 

MCCIV. Avec les Mémoires de Mathématique & de Physique, pour la même Année. Tirés des Registres de 

cette Académie. Paris: Martin, Coignard et Guerin. 

  

395



 

396



QUELLE RIGUEUR POUR ENSEIGNER L’ANALYSE? 

Ce que nous apprend le calcul des différences (1696- 1768) 

 
Sandra BELLA

1,3
, Mònica BLANCO

2,4 

1
Université de Nantes Laboratoire de Mathématiques J. Leray Laboratoire SPHERE 

(Paris)  France,  
2
Universitat Politècnica de Catalunya, Spain 

3
bellusky@hotmail.com, 

4
monica.blanco@upc.edu 

 
ABSTRACT 

À travers l’analyse et la comparaison de textes de mathématiciens, nous proposons de 

mener une réflexion sur la manière de présenter les notions d’infini et d’infiniment 

petit sur lesquelles repose l’analyse. Si le calcul des différences a été abandonné au 

profit de la notion de limite, nous pensons que la réflexion en amont faite par les 

mathématiciens est utile pour connaître le contexte dans lequel la notion de limite a 

été élaborée, car cela offre une possibilité pour aborder les difficultés rencontrées 

aujourd'hui dans l'apprentissage et l'enseignement de l'analyse. Nous verrons qu’une 

rigueur a priori n’est pas toujours la meilleure stratégie pour faire accéder les 

étudiants à la finesse de certaines notions et qu’il est de bon a loi dans un premier 

temps de passer par certains détours.  

Dans cet atelier, nous nous tournons vers l'histoire pour comprendre les difficultés 

qu'ont représentées les fondements de l'analyse à leur début. Par un article paru en juin 

1684, Leibniz rend public l’invention de son calcul différentiel en présentant ses règles et 

quelques-unes de ses applications immédiates. Ce calcul, que Leibniz nomme également 

«Analyse des infinis», fait intervenir la notion d’infiniment petit. Certains mathématiciens 

français s’enthousiasment pour le nouvel algorithme et el Guillaume de l’Hospital qui se 

l’approprie suffisamment pour être à même d’élaborer le premier traité de calcul 

différentiel qu'il publie en 1696 sous le titre Analyse des infiniment petits pour 

l'intelligence des lignes courbes. Si certains reconnaissent que le traité contient une 

«sublimité» de découvertes structurées de manière cohérente, ils le jugent cependant 

d’accès difficile pour les non savants. D’autres condamnent le calcul différentiel qui y est 

promu car il repose sur la notion d’infiniment petit dont le statut est jugé bien trop obscur 

pour être accepté en mathématique. Pendant presque un siècle, des améliorations de 

présentation sont tentées par des savants, pour la plupart des enseignants. Cet atelier 

portera essentiellement sur les textes suivants: 

- Éclaircissemens sur l’Analyse des infiniment petits (Paris, 1725), par Pierre 

Varignon (1654-1722). 

- Analyse démontrée, ou la Méthode de résoudre les problèmes de 

mathématiques (Paris, 1708), par Charles-René Reyneau (1656-1728). 

- Commentaire sur l’Analyse des infiniment petits (Paris, 1722), par Jean Pierre 

Crousaz (1663-1750). 

- Analyse des infiniment petits, suivie d’un nouveau commentaire pour 

l’intelligence des endroits les plus difficiles de cet ouvrage (Avignon, 1768), par 

Aimé Henri Paulian (1722-1802). 
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Pourrait-on enseigner les infiniment petits afin de les utiliser dans une pratique 

mathématique «rigoureuse»? Les questions sont nombreuses et les réponses apportées sont 

diverses: ces entités sont tantôt interprétées comme des grandeurs, des "évanescents", des 

fictions, etc. Quelles sont leurs règles de manipulation? Que signifie diviser par zéro? 

Autant de questions qui résonnent aussi dans notre propre pratique enseignante. La 

connaissance de la genèse et la progression des idées et des concepts mathématiques 

peuvent contribuer à l’enrichissement de l’activité enseignante, en particulier 

l’incorporation de l’histoire permet de connaître quels types de problèmes étaient étudiés 

et de quelles manières se sont modifiés leurs contenus et les façons de les aborder. 
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ABSTRACT 

The workshop combines an interpretation of historical sources, specifically (Euler 

1755, ch. 3) and (Euler 1748, §§132–134), with methodological investigations on the 

role of definition in mathematics. The basic truths of modern mathematics – the series 

expansions of e
x
, sinx, cosx – are definitions of complex analysis, while in the 18th 

century they were proved as theorems. Strangely enough, for mathematical definitions 

are considered to be mere conventions, while theorems are to be qualified as true or 

false. 

We know that it was Euler who proved the identity e
x
 = cosx + i sinx. In his 1748 

Introductio in analysin infinitorum, chaper VIII, he expanded sin x and cosx into series. In 

the Workshop, we focus on §§132-134, where Euler expands the function cosx. In his 

development, Euler does not apply any technique of real analysis, not to mention the 

notion of limit, but rather infinitesimal and infinitely large numbers instead. That is why 

we provide an interpretation of Euler’s proofs in modern nonstandard analysis. Of course, 

it is out of question that Euler did not know the ultrapower construction that we apply, or 

any other technique of modern mathematical logic. He also ignored the 19
th

 century real 

numbers, as well as the 20th century notion of an ordered field. However, we can show 

that he implicitly applied rules of non-Archimedean fields, and his operations with infinite 

sum can be interpreted in terms of nonstandard analysis. As an easy introduction into a 

technique of algebraic interpretation of historical texts, during the Workshop, we will 

provide an interpretation of Euclid’s Elements, book V definitions 4 and 5, and Descartes’ 

operations on line segments as introduced via diagrams in his 1637 La Géométrie. 

This material and the associated interpretation have been used in my teaching, and 

students found this approach to ordered fields very instructive, especially because of the 

idea to introduce real numbers as a special ordered field, rather than via a construction. 

Mathematical curricula are different in different European countries, but it seems that they 

share a common feature; namely, that the notion of ordered field appears implicitly, rather 

than explicitly. Now, starting with the notion of an ordered field, one can grasp easily the 

idea of a non-Archimedean field. However, this idea is commonly overlooked in most 

educational systems. Therefore, this workshop is focused on the idea of an ordered field 

and its history. Seen in historical perspective, mathematical definitions are not simply 

conventions, but rather basic truths that cannot be proved. Thus, sometimes they turn to 

axioms; vide Euclid’s Elements, V, def.4-5, or Descartes’ definition of multiplication and 

division of line segments. In this connection, Euler’s formula is a very special case, 

because in his development these expansions are proved. However, when the framework 

(i.e. when the non-Archimedean field has been replaced by the conventional ε-δ one), 
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Euler’s findings are introduced as definitions.  

The general plan of the Workshop, as well as an annotated PDF file containing excerpts 

from historical texts were made available to the participants on the web 

(https://esu8.edc.uoc.gr/wp-content/uploads/2018/08/ID167-Blaszczyk-SharedDoc.zip). 
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ABSTRACT 

À travers l’analyse et la comparaison de textes de mathématiciens, nous proposons de 

mener une réflexion sur la manière de présenter les notions d’infini et d’infiniment 

petit sur lesquelles repose l’analyse. Si le calcul des différences a été abandonné au 

profit de la notion de limite, nous pensons que la réflexion en amont faite par les 

mathématiciens est utile pour connaître le contexte dans lequel la notion de limite a 

été élaborée, car cela offre une possibilité pour aborder les difficultés rencontrées 

aujourd'hui dans l'apprentissage et l'enseignement de l'analyse. Nous verrons qu’une 

rigueur a priori n’est pas toujours la meilleure stratégie pour faire accéder les 

étudiants à la finesse de certaines notions et qu’il est de bon a loi dans un premier 

temps de passer par certains détours.  

Dans cet atelier, nous nous tournons vers l'histoire pour comprendre les difficultés 

qu'ont représentées les fondements de l'analyse à leur début. Par un article paru en juin 

1684, Leibniz rend public l’invention de son calcul différentiel en présentant ses règles et 

quelques-unes de ses applications immédiates. Ce calcul, que Leibniz nomme également 

«Analyse des infinis», fait intervenir la notion d’infiniment petit. Certains mathématiciens 

français s’enthousiasment pour le nouvel algorithme et el Guillaume de l’Hôpital qui se 

l’approprie suffisamment pour être à même d’élaborer le premier traité de calcul 

différentiel qu'il publie en 1696 sous le titre Analyse des infiniment petits pour 

l'intelligence des lignes courbes. Si certains reconnaissent que le traité contient une 

«sublimité» de découvertes structurées de manière cohérente, ils le jugent cependant 

d’accès difficile pour les non savants. D’autres condamnent le calcul différentiel qui y est 

promu car il repose sur la notion d’infiniment petit dont le statut est jugé bien trop obscur 

pour être accepté en mathématique. Pendant presque un siècle, des améliorations de 

présentation sont tentées par des savants, pour la plupart des enseignants. Cet atelier 

portera essentiellement sur les textes suivants: 

-  Éclaircissemens sur l’Analyse des infiniment petits (Paris, 1725), par Pierre 

Varignon (1654-1722). 

-  Analyse démontrée, ou la Méthode de résoudre les problèmes de mathématiques 

(Paris, 1708), par Charles-René Reyneau (1656-1728). 

- Commentaire sur l’Analyse des infiniment petits (Paris, 1722), par Jean Pierre 

Crousaz (1663-1750). 

- Analyse des infiniment petits, suivie d’un nouveau commentaire pour l’intelligence 

des endroits les plus difficiles de cet ouvrage (Avignon, 1768), par Aimé Henri Paulian 

(1722-1802). 

Pourrait-on enseigner les infiniment petits afin de les utiliser dans une pratique 

mathématique «rigoureuse»? Les questions sont nombreuses et les réponses apportées sont 

diverses: ces entités sont tantôt interprétées comme des grandeurs, des «évanescents», des 

401

mailto:xavier.lefort@iutsn.univ-nantes.fr


fictions, etc. Quelles sont leurs règles de manipulation? Que signifie diviser par zéro? 

Autant de questions qui résonnent aussi dans notre propre pratique enseignante. La 

connaissance de la genèse et la progression des idées et des concepts mathématiques 

peuvent contribuer à l’enrichissement de l’activité enseignante, en particulier 

l’incorporation de l’histoire permet de connaître quels types de problèmes étaient étudiés 

et de quelles manières se sont modifiés leurs contenus et les façons de les aborder. 
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ABSTRACT 

This workshop reports on a teaching experiment which was carried out in May 2017 in France, in the final 

year of elementary school (year 5) and in the first year of middle-school (year 6). Its starting is point the 

most famous passage of Plato’s Meno, in which Socrates challenges a slave to construct a square twice as 

large (in area) as a given square. However rich Socrates’ problem may be from a mathematical viewpoint 

(characterization of common quadrilaterals, distinction between length and area, comparison of areas, 

proportionality), its study does not require any explicit use of original sources. In this experiment, the 

challenge was not only to make students work on Socrates’ problem, but on Plato’s text as well. Before 

reporting on the outcome of the experiment, we will present tools and concepts which we found in research 

works bearing on literacy and reading comprehension, and which helped us design the experiment. 

Keywords: original sources, area, proportionality, argumentation, literacy 

1 Rationale 

1.1 Mathematical content 

In this paper, we report on a teaching experiment which was carried out in 2017 in Paris, 

with students in the final year of primary school (year 5, students aged 10) and the first 

year of middle-school (year 6). It was designed on the basis of one of the most famous 

problems in the history of mathematics; a problem which is discussed in one of the 

foundational texts of the Western philosophical tradition. In the dialogue entitled Meno 

(we will refer to the online edition of (Plato, 1967)), Plato (427-348 BCE) staged a 

discussion between two characters: Socrates – a philosopher, and Meno – a noble 

Athenian. About halfway through the dialogue, Socrates engages in a side-dialogue with 

one of Meno’s slaves, who is referred to as “boy”. Socrates starts from a square (A) (see 

Figure 1.1), and challenges the slave to determine or exhibit a square twice as large in 

area. The slave finds the question easy, and suggests doubling the side (diagram (B)). 

Socrates points out that this answer is incorrect: shape (B) is a square indeed, but its area 

is four times that of (A), as can be seen in diagram (C). Socrates then joins the four 

midpoints of the sides of the large square and claims that this new, tilted, shape is a square 

whose area is twice that of (A). He justifies this by counting the number of half squares: 

two in (A), four in the tilted square. 

 

Figure 1.1: The diagrams referred to in Plato’s text. 
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The mathematical content of this passage is rich but fairly elementary, and echoes 

standard curricular requirements for the end of primary school or the beginning of middle-

school (depending on the country): describing rather complex plane geometrical shapes 

using with a precise vocabulary; characterizing common shapes (in particular when it 

comes to checking or proving that the tilted quadrilateral is a square); comparing areas, 

either through a cut-and-paste approach or by measuring (either with an ad-hoc or with a 

conventional unit); distinguishing between situations where proportionality holds, and 

situations where it does not (here: in squares, the area is not proportional to the side).  

Of course, the mathematically trained reader would probably see more mathematics at 

stake in this problem, in particular Pythagoras’ theorem. Indeed, Socrates shows that the 

area of the square on the hypotenuse of an isosceles right-angled triangle is equal to the 

sum of the areas of the two squares on the sides of the right angle of this triangle, which is 

a special case of the non-numerical version of the Pythagorean theorem. If we were to use 

the numerical version, a new feature of the problem would come up: it can be shown that 

the ratio between the length of the side of the first square and its diagonal (which is the 

side of the solution square) cannot be expressed numerically using only one whole 

number, or a ratio of whole numbers. There is probably an allusion to this mathematical 

fact in the dialogue, when Socrates acknowledges that, if the slave cannot “say” or 

“reckon” what the side of the solution square is, he can at least try to “show” it (Plato, 

1967, 84a). The construction is indeed elementary, whereas the numerical determination is 

difficult, and depends what you consider to be legitimate “numbers”. Since neither the 

Pythagorean property nor the irrationality of    are usually studied at this level of the 

educational system, we chose to leave this completely outside the scope of our 

experiment. Other choices would have been possible, for instance to engage in a numerical 

approximation of the measure of the side of the solution-square by trial and improvement, 

using decimals (Kosyvas & Baralis, 2010). 

1.2 A difficult problem, in a difficult text 

The study of this problem involves two well-known epistemological obstacles. The first 

one lies in the difficulty in distinguishing between two different magnitudes associated 

with one plane shape, namely the length of its border and the area of its surface. The 

second one lies in the force of the linear model, which leads most students (and probably 

most adults) to believe that when two magnitudes depend on one another, proportionality 

holds. 

These two sources of difficulty do not play equivalent parts in our experiment, partly 

for curricular reasons. For students of that age (around 10), at least in France, the notion of 

area is a key target in the curriculum, and our teaching sessions are designed for students 

who are already aware of the following facts: a plane shape such as a polygon has both a 

length and an area; the procedures for comparing lengths and those for comparing areas 

differ; so do the conventional units for both magnitudes. Consequently, we assume that the 

students will be display some level of expertise when dealing with the length-area aspect 

of the problem; and that studying this problem will improve their command of these 

notions. By contrast, even if the French national curriculum requires that some situations 

where proportionality does not hold be studied, the main target for students of that age is 

to study situations where it does hold, and to solve linear problems using an ever growing 

range of techniques. For most of the students in our experiment, the study of Meno’s 
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problem was probably the first occasion to come across the fact that, in the enlargement of 

plane shapes, a scale factor of 2 leads to a multiplication of areas by 4 instead of 2. We do 

not claim that this isolated encounter with a counter-intuitive phenomenon will enable 

students to overcome this epistemological obstacle – should such a thing be possible at all. 

However, this encounter with a tricky and surprising phenomenon could be used later on 

in the year, in particular to justify the rules for changing units in areas (e.g. there are 100 

cm in a meter, but there are 10 000 cm2 in a square meter). 

Since we wanted students to study Plato’s text and not only Socrates problem, the 

mathematical content along with its didactical and cognitive properties was not all we 

needed to pay attention to. The text is rather long – we used a 6-page excerpt – and of an 

argumentative nature (even if in a dialogical form). Moreover, this excerpt is a 

mathematical digression embedded in a philosophical dialogue whose main focus is not – 

at all – mathematics1.The excerpt under study is structured by the interlacing of these two 

scales: main dialogue / digression, philosophical problems / mathematical problem. 

Indeed, the dialogue between Socrates and the slave – which bears on shapes and areas – 

is regularly interrupted by sibylline asides between Socrates and Meno; asides which bear 

on the teaching/learning process. Moreover, in the study of the mathematical problem, the 

situations of the three characters are asymmetrical: the slave (and the 10-year old reader) 

understands in the end that his intuitive solution is erroneous, whereas Socrates and Meno 

(and the teacher) know it from the start. For Meno and Socrates, what is a stake is not a 

geometrical problem, but rather the true meaning of “believe”, “know” and “learn”. 

For these reasons, the text is not only long but objectively difficult to understand. 

Clearly, making sense of the text requires that shapes and magnitudes be studied; but it 

also calls for a continuous work of explicitation and reformulation of sibylline or 

ambiguous statements. For lack of some key information (what is really at stake for Meno 

and Socrates in their little “experiment” with the slave? What is the correct answer to the 

mathematical puzzle?), the reader has to continually make hypotheses as to what the 

various characters know and aim for. Many passages are rather obscure upon first reading, 

since the key to comprehend them is given in a later part of the text. For the reader, this 

has both a cognitive and an affective impact: one has to agree to go on reading without 

understanding everything. One has to accept the fact that, at different times along the 

reading process, the degree of understanding of different parts of the text will evolve. 

Beyond these general features which make the reading experience a demanding one, 

two other specific aspects should be mentioned. First, Plato’s manuscripts were 

transmitted without diagrams, and most contemporary editions chose not to provide visual 

help. There can be no doubt for the reader that Socrates is discussing and drawing 

diagrams, however it is left to the reader to sketch them along the way, which is not trivial 

since the text is occasionally ambiguous. In our design, we thought that making 

hypotheses about the diagrams mentioned, described, and discussed in the text was a task 

that could be fruitfully entrusted to students. Second, the mathematical vocabulary used by 

Plato is not ours. In particular, he used the same name for the units of length and of area 

(the foot). Although this fact was common in Ancient mathematics – in Greek 

mathematics but in Chinese or paleo-Babylonian mathematics just as well – it can be 

confusing for the reader. In our design, we regarded this feature of the text as providing an 

                                                           
1 The main topics discussed in Meno are virtue/excellence (what is virtue/excellence? Are all men equally 

capable of virtue? Is it inbred or can it be taught?), and teaching/learning. 
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opportunity for the students to spot this ambiguity, discuss and criticize it, and maybe 

suggest ways to reduce it. 

1.3 Why bother with the original text? 

This experiment was designed in the context of a larger research programme on the use of 

original sources in the classroom. An outline of its theoretical background can be found in 

(Chorlay, 2016, pp.9-14). To put it in a nutshell, we choose not to focus on history of 

mathematics in the classroom, but on the use of historical “documents” – be they texts, 

diagrams, or instruments – as a means to entrust students with tasks of a reflective nature; 

tasks which bear on a sample of mathematics. These tasks – which we collectively 

denoted as meta-tasks – are usually referred to by verbs such as: reformulate, translate, 

make explicit, disambiguate; assess, criticize; justify, prove, spot a missing argument and 

provide one; generalize, assess the generality. With its rather long and sometimes oddly 

worded list of arguments bearing on reasonably basic mathematical notions, Plato’s text 

seems to lend itself particularly well to this type classroom work. 

As a consequence, the classroom sessions reported upon in this paper are to be regarded 

as part of a research programme, and not as a teaching resource which we would claim 

should or could be used widely in more ordinary contexts. One reason for this is that the 

three sessions were designed – over a rather long period of time – by a group of three: the 

researcher, one primary school teacher2, and one secondary school teacher3. Hence, those 

who actually implemented the sessions should be considered as associate researchers. A 

second reason is that, for research purposes, we decided to keep the tasks as difficult, 

demanding, and challenging as we deemed possible, at the risk of facing classes of 

nonplussed students supplying irrelevant, senseless or random answers; or no answers at 

all. This highly demanding format is in keeping with our goal, which is to probe and try to 

delineate the thin line between the fruitfully demanding, and the altogether impossible (for 

students of a given age); or, to put it differently, between productive and unproductive 

struggles.  

This general perspective has to be kept in mind in order to understand the many 

specific choices reported below in the description of the sessions. For now, let us mention 

three consequences. First, in order to collect data showing what students managed to do 

when working on their own, we put the emphasis on written tasks, even in cases when we 

think it would not be necessary or even useful in ordinary teaching conditions. Of course, 

we also audio-recorded the sessions in order to study the collective phases as well as the 

interactions with the teacher. Second, the investigation is of a qualitative nature, not only 

because of the size of the samples (two classes) but also because the aim is to study what 

is possible in a given educational context; hence we take one instance as a proof of 

possibility; hence, we focus on the analysis of the qualitative variations in the range of 

actual answers rather than on their relative frequencies. Third, since we were ready to face 

“failure” – suggesting a relevant research-result of “impossibility” – we were also ready to 

let some students fail. At this point, there is tension between the goals of the researcher 

and that of the teacher.  

This report provides an opportunity to discuss a key element of our research 

programme which was only mentioned in passing in (Chorlay, 2016). Then, the focus was 

                                                           
2 Dominique Heguiaphal, école primaire Arago, 75013 Paris, France. 
3 Alexis Gautreau, cité scolaire Rodin, 75013 Paris, France. 
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on a first characterization of meta-tasks. Working on Plato’s text made it necessary to take 

into account didactical problems which are not directly related to mathematics, but to 

reading comprehension and, more generally, literacy.  

For this purpose, we drew mainly on the work of the research team of Roland Goigoux. 

With a theoretical background in the didactic of literacy and in textual linguistics, these 

experts developed a research-based teaching resource entitled Lector & Lectrix, which 

was designed to improve the reading comprehension skills of students from year 3 to year 

9 (Cèbe & Goigoux, 2009). According to them, “understanding a text” rests on the 

interplay between several skills: decoding the written code (the basic meaning of “being 

able to read”); linguistic and textual decoding skills regarding syntax, lexicon, 

punctuation, connectors; availability of referential knowledge (knowledge about the 

world: in this specific case, about shapes and geometric magnitudes), and strategic skills 

(regulation, control, and assessment – by the student – of his/her reading activity). 

Following Umberto Eco’s Lector in Fabula, they highlight the importance of the latter 

skills: 

To understand a text, the reader has to simultaneously use all these skills so as to 

carry out a twofold processing activity: some local processing – which gives access 

to the meaning of groups of words and of sentences – and some more global 

processing – allowing for the construction of a coherent mental representation of the 

whole. (…) The latter process – called semantic integration – is of a cyclic nature: 

each new input leads the reader to reorganize the representation which he/she 

constructs step by step, along the way (…). This means that the reader should be 

flexible enough to be able to acknowledge that his/her first representations are 

provisional, hence revisable. (Cèbe & Goigoux, 2009, 7. Our trans.) 

On this theoretical basis, Goigoux points out that these strategic skills are not often 

taught and trained explicitly, and that this could account for the persistence of a significant 

proportion of low-achieving students who can decode written texts but not actually read 

them as soon as their length or level of complexity exceeds the very basic. To address this 

issue, his team wrote a series of textbook specifically aiming for an explicitly training of 

students in reading comprehension. Let us mention some of their “guiding principles”: 

 Make students more active and able to regulate their own reading activity: avoid 

long lists of detailed questions; ask students to assess their own degree of 

understanding (“I’m sure of this”, “I’m quite sure”, “I’m not so sure”…) 

 Ask students to fill the “blanks” of the text: one has to cooperate with the text to go 

a little beyond what it says explicitly. One should teach the distinction between 

what the text says, and what it leaves for the reader to infer (and inferring is not the 

same as imagining or inventing); everyone has his own “way of understanding”, 

but a socially shared understanding is to be aimed for. 

 Ask students to reflect on the characters’ thoughts, in terms of goals (for the 

future), of motives (in connection to the past), but also in terms of feelings and 

emotions; of knowledge and reasoning. 

 Learn to memorize and make sense by constantly reformulating and paraphrasing. 

 Learn to adjust the reading strategies to a specific goal: Reading strategies are 

goal-dependent, and there are many possible reading goals; the teacher should 

point to this variety, and make the current reading goal explicit. 
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 Pay a constant attention to the lexicon: The meaning of a word can be explained by 

the teacher before or during the reading. Students should also realize that a reader 

can make hypotheses as to the meaning of a new word. 

In summary, beyond the specific content-related goals (shapes, area, proportionality), 

we wanted students to experience argumentation in a mathematical context, by reading   

but also by reformulating, complementing, assessing, or providing  arguments. Since the 

opportunity to do this was provided by a long and difficult text, these meta-tasks were 

intertwined with less specific – but just as challenging – text-reading tasks. We thus drew 

on the guiding principles of the Lector & Lectrix teaching programme to design our 

experiment. 

Before describing the three teaching sessions, we need to mention two negative 

choices. First, we decided not to expatiate on the philosophical meaning of the text; we 

touch on it when we feel it is necessary to make sense of some passages in the dialogue. 

This may be frustrating to the educated readers who knows how deep Plato’s text is, and 

who have experienced other ways of using it in their teaching – in particular in teacher-

training contexts. Second, we chose not to expatiate on the historical context. However, as 

preparatory work for the sessions, students were asked to read and summarize basic 

background information (location of Athens on a map of Europe, short biography of Plato 

etc.).  

2 Outline of the teaching sessions. Samples of students’ worksheets 

The three 1-hour teaching sessions designed with the two teachers were taught in May 

2017 in Paris, in two “ordinary” classes, one in the final year of primary school, and one 

in the first year of middle-school. All students’ worksheets were collected, and the 

sessions were audio-recorded. For lack of space, we will only present the outline of the 

sessions (in particular the list of tasks entrusted to students), and discuss a few samples of 

students’ individual worksheet (for a more detailed account, see (Chorlay, 2018)). This 

implies that this report will be biased, since we will mention only in passing what 

happened during the collective discussion phases, either among students or with the 

teacher. We will also focus on the mathematical tasks, at the expense of the reading tasks; 

lack of space is not the only reason: we also need more time – and probably need to 

collaborate with researchers working on reading-comprehension – to be able to analyze 

these aspects at research level. 

The outline of the three sessions is the following: 

Session 1: Discovery of the text (up to “And might there not be another figure twice the 

size of this, but of the same sort, with all its sides equal like this one?”) ; discovery of the 

main problem ; questions on the characterization of the square by its sides only ; questions 

on the meaning(s) of “foot”. 

Session 2: Reformulation of the duplication problem; comparison between solutions 

suggested by students and the solution of the slave; assessment of Socrates’ criticism of 

the slave’s answer. 

Session 3: Discovery and assessment of Socrates’ solution. Final look back, and reflection 

on the meaning of the whole dialogue, in particular with respect to the asides between 

Socrates and Meno. 
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2.1 Session 1 

Outline of session 1 (we italicized the questions students were asked directly). The text 

referred to is (Plato, 1967, 82a-82d); the first diagram drawn by Socrates is a square with 

sides of two feet each (diagram A of Figure 1.1): 

 Collective work: correction of the preparatory homework: Plato, citizenship and 

slavery in Ancient Greece, location of Greece and of Athens on a map of Europe. 

Short presentation of the goal and format of the three sessions. 

 Silent reading of the beginning of the dialogue 

 Second silent reading. Use three colours to sort the sentences or words into three 

categories: “This I understand” “This, I understand a little” “This, I don’t 

understand” 

 Collective discussion: Why is this text difficult? 

 We all agree that part of the difficulty stems from the fact that the characters are 

discussing diagrams that are not available in our edition of the text. Take five 

minutes to draw, in the margin, what you think the diagrams are.  

 The sentence “The space is twice two feet” is very important: 

o Can you explain what Socrates means? (you can write, draw …) 

o Do you agree with him? 

 Collective discussion 

 In the text, Socrates seems to be saying that a shape with four equal sides has to be 

a square. Do you agree with him? 

The answers students gave to the final question were not surprising: many remembered 

that a quadrilateral with equal sides can be a (non-square) rhombus; those who said it had 

to be a squared were quickly convinced by the collective discussion. The two questions 

about the contention that “the space is twice two feet” were less standard, and elicited a 

variety of responses. In figure 2.1A, the student found a geometrical interpretation of the 

values in the text (since a side is 2 feet, two sides are 4 feet) which does not involve areas.  

 
Figure 2.1A

4
 

  

                                                           
4 “(1) Can you explain what Socrates is talking about? Socrates says the square is of 2 feet per side, so 2 

sides are 4 feet.(2) Do you agree with him? Yes, since 22 = 4.”  
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Figure 2.1B 

In figure 2.1B, the student drew a clever diagram which accommodates the ambiguity 

of the text: the schematic feet denote both a unit length, and the location of the four unit-

squares. Figures 2.1C and 2.2D show symmetrical successes/shortcomings: student 2C 

identified multiplication as away to work out the area of the square, but did not spot the 

need to change units for areas. Student 2D did not clearly mention areas, but chose to 

express the result in square centimetres. The written trace “two times two cm2” is 

ambiguous, since it can be interpreted either as “(22) cm2” or as “2  2cm2”. Both 

answers are correct, the first one being closer to the standard formula, the second one 

being closer to Socrates explanation (in which he decomposes the square in two rectangles 

of 2 square-feet each). 

Figure 2.1C
5
 

Figure 2.1D
6
 

On the basis of the individual answers of the students, it was not difficult for the 

collective discussion to lead to a consensus on two points: First, in the text “4” refers to an 

area and not a length; second, given the fact that “foot” is a unit of length, maybe Socrates 

should have used expressions such as “square foot” or “foot of area” to avoid confusion 

between length and area. 

2.2 Session 2 

Session two ran very smoothly, so we will not report on it in any detail. Since our goal 

was not to design a problem solving session, but a session in which students were to make 

sense of, and assess arguments from the dialogue, we only gave them 1 minute to show us 

                                                           
5 “(1) Can you explain what Socrates is talking about? He is talking about feet, but in cm it would be 2  2 

cm since we work out the side of the right angle  other side of the right angle = we work out the area.” 
6 “Twice two feet means, twice two cm². So yes,  I agree with him.” 
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their intuitive answer to the main problem. As was expected, many suggested doubling the 

side. Some suggested drawing a congruent square next to the first one, which clearly 

doubles the area, but results in a non-square rectangle. In one answer-sheet, the student 

drew arrows to denote the enlargement process in a way which is reminiscent of the use of 

touch-screens on computers or cell-phones. The outline of the session is: 

 (Collective work, without the text) Reminiscing and reformulating Socrates’ problem: 

“And might there not be another figure twice the size of this, but of the same sort, with 

all its sides equal like this one?” 

 Spontaneous answers of students (1 min). 

 Silent reading of Socrates’ explanation of the incorrectness of the slave’s answer. 

Students are asked to draw the missing diagrams. 

 Collective discussion, consensus on the incorrectness of the slave’s answer. 

 Collective discussion on the meaning of the aside between Meno and Socrates: 

Boy : Clearly, Socrates, double. 

Socrates: Do you observe, Meno, that I am not teaching the boy anything, but 

merely asking him each time? And now he supposes that he knows about the line 

required to make a figure of eight [square] feet; or do you not think he does? 

Meno: I do. 

Socrates: Well, does he know? 

Meno: Certainly not. 

As far as the philosophical aside between Meno and Plato is concerned, once students 

have come to the conclusion that the slave’s answer is incorrect, they can be asked to spot 

the verbs in the excerpt. Clearly, Socrates and Meno mean to distinguish between, on the 

one hand “thinking you know”, and on the other hand, “knowing”. Thus, they are only 

willing to use the word “know” in cases where the conviction bears on a true statement.  

2.3 Session 3 

In session 3, Socrates solution was first read by the teacher, who supplemented the 

missing diagrams along the way (Figure 1.1). The students were then asked to assess 

Socrates’ proposal, without having the text at their disposal. The outline of the session is: 

 Reading Socrates’ solution. The teacher draws the corresponding diagram on the 

blackboard. 

 To see if Socrates’ answer is correct or incorrect, we need to check two things: 

o That the tilted shape in diagram (D) is, indeed, a square. Write down what 

geometrical instruments you need to use to check this. 

o That its area is twice that of the square (A) from which we started. 

To do this, you can use either: (1) shape (A), a marked ruler and a 

calculator; or (2) two shapes of type (A) and one of type (D), with scissors 

and glue; or (3) shape (D). 

 Final look back. Collective discussion on the meaning of the text. 

o Do you think the goal of Meno and Socrates was to make fun of the slave? 

o Does the dialogue between Meno and Socrates bear on squares and areas? 

If not, what is it about? 

Let us focus on the answers to the area question. We thought that many middle-school 
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students would rather measure lengths on the diagram and use multiplication to find an 

approximate value of the measure of the area of the tilted square, since the use of formulae 

is the standard procedure to deal with areas in middle school. It so happens that in the 

context of this problem, no students did that; all used the cut-and paste approach, usually 

in very clever and convincing ways.  

Figures 2.2A and 2.2B show two solutions using (or alluding to) scissors and glue: 

 

 

Figures 2.2A (left) and 2.2B
7
 (right). 

In 3A, the student cut out the tilted square from the diagram at the bottom of the page, cut 

it in four isosceles right-angled triangles, and used them to make up two copies of the 

original square. In 3B, the student explained with a mixture of diagrams and words that 

the tilted square can be decomposed into the original square plus one copy of the original 

square decomposed into eight halves of the unit-square. 

Other students managed to validate Socrates’ answer without any instruments: 

 

                                                           
7 “(a) Does the square have an area of 8 feet? Is it twice as large as the initial square?” [teacher’s questions]. 

“You can keep a small square.” 
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Figures 2.3A
8
 (left) and 2.3B

9
 (right). 

In 4A, the student counted the number of unit-squares in the tilted square, and added a 

small diagram to show that the area of one (square)-foot could be found either in a square 

or in a pair of half squares. 4B shows a variant of this reasoning.  

One student provided a correct answer that we had not anticipated: 

 

Figure 2.4
10

 

In figure 2.4, the tilted square is seen as half the large square (you just need to “fold the 

corners to get the same [i.e. tilted] square”). 

When it eventually came to discussing the general meaning of the text, it was not 

difficult for students to say that Socrates and Meno are clearly not doing this to make fun 

or humiliate the slave. Students usually interpreted Socrates lengthy explanations as a sign 

of benevolence, and suggested that, for Meno and Socrates, the dialogue bears on what a 

good teacher is: someone who explains patiently and in detail; someone with whom even 

an uneducated slave can learn. They also mentioned the fact that making mistakes is not 

shameful, and that it is sometimes necessary to make mistakes, in particular if it helps you 

                                                           
8 “ (2) Does the large square have an area of eight feet? Is it twice the initial square? Yes. We redrew the 

larger square. Then we counted the squares. There are eight of them. So it makes eight feet.” 
9 “There are 8 right-angled triangles (in red) and 2 right-angled triangles = 1 small square. 8 triangles = 4 

small squares. 4 small squares (blue) plus 8 triangles (red) is equal to 8 small squares of area (8 = 24)”  
10 “It’s easy, when you fold the edges you get the same square.” 
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realize that what you think is wrong. We are not claiming that is a deep, or even accurate 

rendition of the philosophical content of the text. However, for lack of additional 

information on Plato’s philosophy and on the content of the rest of the dialogue, we take 

these elements to be indicative of students’ ability to make reasonable hypotheses on the 

meaning of this excerpt as a whole, and to acknowledge the fact that something is at stake 

here beyond squares and areas. 

3 Conclusion 

Even though this experiment centred on a famous mathematical problem, the sessions we 

designed were not problem-solving sessions in the ordinary sense. Rather, students were 

to study the problem along with a list of answers (some incorrect, some correct), and the 

three sessions were designed so that the tasks which were most regularly entrusted to 

students were: reformulate, disambiguate, make explicit; assess an answer, assess an 

argument, complement a justification. Consequently, three levels can be distinguished: 1/ 

the level of the mathematical problem (shapes, areas, proportionality) 2/ the level of 

argumentation (making sense of the arguments, assessing their validity, their clarity), and 

3/ the level of semantic integration (ability to go on reading even if everything is not clear 

or even makes perfect sense, ability to make hypotheses as to what the characters know 

and want, ability to revise these hypotheses as the text unfolds). If we were to give one 

answer to the “why bother with the original source?” question, we would say that our 

initial target was level 2: we regarded the study of this exchange of arguments about a 

geometrical problem as providing opportunities for meta-tasks, and as a means of 

enculturation into argumentation in mathematics, at a stage of the educational system 

where argumentation does not usually play a prominent part (if any). However, as we 

designed this project, we began to take level 3 into account for both practical and 

theoretical reasons. From a practical viewpoint, we did not want the three sessions to be 

complete failures because this long and difficult text made no sense to the students! 

Objective properties of the text  in particular, the interlacing of two dialogues: a 

mathematical dialogue between Socrates and the slave, and a philosophical dialogue 

between Socrates and Meno  made it necessary for the design to include scaffolding 

strategies.  From a theoretical viewpoint, the fact that our research programme on the use 

of original sources in the teaching of mathematics called for reflection on reading-

comprehension was highlighted in (Chorlay, 2016, 10), but, then, we gave no indications 

as to how to do it. The Meno experiment gave us a first opportunity to attempt to make use 

of inputs from research on literacy in the design of a teaching sequence.  

As usual, whether or not this experiment was successful depends on the criteria for 

success. Some global indicators are positive: the engagement of students in the sessions 

was fair or good, as the written productions and the recordings show. Also, the two 

teachers found the sessions intense but rewarding, and included them in their teaching in 

2018. As far as level 1 is concerned, the mathematical notions at stake in the text are 

relevant for students of this age: on some occasions, most students gave correct and 

sometimes creative answers (as for the assessment of Socrates’ answer); on other 

occasions, as had been anticipated, some provided correct but oddly-worded answers, and 

some made standard mistakes. In the latter case, the variety of answers among students 

was sufficient for the collective exchange of arguments to lead to a consensual correct 

answer, under the guidance of the teacher. As far as level 2 is concerned, the extent to 
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which this experiment contributed to an enculturation into mathematical argumentation 

cannot be assessed, since such a process can only take place over a long period of time. As 

far as level 3 is concerned, we probably need to work with researchers in literacy so as to 

specify research questions and methods. 

A report on this experiment was published in (Moyon & Tournès, 2018), among a 

selection of experiments in using historical documents in the mathematics classroom for 

what the new French national curriculum calls “cycle 3” (final two years of primary 

school +  first year of middle-school). This book is circulated by two professional 

associations, that of secondary school maths teachers (APMEP), and that of primary 

school teacher-educators (ARPEME). Thus, it is presented not only as an experiment in 

the context of a research programme, but also as a resource for training teachers and 

teaching children. Needless to say, a study of the reception of this resource by educators 

and teachers who were not associated to its design would greatly contribute to the 

reflection on the use of HPM in teaching and training, from a different perspective than 

that of task-design. 
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ABSTRACT 

I propose an empirical study on theintroduction of an historical perspective onmathematics education at 

different levels in the French secondary school curriculum (11-18 years old). First of all, I present, in the 

historical contexts of the twelfth and thirteenth centuries, elements of the biography of Leonardo da Pisa, 

better known as Fibonacci, and of his mathematical work. I pay close attention to the mathematics of the 

Islamic countries that had largely fed his thinking. I dedicate an important part of our contribution to 

excerpts from theLiber Abaci to understandbetterhow his work might contribute to today’s classroom. All 

selected extracts belong to the category of so-called ‘recreational’ problems. They were chosen for their 

algorithmic structure that allows us to work with pupils on, among other themes, algebra and algorithmics 

(including coding). Finally, I give details of mathematical and historical extensions. 

1 Introduction 

The work presented in this paper1is part of a global project introducing an historical 

perspective on mathematics education developed in the IREM (Institute of Research in 

Mathematics Education) of Limoges under my supervision2 and following the works of 

the French Inter-IREM Commission on history and epistemology of mathematics.3 With 

secondary school mathematics teachers, I experimented with activities in classroom and 

analysed pupils’ work.4 More precisely, my purpose, here, isto take advantage of the 

algorithmic nature of a ‘recreational’ problem from medieval mathematics. I think that it 

is a suitable way to introduce, practice and clarifyalgorithmics in classroom and also to 

improve pupils’ abilities to code computer programs (with Scratch5). 

I focus on the so-called ‘Apple Orchard Problem’ as it was presented by Leonardo 

Fibonacci (13th c.) in his well-known Liber Abaci. Since the historical context is 

important to understand the genesis and the development of mathematical ideas, I present 

briefly, in the first part, a bibliographical overview of Fibonacci. Then, I explain the main 

reasons which make me consider this problem as a recreational one. Furthermore, I 

                                                           
1 I partly base our contribution on (Moyon, 2019). I give here new extensions by taking into account others 

historical sources and new mathematical developments. Iwould liketo express mysincere thanks to Maurice 

OReilly for his diligent proofreading of this paper. Nevertheless, I am the only one responsible for the flaws 

or errors that remain. 
2 http://www.irem.unilim.fr/recherche/algorithmique-histoire-des-mathematiques/ (Accessed: 20 August 

2018). For this contribution, I worked with Valérie Fréty (Collège Maurice-Genevoix, Couzeix) and Julie 

Pousse (Collège Louise-Michel, Saint-Junien). I thank them for their confidence and their availability. 
3http://www.univ-irem.fr/spip.php?rubrique15 (Accessed: 20 August 2018). 
4 In the same way, the IREM of Limoges participated to the “Passerelles” project with the edition of a book 

(Moyon & Tournès, 2017) and the construction of a companion website providing complementary 

documents http://www.univ-irem.fr/spip.php?rubrique505 (Accessed: 20 August 2018). 
5 Scratch is used (https://scratch.mit.edu. Accessed: 20 August 2018) because it is provided free of charge 

and it corresponds to the most used in French classroom. 
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analyse6 several different pupils’ work (13 to 15 years old) from mathematical activity to 

coding. In the last part, I give, for the same problem, mathematical extensions, for more 

advanced pupils, involvingsequences satisfying a recurrence relation. Finally, I give 

extracts from another medieval Latin text in the same genre. 

2 Fibonacci and his Liber Abaci 

In this part, I limit my remarks to necessary historical contents
7
 because my goal is not to 

offer a complete work on Fibonacci (even if that were possible
8
) but it is rather an 

opportunity to put in context the mathematical content that follows. In addition, this part 

could be useful for mathematics teachers or teacher educators who would like to 

reproduce my experiments in their own practice. 

2.1 Fibonacci: some biographical elements 

Leonardo of Pisa was born in the last third of the twelfth century and died after 1241. He 

belonged to the merchant elite of Pisa, a very important maritime republic on the Tuscan 

coast. He was the son of Guglielmo Bonacii, hence his nickname Fibonacci, contraction of 

‘filius Bonacci’. He was also known as Leonardo Bigollo (the traveller or the wanderer) 

for his numerous travels in the Mediterranean Basin. He visited several regions such as 

Egypt, Syria, Constantinople, Sicily and Provence. His most important journey was to 

Bugia (now Bejaïa in Algeria) where his father worked as a ‘scriberesponsible for 

Customs’ (Caianiello, 2013, 241). In thisMediterranean port city under Pisan rules, he was 

initiated to Arabic mathematics and, especially, to the Hindu-Arabic numeral system and 

algebra. Fibonacci largely benefitted from the cultural and scientific contexts of the 

Mediterranean Basin of the thirteenth century with important commercial and diplomatic 

relations between the north and the south, in particular with the fourth, fifth and sixth 

crusades, contemporary with Fibonacci. Probably in his native city, he met the Emperor 

Frederick IIwho appreciated the sciences in general.
9
 It is well-known that the court of the 

Holy Roman Emperor comprised various multilingual scholars from all over the 

Mediterranean Basin. As Latin, Greek and Arabic were spoken, numerous written sources 

circulated. Fibonacci seemed to have scientific and friendly links with many of these 

scholars such as Michael Scot, John of Palermo and Theodore of Antioch.  

2.2 The works of Leonardo 

Fibonacci is nowadays well-known thanks to the famous sequence defined such as 

every number after the first two is the sum of the two preceding ones. Nevertheless, 

his work should not be reduced to it (Figure 2.1). Two books of fundamental 

importance were: hisLiber Abaci for arithmetic and algebra (Fibonacci, 1857) and his 

                                                           
6  The analysis is based both on the observation of students' activity during the research and on the 

examination of written documents (taking into accounts general and mathematical abilities). See (Moyon, 

2019, 248). 
7All this part is extracted from (Moyon & Spiesser, 2015) and (Moyon, 2016). 
8For more details, see (Caianiello, 2012, 2013; Høyrup, 2016). 
9Fibonacci begins his Flos – a short text on algebra with problems involving several unknowns written 

between 1226 and 1230 (Picutti, 1983) – with: “While I was in Pisa in the presence of your Majesty, very 

glorious Prince Frederick, Master Jean of Palermo, your philosopher, discussed with me many questions 

about numbers and among other things proposed me two problems concerning both geometry and 

number” (Fibonacci, 1854, 2; Moyon, 2016, 7). 
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Practica geometriae for geometry (Fibonacci, 1862).10 He authored also three other 
writings: the Liber quadratorum, the aforesaid Flos, and the Epistola ad magistrum 
Theodorum.11 Considering the breadth of his work, Fibonacci seems to have mastered 
the scholarly mathematics of his time, as well as the practical problems related to it. 
After the vast movement of translation from Arabic into Latin in the twelfth century, 
he himself contributed to the spread throughout Europe of Islamic mathematics with 
their new theoretical ideas and problems. Below are three basic examples. 

 
Figure 2.1 

The first example is the Hindu-Arabic numerals that are presented at the beginning of 
the first chapter of the Liber Abaci:12 

The nine Indians figures are: 
9  8  7  6  5  4  3  2  1 

With these nine figures and with the sign 0 which the Arabs call zephyr, any 
number whatsoever is written. (Fibonacci, 1857, 2; Moyon, 2016, 12) 

And he follows explaining the writing of any number, however big: 

A number is a collection of units, which increases indefinitely by its own orders. 
The first [order] is composed of the units from one to ten. The second is composed 
of the tens, from ten to one hundred. The third is composed of the hundreds, from 
one hundred to one thousand. The fourth is composed of the thousands, from one 
thousand to ten thousand and so one for any of the following orders until infinity, 
each order being tenfold from the previous one. (Fibonacci, 1857, 2; Moyon, 2016, 
12) 

An important part of the Liber Abaci (chapter 5, 6 and 7) is dedicated to fractions – 
                                                           
10 Both are translated into English (Sigler, 2002; Hughes, 2008). Nevertheless, the Latin readings are really 
necessary because both suffer from various failings. See, for example, (Rommevaux 2008; Høyrup 2009) for 
the Practica Geometriae. 
11Fibonacci mentions two other texts but they are nowadays considered lost. 
12 In the following, all the original extracts from the Liber Abaci are framed. 
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with the horizontal bar – and to computations with them. This part is largely (but not 

exclusively) inspired by Maghrebian mathematics. Following al-Ḥaṣṣār (12
th

 c.) and Ibn 

al-Yāsamīn (d.1204), Fibonacci identified fractions to solve various types of problems 

(Moyon & Spiesser, 2015). 

The second example is related to algebra detailed in the last two chapters of his Liber 

Abaci but also widely used in his Practica geometriae to solve geometrical problems of 

measurement (Miura, 1981; Hughes, 2004; Moyon, 2012). This new discipline was born 

in Bagdad between 813 and 833 with al-kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-

muqābala [The Compendious Book on Calculation by Restoration and Comparison] 

written by al-Khwārizmī.Fibonacci demonstrates an excellent knowledge of the Arabic 

corpus, in particular, the seminal text of al-Khwārizmī(d.ca.850) and, among others,al-

Kitāb al-jabr wa-l-muqābala [Book on Restoration and Comparison] of Abū Kāmil (d. 

ca.930). For numerous problems, he proposes both algorithmic and algebraic procedures. 

The third example focuses on practical geometry. Inheritor of the Islamic tradition of 
c
ilm al-misāḥa [science of measurement], we must consider him as a major player in the 

beginning of the geometry of measurement in Latin Europe. With the Practica 

geometriae, the reader is taught, among other things, to measure plane figures, to divide 

them into different other figures giving geometrical constraintsand to measure inaccessible 

distances (Moyon, 2017, 111–113, 577–616). 

Finally, Fibonacci is one of the greatest medieval Western mathematicians. However, it 

is also necessary to consider him as a crucial link between Islamic countries and Latin 

Europe. 

3 ‘Recreational problems’ in the medieval history of mathematics 

3.1 Generalities 

The focus is on problems that I now consider part of recreational mathematics even tough 

they are not always defined as such by their authors. It is useful to consider Høyrup’s 

comment on this matter when he explains that recreational problems: 

... are pure in the sense that they do not deal with real applications, however much 

they speak in the idiom of everyday [...]. Nonetheless, their social basis is in the 

world of know-how, not that of know-why [...]. The distinction between these two 

orientations of knowledge is of general validity but has particular implications for 

mathematics. [...]  

Here, techniques and methods are by necessity primary, and problems are 

secondary, derived from the techniques which are to be trained. Anybody familiar 

with schoolbooks on arithmetic will recognize the situation, and scholasticized 

systems are indeed those where problems constructed for training purposes 

dominate. Apprenticeship-based systems, for their part, tend to train as much as 

possible on real, albeit simple tasks. (Høyrup, 2008, 1252–1253) 

Recreational problems (or mathematical riddles) are, in general, easy to state, tempting 

to work on and, sometimes, annoyingly difficult to solve. What we categorize today 

assuch problems are very ancient and omnipresent in many mathematical 
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practicesworldwide. They travel between different cultures.
13

 The same problem can even 

be found in Mesopotamian, Chinese, Greek, Sanskrit, Arabic, and Latin sources (Heeffer, 

2014). Historians of mathematics, such as Hermelink (1978), consider the analysis of this 

corpus as an approach to studying the transmission of knowledge from one culture to 

another. Following this kind of project, Singmaster wrote in 1988: 

I think that the temporal and geographical distribution of the sources suggests that 

recreational mathematics owes a much greater debt to China and India than to 

Greece, and that there must have been earlier and more extensive communication 

from India to Europe via the Arabs than is presently known. (Singmaster, 1988, 195) 

Recreational problems seem to be more and more important in the history of 

mathematics, especially in the context of medieval teaching from as far back as the 

Propositiones acuendo ad juvenes written by Alcuin of York in the ninth century.
14

 In 

addition, as Sesiano (2014b) excellently showed, the medieval texts are historically 

important. They widely feed the later collections edited in the Renaissance. Furthermore, 

Sesiano mentioned about the Liber Mahameleth that “many problems tend to be of a 

recreational nature” adding that “this had become traditional at the time for mathematical 

treatises” (Sesiano, 2014a, xvii). As he made clear in his Introduction to the History of 

Algebra that the “area of recreational mathematics [is] a domain that was to grow 

considerably during the Middle Ages to the point where it became a standard component 

of works on algebra” (Sesiano, 2009, 25). In this context, Fibonacci is one of the most 

influential medieval authors thanks to his Liber Abaci. 

3.2 Recreational Problems in the Liber Abaci 

The Liber Abaci is divided into fifteen chapters.
15

 The first seven chapters deal with 

numeration involving integers, fractions and operations on them. The following chapters, 

from the eighth to the eleventh, focus on problems linked to commercial rules with special 

emphasis on conversion of currency, allocations of profit, alloying of currencies where 

ratio and proportions (with the rule of three among others) are very important. The twelfth 

and thirteenth chapter of Liber Abaci, the longest part (almost half of the book) are 

devoted to various methods of solving recreational problems.
16

 Fibonacci named them 

with the expression erraticae questiones.
17

 In the last two chapters, the Pisan 

mathematician presents computations on radical numbers (based on Euclid’s Elements) 

and, as already mentioned, algebra. 

The problems of chap. 12 are really different, but they all seem to be common 

application problems with improbable and even absurd conditions. Moreover they all 

reveal the Fibonacci’s passion for numbers, for algorithms and for mathematical 

reasoning. Here are some typical problems where, to the reader (or learner)’s amusement, 

                                                           
13The most complete reference is (Singmaster 2013) with a detailed annoted bibliography. The reader can 

also refer to (Tropfke, 1980, 573–660). 
14 The edition of the Latin text is made by Folkerts (1978), the English translation by Hadley and Singmaster 

(1992). For an extended and corrected version, see (Hadley & Singmaster, 1995). 
15For details, read (Moyon & Spiesser, 2015, 421–422). 
16In order to better understand Fibonacci’s conception, Hannah (2011) analyses in detail three collections of 

problems: men giving and taking, men finding a purse, and men wishing to buy a horse. 
17For a discussion on the meaning of this expression, read (Moyon, 2019). 
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animals are seen reasoning with integers, fractions and proportionality.
18

 

A certain lion is in a certain pit, the depth of which is 50 palms, and he ascends daily 

1/7 of a palm, and descends 1/9. It is sought in how many days will he leave the pit? 

(Fibonacci, 1857, 177; Sigler 2002, 273; Moyon, 2016, 28) 

And  

A certain lion eats one sheep in 4 hours, and a leopard eats one sheep in 5 hours, and a 

bear eats one sheep in 6 hours; it is sought, if one sheep is thrown to them, how many 

hours it will take them together to devour it? (Fibonacci, 1857, 182; Sigler, 2002, 279–

280; Moyon, 2016, 24–26) 

And finally, 

Two ants are on the ground 100 paces apart, and they move in the same direction 

towards a single point; the first of them advances daily 1/3 of a pace and retreats 1/4; 

the other advances 1/5 and retreats 16; it is sought in how many days they will meet? 

(Fibonacci, 1857, 182; Sigler 2002, 280; Moyon, 2016, 27) 

It is good to finish any discussion of animal problems with the famous ‘Rabbits problem’ 

which gave birth to the well-known ‘Fibonacci sequence’. It is a very suitable example of 

mathematical modelling. 

How many pairs of Rabbits are created by one pair in one year? 

A certain man had one pair of rabbits together in a certain enclosed place, and one 

wishes to know how many are created from the pair in one year when it is the nature of 

them in a single month to bear another pair, and in the second month those born to 

bear also. (Fibonacci, 1857, 283; Sigler 2002, 404; Moyon, 2016, 29–32) 

Here, for our purpose – to introduce historical perspective in maths education –, I chose 

another problem from the twelfth chapter with an algorithmic structure. I call it the ‘Apple 

Orchard Problem’.
19

 

3.3 The ‘Apple Orchard Problem’ 

A certain man entered a certain pleasure garden through 7 doors, and he took from 

there a number of apples; when he wished to leave he had to give the first doorkeeper 

half of all the apples and one more; to the second doorkeeper he gave half of the 

remaining apples and one more. He gave to the other 5 doorkeepers similarly, and 

there was one apple left for him. It is sought how many apples there were that he 

collected. (Fibonacci, 1857, 278; Sigler 2002, 397; Moyon, 2016, 33–36) 

I give the entire problem (with the solution) in the first appendix. Fibonacci, as often, 

proposed two solutions. The first one can be translated into modern notation as follows: 

              

               

                   

                   

                                                           
18These problems are all extracted from (Moyon, 2016) where I also give solutions with commentary (in 

French).  
19Singmaster (2013) mentioned this problem in the chapter ‘Monkey and Coconuts problems’under the 

heading ‘Arithmetic& Number-Theoretic Recreation’.  
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Fibonacci ended with: “this total is the number of apples; and thus reversing the order 

that was proposed you will be able to solve any similar problem”. This first method is 

based on the inversion of the algorithm: Fibonacci proposed to work backwards and each 

operation is replaced by its inverse. This ‘method of inversion’ is well-known and we 

have, among others, different Indian sources mentioning it. For example, Āryabhaṭa (fifth-

sixth century) in the Gaṇitapāda, the mathematical part of the Āryabhaṭīya, wrote the 

following verse: “In a reversed [operation], multipliers become divisors and divisors, 

multipliers. And an additive [quantity] becomes a subtractive [quantity], a subtractive 

[quantity] an additive [quantity]” (Keller, 2006, 118). Another example comes from 

Brahmagupta. In his Brāhmasphuṭasiddhānta, writtenin the seventh century, this rule can 

be read: “beginning from the end, make the multiplier divisior, the divisor multiplier; 

[make] addition subtraction and subtraction addition; [make] square square-root, and 

square-root square; this gives the required quantity” (Datta & Singh, 2004, 232). 

The second solution is an algebraic one. In modern notation, let x be the number of 

apples initially picked, then the linear equation to solve is: 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
                        

or, step by step (or door by door), following the original approach, 

After the first door, there remain
 

 
   apples, 

After the second door, there remain
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After the third door, there remain
 

 
 
 

 
  

 

 
    

 

 
  

 

 
  apples, and so one 

 
 

 
 
 

 
  

 

 
    

 

  
  

  

  
 

 
 

 
 
 

  
  

  

  
    

 

  
  

  

  
 

 
 

 
 
 

  
  

  

  
    

 

  
  

  

  
 

After the seventh door, there remain
 

 
 
 

  
  

  

  
    

 

   
  

   

   
  apples, and indeed, it 

corresponds to only 1 apple, thus, 
 

   
  

   

   
   and so     . 

4 The ‘Apple Orchard Problem’: Experiments in French Secondary 

Schools (14-16 years old) 

Secondary school mathematics teachers, involved in the experiments with me, judged 

‘Apple Orchard Problem’and the Fibonacci’s original text mathematically and 

pedagogically interesting for pupils aged 14 to 16 years old. Taking into account 

several theoretical studies on the history and pedagogy of mathematics (Fried, 2001; 

Fried, Guillemette & Jahnke, 2016; Jankvist, 2009), my colleague and I decided to 

base our activity on using original sources in classroom. I know, from my own 

experience,
20

 that the whole enterprise of reading a source is a really difficult and 

                                                           
20 For example, (Moyon, 2013, 2017). 
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time-consuming task but we believed that the pupils were able to work with the 

extract of the Liber Abaci. We agree with the idea that “reading a source deepens the 

mathematical understanding on both levels, on that of doing mathematics and on that 

of reflecting about mathematics” (Fried, Guillemette & Jahnke, 2016, 219). And, for 

us, it was a major purpose to make pupils think about the algorithmic structure of the 

problem, the generalization indicated by Fibonacci
21

 and the modern use of coding. 

Thus, reading an original source (translated into French) adapted to the expected 

educational level, is another manner of applying new concepts, quite different from 

usual exercises. Thus we followed the basic guidelines of the hermeneutic procedure 

such as presented by Jahnke in (Fried, Guillemette & Jahnke, 2016, 216). 

To help pupils read and comment the text, we presented the text and the author into 

their historical context (see part 2 of this contribution) and we gave them a 

questionnaire in two stages (each of one hour).
22

 The aim of the first stage was to read 

the problem, understand it and work on it so as to solve it in their own words. At this 

stage, they did not have Fibonacci’s solutions. 

1. Individual work: Identify the different steps of the statement in your rough work. 

2. Collective work (pupils are separated in small groups of 4): Determine the number 

of apples sought by a method agreed by the group. 

3. On the answer sheet, write your solution to the ‘apple orchard problem’ (one sheet 

per group) that can be presented to the class. 

The second stage consists in reading the algorithmic solution. It was stilla collective work. 

The supporting questions were: 

4. Read Fibonacci’s solution. Did you find the same number of apples? 

5. How could you describe simply the solution given by the Pisan mathematician? 

6. Translate it into today’s mathematical language. 

7. According to you, what does it mean “you will be able to solve any similar 

problem”? 

Several procedures were tested by the pupils. Most are quite explicit. I analyse below the 

main results (all the works have been anonymized) regarding the method used. 

 

4.1 Mathematical Workings  

4.1.1 By an algebraic method 

Several pupils (about 30%) used algebra to solve the problem taking the number of 

apples picked as the unknown. A major error arose: the confusion between the 

remaining fruits  
 

 
     and the number of fruits given at the doorkeeper 

 

 
    . 

                                                           
21 “et sic revertendo, secundum quod propositum fuerit, in ordinem retro, poteris quamlibet similium 

positionum reperire” (Fibonacci, 1857, 278), bolded by me. 
22 My colleague and I planned a third stage to work on the algebraic solution but unfortunately we ran out of 

time. The questions were: 1) Read the second solution proposed by Fibonacci. How is it different from the 

first? 2) What is, for Fibonacci, the “thing”? What kind of mathematics is he using? 3) Translate this 

solution into today mathematical language. 
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Figure 4.1: Work of Elisa, Nina and Juliette 

 

Figure 4.2: Work of Mathilde and Mélissandre 

 

Only half students of this group came up with an equation. And, in this case 

(Figure 4.3), as they did not reduce the fractions as soon as possible, they gave up 

because they could not solve the equation.Here, a direct approach involves a 

complicated equation, by the standards of their mathematical ability.It follows that, 

algebra seems not to be the better strategy for 14-16 years old pupils. 

 

 
Figure 4.3: Algebraic solution written by Fayza and Germain (first attempt, see 

fig. 4.5). 
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4.1.2 By a trial and error procedure 

Other pupils (about 20%) tried to solve the problem by trial and error. They took a 

random number and they executed the program repeating the process until they 

decided to stop trying. Several attempts were made. They generally stopped when 

they obtained a negative or a decimal number. 

 

 
Figure 4.4: Here, in the work of Elvis and Dorian,four different numbers were tried: 70, 

40, 48 and 46 (the last ‘successfully’) 

 

Unfortunately, only few pupils (less than a third) reasoned from the results found to 

improve the choice of the initial number to be tested. No pupil solved the problem 

completely by following this procedure. 

4.1.3 By the method of inversion or the working backwards strategy  

The problem proceeds from complex, initially,to simple at the end. And, as it involves 

a sequence of reversible actions, the work backwards strategy isprobably the best 

procedure to perform. 

 
Figure 4.5: Second attempt of Fayza and Germain (see fig. 4.3): explanation of the 

algorithm of inversion (quite similar to Āryabhaṭa and Brahmagupta!) 

 
Figure 4.6: The algorithm in both directions: forward and backward (work of Julie, Lisa, 

Lola and Mélanie) 
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Figure 4.7: Reformulation of the problem (solution of Alice, Mina and Lilou) 

 

 
Figure 4.8: Schematization of the problem and complete resolution made by Annabelle 

and Glwadys. 

 

 
Figure 4.9: With the help of the calculator (final solution of Fayza and Germain, see 

fig. 4.3 and fig. 4.5) 

 

Nevertheless, several difficulties appeared. The first one is just at the beginning to 

understand the exact order of the operations, i.e. 1+1( )´2 = 4or1´2+1= 3. After that, the 

main problems arising are the misuse of parentheses or the distributivity of multiplication 

over addition. Those difficulties were expected by our a priori analysis. It was thus 

necessary to work on it. 
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Figure 4.10: Attempt of Baptiste, Manon and Francisco. 

4.2 Generalization and coding  

You will be able to solve any similar problem. This is Fibonacci’s conclusion 

following his first solution. Pupils understand what kind of similarity (and generality) 

Fibonacci mentioned. They discuss on the mathematical parameters of the problem: 

the number of doors, the number of apples given to the doorkeepers, number of apples 

remaining.For example: 

 

We choose a number x: 

– we add to it 1, 

– we multiply the result by 2, 

We repeat this program 7 

times. 

 

This program is valid not 

only for this problem but also 

for any similar situation. 

For example, give the third 

rather than half; pass through 

5 doors rather than 7; give 2 

fruit rather than 1; 2 fruit 

remain rather than 1. [...] 

Figure 4.11: Proposition from the work of Mathéo, Louis, Léo and Maxence. 

 

When pupils all understood the algorithmic nature of the problem and its parameters by 

following a collective exchange in their proper studyinggroup, we asked to them: “So, 

how many apples were picked if there remains only one apple after 457 doors?” All 

(except one girl who wanted to work ‘in her own head’) experimented with Scratch (in a 

French environment) to code the solution. They done it alone or in pairs and 73% of our 

pupils successfully completed this work. 
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Figure 4.12: First examples – works of Leo and Maxence (see fig. 4.11) and work of 

Annabelle and Gwladys (see fig. 4.8) –with two successive operations (adding 1 and 

multiplying by 2) 

Figure 4.13: The work of Fayza and 

Germain (see fig. 4.3, 4.5, 4.9) where 

operations are reduced in one line 

 

Figure 4.14:Alice’s work (see fig. 4.7) : 

misuse of parentheseswith the Scratch 

conventions 

 

In a final step, all class wrote a collective program taking into account several 

mathematical parameters. Some parameters wererequested from the user and others were 

modifiable directly in the program. Thus, pupils learn the notion of ‘variable’ in computer 

science, distinct from the mathematical notion (with the necessity, in programming, to 

initialize the variable in order to define it). After that, the math teacher checked this 

learning with several exercises in individual work. 
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Figure 4.15: The collective coding written with the help of the math teacher 

Finally, pupils were invited to think about the mathematical links between the 

‘apple orchard problem’ and the following one. 

A certain man went on business to Lucca to make a profit doubled his money, and he 

spent there 12 denari. He then left and went through Florence; he there doubled his 

money, and spent 12 denari. Then he returned to Pisa, doubled his money and it is 

proposed that he had nothing left. It is sought how much he had at the 

beginning.(Fibonacci, 1857, 258–259; Sigler 2002, 372–373; Moyon, 2016, 54–56) 

They easily produced, individually, the following program taking into account the 

previous one. They understood the generality of the method of inversion proposed by 

Fibonacci and the category of problems of which these are examples. 

 
Figure 4.16: The Maxence’s coding 

5 Some extensions 

5.1 For High-Schools curriculum 

The mathematical reasoning of Fibonacci to solve the ‘apple orchard problem’ can be 

reworkedwith the notion of sequence for more advanced pupils (16 to 18 years old in 

France). Here, it is possible to consider the extract of the Liber Abaci as a starting point to 

write mathematics at a higher level than did Fibonacci himself. 
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5.1.1 First sequence working the algorithm backwards 

Let be         the sequence defined recursivelyrepresenting the number of apples 

remaining after the     door,    being the number of applesinside the first door. Thus, we 

have: 

      

 

     

      
 

 
    

  

It is an arithmetico-geometric sequence and its general term
23

is given by: 

         
 

  
         

Thus, in Fibonacci’s conditions, we have: 

   
 

   
           

 

   
         

           

       

5.1.2 Second sequence using algebra 

If x is the number of applesinitially picked, a new sequence        can be defined giving 

the number of applesremaining after the     door by: 

        
 

  
     

      

    
  

Or, after reduction, 

        
 

  
  

    

    
 

An elementary mathematical induction can prove it. Thus, in Fibonacci’s conditions, we 

have: 

   
 

   
  

   

  
   

 

   
  

   

  
   

 

   
    

   

  
 

         
   

  
      

5.2 Another solution method and Other problems from the Liber augmenti et 

diminutionis 

The Liber augmenti et diminutionis [Book on increase and decrease] is an anonymous text 

from the twelfth century.
24

 Hughes (2001, 107) described itas “a book that reads like a set 

of lectures on how to solve problemsinvolving numbers”. The author’s main purpose is to 

teach the method of double false position. One of the nine chapters of the book is about 

“apples stolen from an orchard”. It containssix problemsdivided into three groups, whose 
                                                           
23In France, students do not know the formula for the general term. They do derive it from the recurrence 

relation or with help from the teacher. 
24I am preparing a new critical edition of the text with a French translation of the whole text. 
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statements may besummarized as follows: 

1. There are 3 doors; the man gives half and 2 fruit more; 1 fruit remainat the exit. 

2. There are 3 doors; the man gives half and 4 (resp. 6, 8) fruit more to the first (resp. 

second, third) doorkeeper; no fruit remains at the exit. 

3. There are 3 doors; the man gives half and the first (resp. second, third) doorkeeper 

gives back to the man 2 (resp. 4, 6) fruit; the man has 10 fruit at the exit. 

In appendix 2, I give the entire textof the first problem (the mostsimilar to the ‘apple 

orchard problem’ of the Liber Abaci). I detailhere the method of double false position used 

in the Liber augmenti et diminutionis. 

Let be        a first number (first false position). After the third doorkeeper, exactly 

9 apples remain. So, the differencebetween 9 and 1, the number of applesthat should 

remain, is (an excess of) 8. Let be       a second number (second false position). 

After the third doorkeeper, exactly 21.5 apples remain. So, the difference between 21.5 

and 1 is (an excess of) 20.5. Thus, we have two errors
25

:       and          (both 

excesses), correspondingto the numbers initially chosen:        and       . Here, 

the solution is given by the following relation: 
           

     
 
              

      
    

The method of double false position is adapted for linear problems that, in algebraic form, 

reduce to the solution of equations of the type:          , such as in this case 

(Chabert, 1999, 83–112). In high-school the problem of proving the correctness of the 

method may be given as an exercise. 

6 Elements of conclusion 

In this emprirical contribution, I showed one more time that the history of mathematics 

may support mathematics education using medieval texts (Liber Abaci or Liber augmenti 

et diminutionis) inthe classroom.And, I also highlighted that historycreatesa suitable 

context to think about mathematical concepts and procedures. This is the main purpose of 

my contribution. 

When pupils engaged with the source, most of them had questions (on terminology or 

on mathematical procedures) similar to those a professional historian of mathematics 

would ask, especially when they compared different historical solutions with their own. It 

is, for me, a great opportunity to develop the critical thinkingof pupils. 

Furthermore, I focused only on problems today characterized as ‘recreational’ because 

I consider them as important sources for problem solving (for different educational levels, 

even in the context of initial teacher education as I experiment it in the university of 

Limoges). It is really interesting toappreciatethe richness of these sources. 

Finally, I easily integratedan importantaspect ofliteracy in today’s society, namelythe 

ability to code computer programs (here, using Scratch). In spite of the antiquity of the 

mathematical source, it was so easy –without hard efforts – for the pupils to engage with 

these problems, thanks to their algorithmic nature. 

                                                           
25That’s why this method is called ḥisāb al-khata’ayn [calculation of the two errors] in the Arabic tradition. 

Fibonacci transliterated the expression by elchatayn in his Liber Abaci (Fibonacci, 1857, 318). 
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Appendix 1: the ‘Apple Orchard Problem’ in the Liber Abaci 

Here is the text of Fibonacci translatedin English by Sigler (2002, 397) from the edition 

made by Boncompagni (Fibonacci, 1857). 

A certain man entered a certain pleasure garden through 7 doors, and he took from 

there a number of apples; when he wished to leave he had to give the first doorkeeper half 

of all the apples and one more; to the second doorkeeper he gave half of the remaining 

apples and one more. He gave to the other 5 doorkeepers similarly, and there was one 

apple left for him. It is sought how many apples there were that he collected; you do thus: 

for the one apple which remained for him you keep 1 to which you add the one apple that 

he gave to the last doorkeeper; there will be 2 that you double; there will be 4, and he had 

this many when he came to the last doorkeeper; to this you add the apple that he gave to 

the sixth doorkeeper; there will be 5 that you double; there will be 10, and this many 

remained after he left 5 doors; to this you add the one apple of the fifth doorkeeper; there 

will be 11 that you double; there will be 22 to which you add 1 for the apple that he gave 

the fourth doorkeeper; there will be 23 that you double; there will be 46 to which you add 

1 for the apple that he gave to the third doorkeeper; there will be 47 that you double; there 

will 94; to his you add 1 for the apple that he gave the second doorkeeper; there will be 95 

that you double; there will be 190 to which you add the 1 that he gave at the first door, and 

you double this amount; there will be 382, and this total is the number of apples; and thus 

reversing the order that was proposed you will be able to solve any similar problem. 

In another way you put the number of collected apples to be the thing from which he 

gave at the first door 
1

2
 of it and 1 apple. There remained therefore 

1

2
 thing minus 1 from 

which he gave one half and one apple at the second door; therefore there remained for him 

one quarter thing minus 
1

2
1

26
 apples from which he gave at the third door one half and 1 

apple. Therefore there remained for him 
1

8
 thing minus 

3

4
1 apples, half of which and one 

apple, he gave at the fourth door, and thus there remained for him 
1

16
 thing minus 

7

8
1 

apples; of this half and one apple more he gave at the fifth door; there remained for him 
1

32
 thing minus 

15

16
1 apples of which half and one apple more he gave at the sixth door; 

there remained for him 
1

64
 thing minus 

31

32
1 apples; of this still he gave at the seventh 

door half and one apple more; there remained for him 
1

128
 thing minus 

63

64
1 apples which 

is equal to one apple; this is namely the one which remained after his passing the seven 

doors. If 
63

64
1 apples are commonly added, then it will result that 

1

128
 thing is equal to 

63

64

2 apples. Therefore you multiply the 
63

64
2 by the 128; there will be similarly 382 apples. 

                                                           

26Inspired by the Maghrebian mathematics’ texts, the writing 
a

b
n

 
represents the sum n+

a

b
. 
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Appendix 2: the ‘Apple Orchard Problem’in the Liber augmenti et 

diminutionis 

I give below an English translation of the Latin text edited by Libri (1838, 336–339) and 

Hughes (2001, 140). 

A certain man went into an orchard and picked some apples. The orchard had three 

gates each guarded by a bailiff. So that man gave the first bailiff half of what he picked 

plus two apples more. He gave the second bailiff half [of what remained] and two more 

apples. He gave the third half [of what remained] and two apples more. The man was left 

with one [apple]. How many apples did he pick? 

The procedure consists in taking a platter
27

 with one hundred. You give half and two 

more to the first [bailiff]. You still have forty-eight [apples]. You give half and two more 

to the second. You still have twenty-two. You give half and two more to the third. You 

still have nine. So compare this with the one [apple] which was left. Thus now the error is 

eight by excess, that is the first error. 

Then take a second platter which is two hundred. And give half and two more to the 

first [bailiff]. You still have ninety-eight [apples]. And give half and two more to the 

second. You still have forty-seven. And give half and two more to the third. You still have 

twenty-one and a half. So compare this with the one [apple] which was left. Thus now the 

error is twenty and a half by excess, that is the second error. 

So multiply the first platter which is one hundred, by the error of the second platter 

which is twenty-one and a half. It results two thousands and fifty. Then multiply the 

second platter by the error of the first platter, that is to say multiply two hundred by eight 

and it results one thousand and six hundred. So take off the smaller of the two numbers 

from the larger, i.e. diminish one thousand and six hundred from two thousands and fifty. 

It remains four hundred and fifty. Then subtract one of both errors from the other, i.e. take 

off eight from twenty-one and a half. It remains twelve and a half. Then divide four 

hundred and fifty by it, and it results thirty-six. This is the number of apples picked. 
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ABSTRACT 

There is evidence that integrating original sources in the mathematics classroom has significant pedagogical value, 

however, more empirical studies of implementing history of mathematics in teaching is needed. This 

paper describes a case study about replacing the textbook with primary historical sources projects for two topics: the 

Babylonian numeration system and the triangular numbers in a math for liberal arts course. Using history-as-a-tool 

in both projects, the author investigates whether the students can engage with primary sources to uncover math 

concepts and to develop their own understanding of these concepts, and obstacles and benefits of learning from 

primary sources. 

Keywords: primary historical sources, student project, Babylonian numeration, triangular numbers. 

1 Introduction 

During the past four decades integrating the history of mathematics in the teaching and learning 

of mathematics attracted an increased amount of interest, see (Barbin, Jankvist and Kjeldsen, 

2015). “Using history of mathematics in the classroom does not necessarily make students obtain 

higher scores in the subject overnight, but it can make learning mathematics a meaningful and 

lively experience, so that (hopefully) learning will come easier and will go deeper. The 

awareness of this evolutionary aspect of mathematics can make a teacher more patient, less 

dogmatic, more humane, less pedantic. It will urge a teacher to become more reflective, more 

eager to learn and to teach with an intellectual commitment.” (Siu, 1997/2000) 

Tzanakis and Arcavi (2000) distinguished five main areas which can benefit from using the 

history of mathematics in mathematics teaching:  

a) The learning of mathematics; 

b) The development of views on the nature of mathematics and mathematical 

activity; 

c) The didactical background of teachers and their pedagogical repertoire; 

d) The affective predisposition towards mathematics; and 

e) The appreciation of mathematics as a cultural-human endeavor. 

Fauvel and van Maanen (2000) gave ideas and examples for thirteen possible ways to 

implement history of mathematics in the classroom:  

1. Historical snippets; 

2. Research projects on history texts; 

3. Primary sources; 

4. Worksheets; 

5. Historical packages; 
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6. Taking advantage of errors, alternative conceptions, change of perspective, 

revision of implicit assumptions, intuitive arguments; 

7. Historical problems; 

8. Mechanical instruments; 

9. Experiential mathematical activities; 

10. Plays; 

11. Films and other visual means; 

12. Outdoors experience; 

13. The world wide web. 

The focus of this paper is on number three, namely on the use of primary sources. The use of 

primary sources in the classroom is “the most ambitious of ways in which history might be 

integrated into the teaching of mathematics” (Fauvel and van Maanen, 2000) but there is 

evidence that integrating primary historical sources in teaching and learning of mathematics has 

significant pedagogical value. (Furinghetti, Jahnke, & van Maanen, 2006; Pengelley, 2011; 

Jankvist, 2014, Barnett, Lodder and Pengelley, 2014). However, more empirical studies on 

incorporating primary sources in teaching and learning mathematics are needed as emphasized 

by Clark and Thoo (2014): “It is our hope that consumers of the contributions here (as well as 

from other publication outlets) will design empirical investigation of their own, analyze the 

results of those efforts, and critically reflect upon the experience in form of a conference paper, 

book chapter, or journal article.” or by Clark, Otero and Scoville (2017): “There was scant focus 

on the use of primary sources as a classroom tool in the early work in the field of history in 

mathematics education. However, more recent work on the use of primary sources has been done 

in countries such as Denmark and Brazil, while such research has not yet been conducted with 

student populations in the United States” 

The purpose of this paper is to share about the integration of two mini projects with primary 

sources in a mathematics for liberal arts course, Quantitative Skills & Reason, at Georgia 

College during spring 2017. After presenting the context of the study I will discuss the results 

and conclusion. 

2 Context of the study 

Georgia College (GC), a college located in Milledgeville, GA, about a two-hour drive from 

Atlanta, is Georgia's designated public liberal arts university. It has approximately 5,900 

undergraduate students and 300 graduate students in 37 undergraduate programs and 25 graduate 

programs. The Department of Mathematics offers a Bachelor of Science in mathematics with an 

optional teaching concentration. It has about 80 major students instructed by 18 full time faculty. 

Mathematics, a cornerstone of a liberal arts education, is required at GC for every student. As 

part of their core courses, Georgia College's students must complete three hours in the Area A2 

Quantitative Skills. The courses that satisfy this requirement are: Quantitative Skills & Reason, 

Introduction to Mathematical Modeling, College Algebra, College Trigonometry, Precalculus, 

and Calculus I. 

MATH 1001 Quantitative Skills & Reason is a mathematics for liberal arts course and is not 

intended to supply sufficient algebraic background for students who intend to take Precalculus or 
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the calculus sequences for mathematics and science majors. This course places quantitative skills 

and reasoning in the context of experiences that students will be likely to encounter. It covers a 

variety of topics such as logic, counting methods and basic probability, data analysis, and 

modeling from data. For my two sections of MATH 1001 in spring 2017, I decided to explore a 

couple of these topics with primary sources, namely the Babylonian numeration system and 

triangular numbers.  

“Many topics in the modern undergraduate mathematics curriculum are presented as a fast-

paced newsreel of fact and formulas with little discussion of the motivating problems or 

intellectual struggle behind the textbook definitions, lemmata or algorithms. We deprive our 

students of knowledge about the origin of the subject and reveal little about the initial motivation 

or its study, leaving our students to believe that the subject emerged as a logically precise edifice 

with the present version of the textbook”. (Jerry Lodder, 2014) With primary sources we can 

create authentic math inquiry activities, where students work like real scientists. Original sources 

expose students to “mathematics-in-the-making” as opposed to “mathematics-as-an-end-

product” they found in their textbooks. (Siu and Siu, 1979). “Through observation, analysis, 

interpretation, synthesis and evaluation, students discover clues and integrate new information 

into their knowledge base” (Carlston, 2009). 

Jankvist (2009) describes a way of organizing and structuring the discussion of why and how 

to use history in mathematics education. He is proposing two approaches for the ‘whys’ and 

different approaches for the ‘hows’. He distinguishes two big categories for the ‘whys’: history-

as-a tool and history-as-a-goal. In both my projects with primary sources I used history-as-a-tool, 

especially playing the role of a cognitive tool in supporting the learning of mathematics.  

Jankvist (2009) also presents three major categories in which history can be used in the 

teaching and learning of mathematics: illumination approaches, the modules approaches and the 

history-based approaches. In my case study, I used the modules approaches which are similar to 

the “guided reinvention” activities of Freudenthal (2002) who strongly believes that “learners 

should be allowed to find their own levels and explore the paths leading there with as much and 

as little guidance as each particular case requires. There are sound pedagogical arguments in 

favor of this policy. First, knowledge and ability, when acquired by one’s own activity, stick 

better and are more readily available than when imposed by others. Second, discovery can be 

enjoyable and so learning by reinvention may be motivating. Third, it fosters the attitude of 

experiencing mathematics as a human activity.” I will refer to my projects with primary sources 

as guided exploration modules (GEMs), since my idea of using primary sources in the classroom 

resonates with Freudenthal’s didactical principles in (2002). 

2.1 Guided exploration modules 

My GEMs are inspired from two primary sources projects (PSPs) of the Transforming 

Instruction in Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) project: 

Babylonian Numeration was developed by Dominic Klyve (2017) and is about the Babylonian 

numeration system. The second is about triangular numbers and is a part of the Construction of 

the Figurate Numbers project designed by Jerry Lodder (2017).I used these two GEMs in two of 

my sections of MATH 1001 in spring 2017. With one of them I met for 50 minutes three times 
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per week (Monday, Wednesday and Friday) and with the other one for 75 minutes twice per 

week (Tuesday and Thursday). 

2.2 Babylonian numeration 

The GEM on the Babylonian numeration system was based only on a picture of a tablet 

discovered in 

 

 

Figure 2.1: Cuneiform Texts, ed. Hilprecht, Vol. XX, Part 1. (1906). It’s on Plate 16, No. 27. 

 

the Sumerian city of Nippur (in modern-day Iraq) and dates to around 1500 BCE (figure 2.1). 

The purpose of this module was to introduce the Babylonian numeration to students. Students’ 

task was to discover by themselves this numeration system. For my two sections I designed this 

GEM to be integrated in only one class meeting. I implemented it after I discussed with my 

students other numeration systems such as, the Hindu-Arabic numeration system and the Mayan 

numeration system but mentioned nothing about the Babylonian numeration system. For both 

classes, students were divided in groups of size 2-3. The groups were formed from the first day 

of class. At the beginning of the class students were asked to close their notebooks, textbook and 

turn off their electronic devices. After a very short introduction of the project I asked my 

students to study the image of the tablet and to answer the following questions written by Klyve 

(2017): 

(1) How do Babylonian numerals work? 

(2) Describe the mathematics on this tablet. 

(3) Write the number 72 in Babylonian numerals. 
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2.3 Triangular numbers 

The main goal of the second GEM was for students to explore one category of figurate numbers, 

namely triangular numbers. This module was integrated after we discussed some elements of 

logic and some counting techniques as an example of inductive reasoning. This GEM is based on 

the Lodder’s project (2017) and has as starting point excerpts from Book Two of Nicomachus’ 

ancient Greek text Introduction to Arithmetic (1926), namely Chapter VIII. This module was 

also implemented in only one class meeting for both sections and,similar to the first one, students 

were not allowed to consult any other materials. After a short introduction of the project, 

students were asked to read the English translation of Nicomachus’ text and to answer the 

following questions. Some were identical with the ones developed by Lodder (2017) and some 

were a slightly modified version of these: 

Exercise 1: In this exercise we introduce the triangular numbers, which count the number 

of dots in regularly shaped, equilateral triangles. Although Nicomachus is somewhat reluctant to 

state that the value of the first triangular number is 1, since the triangle drawn around one alpha, 

is only potentially the first triangle,    we will begin the triangular numbers with the value of 

one. Let T1 denote the first triangular number. Then T1 = 1. 

a) Let T2 denote the second triangular number. Compute the numerical value of T2 by 

counting the number of alphas (α) in the triangle: 

b) Let T3 denote the third triangular number. Compute the numerical value of T3 by counting 

the number of alphas in the triangle: 

 
c) Let T4 denote the fourth triangular number, T5 the fifth triangular number,…, and let Tn 

 denote the nth triangular number for a natural number n. Fill in the following table for the 

first eight triangular numbers: 

 

 

 

d) Carefully explain how T8 is computed. Does Nicomachus include a picture of this eighth 

triangle in his writing?  

Exercise 2: Nicomachus writes that “The triangular number is produced from the natural 

series of number…by the continued addition of successive terms, one by one, from the 

beginning…” 

a) Write T2, the second triangular number, as the sum of two successive whole numbers by 

using the number of alphas in each row of the second triangle. 

Thus, T2 =        +     . 

n 1 2 3 4 5 6 7 8 

Tn         
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b) Write T3, the third triangular number, as the sum of three successive whole numbers by 

using the number of alphas in each row of the triangle. 

 Thus, T3=        +          +  . 
c) Following the above format, write T4 as the sum of four successive whole numbers so 

that  

T4 =          +           +          +       . 

d) What ten successive whole numbers would be needed to be added together to produce 

T10, the 10th triangular number? 

Exercise 3 Arrange two copies of Tn to produce a rectangle with n rows and (n+1) columns. 

Use this to answer the following: 

a) Find a simple formula for Tn in terms of n. What geometric idea does this formula 

represent? 

b) Find a simple formula for 1+2+3+…+n using part (a). 

3 Results 

As a teacher my main goal has always been to create a rigorous, supportive learning 

environment, which fosters and encourages the ability to learn, to reason, and to communicate 

with proficiency.  The teaching strategies that I implement to reach my goal focus on methods 

that allow actual participation in mathematical activities, such as: learning as discovery using 

group work, discussions among peers and between students and teacher, and presentations of 

problems at the blackboard either from their homework or from in-class material. 

Using history-as-a-tool in my projects, especially playing the role of a cognitive tool in 

supporting the learning of mathematics, my research study was framed around the following 

questions: 

 Are the students able to engage with primary sources to uncover math concepts and to 

develop their own understanding of these concepts? 

 What do students identify as obstacles and benefits of learning from primary sources? 

To answer these questions, I analyzed my students’ work from their projects and their answers 

to a post-project reflection survey. 

From both sections, I had in total 40 students who engaged in the two GEMs. They tackled 

these in groups of 2-3 with little or no help from me. My students were graded on these projects 

on participation only, since my goal for them was to leave them to explore math without the 

stress of a grade, which implicitly leads to the stress of making mistakes. 

Table 3.1 

Are the students able to engage with primary sources to uncover math concepts and to develop 

their own understanding of these concepts? 

Babylonian numeration 

Question 1:Describe 

the mathematics of 

this tablet 

Question 2: How 

do Babylonian 

numerals work? 

Question 3:Write the 

number 72 in 

Babylonian numerals 

Percentage of students 

who answered correctly 
83% 70% 70% 
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Most of the students (83%) discovered immediately that the first two columns of the tablet 

represent the numbers from 1-13 and the third one looks like the product of the first two. Also, 

70 % of the students gave (a fairly) complete response with reasonable explanations to the 

second and third question, showing understanding of the concepts. Figures 3.1 and 3.2 are two 

samples of student work. 

 

Figure 3.1 
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Figure 3.2 

After students finished their first GEM they need to complete at home a reflective survey 

about their experience with this project: “Using original sources in the teaching of mathematics 

makes it possible to contextualize the mathematics in ways that many textbooks cannot afford. 

Describe your experience using the mini project Babylonian numeration as a way to explore the 

benefits and obstacles you identified”. For the first GEM, students identified as challenges:  

 “difficult to read at first” 

 “none” 

 “difficult at first” 

and as benefits: 

 “made me use my critical thinking skills and apply my math knowledge to historical 

artifacts” 

 “made me think outside the box, learning something new” 

 “much more interesting than simply reading the textbook; allows to apply what we 

have learned previously about numerals and other ancient math system; I enjoyed it; 

using alternate methods like this help me learn, understand and retain the knowledge 

better” 

 “forced you to think beyond what is in your notes and try to seek out your answer”. 
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For the second GEM, the Triangular numbers, when examining Table 2, we notice that most 

students answered correctly the first two exercises and they had some problems with the third 

one. 

Table 3.2 

Are the students able to engage with primary sources to uncover math concepts and to develop 

their own understanding of these concepts? 

Triangular numbers 

Exercise 1: 

Exercise 2 

Exercise 3 

 

a) b) c) d) 
Drew 

apicture 
a) b) 

Percentage of students 

who answered correctly 
81% 81% 93% 81% 70% 69% 50% 50% 

Figures 3.3 and 3.4 are samples of student work for exercise 3. 

 

 

Figure  3.3 
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Figure 3.4 

On their reflective survey, students identified for the second GEM the following challenges: 

 “it does not provide as much explanation as a textbook might” 

 “first I didn’t understand but then it was fun” 

 “challenging to create the formula” 

 “last question was a bit difficult” 

 “hard to understand what he said” 

and the following benefits: 

 “it was interesting to act as a mathematician and discuss the pattern” 

 “work together to figure it out instead of just being told; better understand and retain 

the info” 

 “allows you to see differences and patterns; beneficial in every day situation as 

bowling; bowling pins are set up in a triangular numeral of 5” 

 “makes think more critically”  

 “remember better; figure it out by myself”. 

4 Discussion and conclusion 

Each of the two GEM’s was designed to engage students in the discovery of mathematics. The 

goal of the first GEM was to allow students to discover by themselves the Babylonian 

numeration system. I was very thrilled to observe the excitement of most of the students when 
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they were deciphering the tablet. Most of the students recognized with no help from me that the 

first two columns represent the numbers 1-13 and that the third column represents the 

multiplication of the first two columns. They also found immediately the symbols used for 1 and 

10. Some students had a bit of trouble identifying the base for this numeration system, so I gave 

them a hint to look at the product of 11 and 11. For most of them this was enough. For the 

second GEM, my goal was to have students discover some interesting relations between 

numbers, especially triangular numbers. With this project students had most difficulty with the 

third question. One of the possible reasons students had difficulties with the last question, is that 

in their previous math courses, they were rarely engaged in creative mathematical activities,it 

was more about doing mathematics as a rigid process by following fixed and predeterminated 

procedures. 

Overall, I was happy with the results of this study.I found that using primary historical 

sources in the classroom has the potential to enrich students learning experiences,prompting 

them to develop their own understanding of concepts, bringing them close to the experience of 

mathematics creation. I was also pleasantly surprised to read in their post-GEMs reflections such 

as: 

“The experience of using this activity to further my knowledge of how Babylonian 

mathematics and numerals work was much more interesting and captivating than simply 

reading the textbook. The mini project allowed us to apply what we have previously 

learned about numerals and other ancient mathematics systems to understand the 

Babylonians. The obstacle of having no prior knowledge about this particular civilization 

contributed because we had to use basic observations and math skills to understand their 

numerals. I enjoyed this activity and I feel that using alternate methods like this help me 

learn, understand, and retain the knowledge better than a lecture or reading form textbook 

would.”  

“We have used original sources in multiple mini projects now. It helps us as students 

understand where the math originated from. It blows my mind how we have evidence from 

thousands of years ago to show how math was formed like the triangle and rectangle 

method that we learned Tuesday. I enjoyed it even though it took a lot of thinking and 

coming up with ideas.”  
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ABSTRACT 

Between the 4th and 5th centuries, there was remarkable mathematical activity in India related to astronomy 

which produced the siddhantas, texts that included whole chapters devoted exclusively to mathematical 

calculus (ganita). Aryabhata (476-550) and Brahamagupta (598-668) wrote their siddhantic texts, 

Aryabhatiya and Brahma-sphuta-siddhanta, which were a reference to later astronomers and 

mathematicians. In this presentation, we will focus on some of the issues related to Aryabhata and 

Brahamagupta calculation. High school students can study them to establish bridges between the current 

methods of resolution and the old Indian methods (Reversed Procedure and Kuttaka Method). We will 

present two recent didactic experiences in the classroom: the first related with the Reversed Procedure of 

Aryabhata, presented during a pre-service teacher course at the University of Barcelona; the second with the 

Kuttaka method, made with students from an elective course of the History of Mathematics at the 

Polytechnic University of Catalonia. 

 

Keywords: Indian Mathematics, Aryabhata, Brahmagupta, Ganita, Reversed procedure, Kuttaka method. 

1  Introduction 

Different members of the Catalan Historians of Science group had already presented 

several didactic works using original historical sources1. We had begun to try introducing 

some aspects of ancient India mathematics. When we talk about mathematics in ancient 

India, we are referring to the Indian subcontinent, i.e. India, Nepal, Pakistan, Bangladesh 

and Sri Lanka. In the Indian subcontinent, one of the oldest civilizations in the history of 

humanity, the civilization of the Indus was developed. The initial basic rudiments on 

geometry and metrology evolved over time to achieve remarkable astronomical and 

mathematical knowledge. There was a long development through different stages in which 

the transmission and learning of knowledge was made using singular mechanisms 

involving aspects related to commerce and technology (civilization of the Indus 2500-

1800 BC), ritualistic religious and linguistic structures (Vedic age 1500-500 BC) or non-

theist cosmological ideas (Jainism 500-200 BC) (Puig-Pla& Guevara, 2017).It was during 

the so-called classical era (400-1200) when such prominent personalities as Aryabhata 

(5th and 6th centuries), Brahmagupta (7
th

 century) or Bhaskara II (12
th

 century) appeared. 

In this presentation, we will focus on some of the issues related to Aryabhata and 

                                                            
1These works are related with Greeks, medieval Muslim or ancient Chinese mathematics. See Romero et al., 

2015 (last ESU-7 in Copenhagen) or Massa et al., 2011 (ESU-6 in Vienna). 
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Brahamagupta calculation (implemented in the 2017-2018academic year) in the 

classroom: the Reversed Procedure and the Kuttaka Method. 

The Reversed Procedure from Aryabhata was presented during a pre-service teacher 

courseduring an Interuniversity Master in Teacher Training on Didactics of Mathematics -

Universitat de Barcelona, Universitat Autònoma de Barcelona, Universitat Politècnica de 

Catalunya, Universitat Pompeu Fabra- (UB, UAB, UPC, UPF). 

The Kuttaka Method from Aryabhata and Brahamagupta was offered in an elective 

History of Mathematics course for students of the Degree in Mathematics – Universitat 

Politècnica de Catalunya (UPC). 

In general, if we want to implement a mathematical activity based on historical texts in 

the classroom it seems advisable, first, to locate the country and the historical time, then to 

identify the context in which it was developed and, finally, to raise the problem that it 

wanted to solve. 

2 Mathematics in siddhanta texts 

In the 4th and 5th centuries, there was remarkable mathematical activity in India related to 

astronomy which produces the siddhantas, treatises on mathematical astronomy. They 

were texts with instructions to calculate positions of celestial bodies and solve questions 

related to the calendar, geography or astrology (Joseph, 1996:360). 

The authors of the siddhantas wrote their works in Sanskrit verses following a structure 

established by the different astronomy schools (or paksas).In general, siddhantas pursued 

three goals: the first one consisted of predictive astronomy, the computation of times, 

locations and appearances of celestial phenomena –future or past– as seen from any given 

terrestrial location; the second was computational astronomy, explanations on 

computational procedures in terms of the geometry of the spherical models (presented in a 

separate section called gola (sphere)); and the third objective was instruction in general 

mathematical knowledge, basic arithmetic operations, calculation of interest on loans, 

rules for finding areas, volumes, sum of series, etc. 

The siddhanta texts include one or some chapters dedicated exclusively to calculation 

in the proper mathematical sense(ganita).  

 

2.1 Aryabhata & Brahamagupta 

Two Indian astronomers and mathematicians, Aryabhata (476-550) and Brahamagupta 

(598-668), wrote two relevant siddhanta texts, Aryabhatiya and Brahma-sphuta-

siddhanta, respectively. They were references for later astronomers and mathematicians. 

In Indian mathematics, Aryabhatiya(499) played, in some manner, the role of the Elements 

of Euclid in Greek mathematics (Moreno, 2011:46). Brahma-sphuta-siddantha (or 

Corrected Teatrise of Brahma), a work written in 628 when Brahmagupta was 30 years 

old, was in some way, a response to Aryabhatiya. He criticized Aryabhata, for example, 

for considering in a kalpa (the period between the creation and recreation of a world) 1008 

mahayugas (a period of time) instead of 1000 according to Hinduism.  

The last work of Brahmagupta was Khanda-khadyaka, written at the age of 67. It is a 

karana or manual of mathematical astronomy with simplified calculations. 
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Figure 2.1: Imaginary representation of Brahmagupta  (598-670) according to a 19

th
 

century engraving 

2.2 Aryabhatiya and Brahma-sphuta-siddantha 

The Aryabhatiya, written in 499 by Aryabhata, is the earliest completely preserved 

siddhanta. Chapter 2 is devoted to mathematics (ganita) and it consists of 33 verses
2
 in a 

Sanskrit metric including methods for resolution of first degree, quadratic and first-degree 

indeterminate equations (Plofker, 2009, pp. 122-136). Bhaskara I wrote 

Aryabhatiyabhasya (629), a comment in Sanskrit prose about these 33 verses of chapter 2 

of the Aryabhatiya (Keller, 2005, pp. 279-280). 

From the Aryabhatiya of Aryabhata with commentary by Bhaskara I, it is known what 

Aryabhata said about how to teach the Reversed Procedure (Chapter 2, 28): “In a reversed 

[operation], multipliers become divisors and divisors, multipliers, and an additive 

[quantity], is a subtractive [quantity], a subtractive [quantity] an additive [quantity]”. 

In relation to the Brahma-sphuṭa-siddhanta (or BSS from now on), the book has 24 

chapters. Chapters 1 to 10 deal with basic topics of astronomy: average lengths of planets; 

true lengths of the planets; the problems of daytime rotation; lunar eclipses; solar eclipses; 

rising and setting of the sun; phases of the moon; the shadow of the moon; conjunctions of 

the planets and conjunctions of the planets with the fixed stars. Chapter 11 is a criticism of 

Aryabhatiya. Chapter 12 deals calculation with numbers (ganita) and chapter 18 with 

calculation with unknown quantities and contents of kuttaka method. The construction of 

the sine appears in chapter 21.  Chapters 13 to 17, 19 to 20 and 22 to 24 are dedicated to 

the topics related to astronomy. 

 

                                                            
2
Verses 11 through 17 of Aryabhatiya contain calculations of half strings (which will evolve and become the 

sine) (Puig-Plaet al., 2011: 53). 
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3 The Reversed Procedure and theKuttakaMethod 

Reversed Procedure and Kuttaka Method are both procedures of calculation to solve 

equations. In the first case it is about finding a number if we know the final result of 

several consecutive operations with the first number. The problem informs about the 

operations and the final result; the question is which is the initial number. We have to 

reverse the operations described in the problem, starting with the last one and finishing 

with the first one. 

In the second case, we take successive steps to transform an equation with two 

unknowns into a simpler one repeating the process until reaching an equation that has one 

of the coefficients equal to 1, so that from thence the solutions for the original equation 

can be obtained by going backwards. This method can be considered as an application of 

the reversed procedure. Indeed, when the original equation ax + c = by is transformed into 

a’x’ + c = y’, clearly x’ = 0 and y’= c constitute one solution, from whence a solution 

(indeed all solutions) of the original equation ax + c = by will be obtained, and the 

procedure agrees exactly with the algorithm described in the Kuttaka Method.   

On the one hand, this explains the term Kuttaka (“Pulverizer” or reducing to powder) in 

that the coefficients are stepwise made smaller through the Euclidean algorithm 

(equivalent to the ancient Chinese algorithm in the Geng Xiang Jian Sun method) as well 

as tying up the two topics under discussion in this paper. 

3. 1 The activity using the Reversed Procedure of Aryabhata 

We presented this activity in a pre-service teacher course in an Inter-university Master in 

Teacher Training. After locating the country and the historical time (Ancient India at the 

end of 5
th

 century), we gave a short explanation about the context (mathematics in 

siddhanta texts) and the procedure in the Aryabhatiya of Aryabhata. We used 

theAryabhatiyacommentary of Bhaskara I. After students were asked to solve an activity. 

We prepared an initial exercise for students. It was based on verse 50 of the work 

Lilavati by Bhaskara II, a problem that had to be solved by the Aryabhata method 

(Plofker, 2007:454). The exercise had the following information and questions: 

 

Figure 3.1: The Reversed Procedure Exercise 
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“In Aryabhatiya algebraic equations appear (in rhetorical language) solved by the 

Reversed procedure.  This method starts from the final result and performs the reversed 

operations in the opposite direction as given in the statement. The procedure can be 

illustrated through the following problem: 

A number is multiplied by 3, the product is added to its three quarters, the sum is 

divided by 7, the ratio is subtracted from its third part, the difference is multiplied 

by itself, the square is reduced to 52, from the difference is extracted from the 

square root, which is added 8, that sum is divided by 10 and the result is finally 2. 

What is this number? 

Indicate each of the inverse operations from the ellipsis in order to give the solution 

following the guideline of the beginning of the resolution. 

Guidelines to solve the exercise. 

In order to perform the reversed operation in one of the steps, it may be useful to bear 

in mind that expressions of the type "remove (or subtract) the third part from an amount" 

or "add up to three quarters" can be thought of as the amount that has been multiplied by a 

certain fraction.” 

Resolution 

The Reversed Procedure is as follows: the final result is 2 and the last operation before 

reaching 2 is to divide by 10, so we do the "reversed operation" by multiplying 2 by 10: 

2 x 10 = 20 

The previous operation (the penultimate one) consisted of adding 8, therefore what we 

will do will be ...........” 

3.2 Students’ production susing the Reversed Procedure of Aryabhata 

26 students carried out the activity. They formed freely 7 groups that had to be from 3 to 4 

students (in fact there was also 1 group of 2 students and 1 group of 5).The group code is 

indicated thus, e.g. G2 (3) means group 2 with 3 students. In the statement the students 

had the pattern to follow (at the beginning of the resolution). They were asked to write a 

rhetorical explanation about the previous operation to carry out the reversed operation. 

Although all the groups arrived at the correct solution, only one of them, G3(4), 

followed "exactly" this pattern. They wrote rhetorical explanations such as “[…] the 

previous operation was to extract the square root, therefore we will now square, 12
2
 = 144 

[…]”. 
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Figure 3.2: A student production from group G3(4) of the Reversed Procedure 

 

All students correctly indicated the operations to be performed in each of the eight 

steps but "without" or "with few" rhetorical explanations. 

 
Figure 3.3: A student production from group G4(4) of the Reversed procedure 

 

Two groups G5(4) and G6(2) introduced modern mathematical formalism by writing 

equations (using  "x" for the unknown). 

 
Figure 3.4: A student production from group G5(4) of the Reversed procedure 
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In general, we can conclude thatthe students of the pre-service teacher course easily 

understood the Reversed Procedure, although not all of them were able to solve the 

problem “in the manner of Aryabhata”, that is, in a rhetorical way and without formal 

symbolism (23% of students used the modern formalism of algebra). 

3.3 The Kuttaka Method 

We presented this activity in an elective course of the History of Mathematics of the 

Degree in Mathematics (Universitat Politècnica de Catalunya). After locating the country 

and the historical time (Ancient India at the end of 5
th

 century), we gave a short 

explanation about the context (mathematics in siddhanta texts) and the problem that 

Indian astronomers wanted to solve (the conjunction of the planets). 

We continued with a short explanation of the method of Brahmagupta in Brahma-

Sphuta-Siddhanta (chapter 18, 3-6) and finally students were asked to solve a problem, to 

assess the method and to answer a questionnaire about the history of math. 

3.4 Chapter 18: Calculation with Unknowns 

In this chapter Brahmagupta explains a calculation procedure with unknowns, first and 

second degree. But the innovation is theKuttakaMethod or “pulverizer" to treat equations 

or systems of indeterminate equations.The establishment of the calendar and astronomical 

calculations led to this type of procedureto solve equations or systems of indeterminate 

equations. 

About the subjects that a master must know, he stated: “A master [acarya] among those 

who know treatises [is characterized] by knowing the pulverizer, zero, negative [and] 

positive [quantities], unknowns, elimination of the middle [term, that is, solution of 

quadratics], single-color [equations, or equations in one unknown], and products of 

unknowns, as well as square nature [problems, that is, second-degree indeterminate 

equations]” [BSS, Ch. 18, 2]. 

Brahmagupta gave the first known explanation of Indian mathematics about “the rules 

of signs and the arithmetic of zero”. Almost all the rules are identical to our modern 

algebra: “[The sum] of two positives is positive, of two negatives negative; of a positive 

and a negative [the sum] is their difference; if they are equal it is zero. The sum of a 

negative and zero is negative, [that] of a positive and zero positive, [and that] of two zeros 

is zero [. . .].  The product of a negative and a positive is negative, of two negatives 

positive, and of positives positive; the product of zero and a negative, of zero and a 

positive, or of two zeros is zero. [BSS, Ch. 18, 30 and 33, respectively]”. 

Verses 43 through 59 refer to techniques and examples for solving equations with an 

unknown, both first and second degree. In the case of second degree, when a multiple “b” 

of the unknown added to a multiple “a” of the square of the unknown is equal to a number 

c. The calculation algorithm is focused on “removing the middle term” given the equation 

in the form: ax
2
 + bx = c. 

3.5 The Kuttaka or “pulverizer” method 

Pulverizer (Kuttaka) is the successive steps to transform an equation with two unknowns 

into a simpler one. Given an equation ax + c = by where a and b do not have common 

divisors, by means of a change of variable, the initial equation is transformed into another 
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equivalent, until reaching an equation that has one of the coefficients equal to 1.From here 

the solutions are reconstructed until they reach the initial equation. But, for which part of 

astronomy were these calculations necessary? What was the problem to be solved? 

We have to consider that we have a geocentric point of view, as the ancient Indians 

had. Then, it is a question of counting the days that have elapsed since the last time that 

two planets, A and B, were in conjunction at a certain point with respect to the fixed stars 

(that is since they had the same ecliptic longitudeλ0). 

For example, let us say we know - after long systematic observations - the following data: 

1) Planet A takes an average time of 90 solar days to return to the same point on 

the stellar background (through the Zodiac) while planet B takes 33 days (see 

figure 3.5). 

2) 19 days have elapsed since planet A completed an entire number of turns 

following the Zodiac (from λ0). 

3) 28 days have elapsed since planet B completed an entire number of turns 

following the Zodiac (from λ0) in the same direction (see figure 3.6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5:  Planet A (to the left) takes 90 days to return to the same point. Planet B (on 

the right) takes 33 days  

 

 
Figure 3.6: Planet A (on the left), Planet B (in the middle) and Planets A & B (on the 

right) after completed a different integer number of revolutions each one of them 

 

The problem to solve is “how many days (N) have passed since the last conjunction?” 

Using the current notation, if x is the integer number of revolutions performed by A from 

the conjunction,  

 N = 19  +  90x  

If y is the integer number of revolutions performed by B from the conjunction,  
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N =  28 +  33y 

then, we have   N = 19  +  90x =  28 +  33y 

so,    90x - 33y =  28 - 19 

in other words that is,  

90x - 33y = 9 

a linear equation with two unknowns (with infinite integer solutions). We look for the 

positive integers such as 90x - 33y = 9 . 

3.6  Brahmagupta in Brahma-Sphuta-Siddhanta (Chapter 18, 3-6) 

Brahmagupta explains in verses 3-6 how to proceed with Kuttaka method: 

1. Divide the divisor having the greatest remainder [agra] by the divisor having the 

least remainder  

[Indication: Euclid's algorithm]. 

2. Once mutually divided, the last remainder will be multiplied by an arbitrary number 

[integer] such that if the product that we obtain is added [if the number of quotients in the 

process is odd] or we take it [if it is even] the difference of remainders [the additive], 

which results is divisible by the penultimate remainder. 

3. Place the quotients of the mutual divisions one below the other in columns, until you 

reach the optional divisor and then the quotient you have obtained. 

4. Multiply the penultimate by the previous one and the one that follows is added to it. 

Repeat the process [the result is saved in the next column and occupies the penultimate 

position and then the penultimate number of the previous column]. 

5. Divide the last number obtained [agranta] by the divisor having the least remainder. 

Then multiply the remainder by the divisor having the greatest remainder and add the 

largest remainder. The result will be the remainder of the product of the divisors [to 

obtain a smaller solution]. 

In our activities, we explain the Kuttaka method Brahmagupta has created and we ask 

students to do the same. We also give them the translation of the method from Nolla 

(2006: 196-203).  

3.7 The activity  

As Brahmagupta explained in verses 3-6 of Chapter 18 in Brahma-Sphuta-Siddhanta, we 

try to solve the following problemof the Aryabhatiya by Aryabhata with comments from 

Bhaskara I (Chapter 2, 33): 

“[A quantity when divided] by twelve has a remainder which is five, and furthermore, 

it is seen by me [having] a remainder which is seven, when divided by thirty-one. What 

should one such quantity be?” 

 

  12y + 5 = N 

    31x + 2 = 12y 

  31x + 7 = N 

3.8 Students’ solutions of the activity 

Although the answers of the students are not in English, we have collected their answers 

step by step and the connection they made with the Bézout method. We follow the 

assignments of two students, A and B. 
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Student A, translates the problem to modern notation 

Figure 3.7: Student translation of the problem 

1. Student A makes the first step, obtains the divisors and the residues and orders them in 

columns as established by the method 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Student A’s solution, step 1 

2. Student A makes the second step, to find numbers λ and λ that meet certain conditions 

 

 

Figure 3.9: Student A’s solution, step 2 

3. Student A places the quotients of the mutual divisions one below the other in columns, 

until the optional divisor is reached and then the quotient is obtained. 

Figure 3.10: Student A’s solution, step 3 

4. Student A obtains a solution 

 

 

 

 

 

 

 

Figure 3.11: Student A’s solution, step 4 
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5. Student A obtains a smaller solution 

 

 

 

 

 

 

 

 

Figure 3.12: Student A’s solution, step 5 

We can see another student’s solution (Student B) in figure 3.13. This student also used 

Bézout’s identity to solve the problem. 

 

 

Figure 3.13: Student B’s solution of Aryabhata’s problem using Kuttaka method (left) and 

Bézout’s identity (right) 

We did not explain Bézout’s identity in this course but some students connected the 

Kuttaka method with Bézout’s identity: Let a and b be integers with greatest common 

divisor d. Then, there exist integers x and y such that ax + by = d, and they solve the same 

problem with both methods, as we can see in the two pages of figure 3.13 done by student 

B. These students of the Degree in Mathematics are in the fourth year and had studied 

Bézout’s identity in the first year.  

4  Questionnaire for Students 

After the Kuttaka activity we asked the students some questions in order to assess the 

method but also some questions about their knowledge of math history. Again, we write 

the question followed by some students’ answers. The group had 8 students. 
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Question1. Did you have any knowledge about mathematics in ancient India? 

1.1.- If yes, how did you get acquainted with it? 

Explain briefly what you knew about it 

Students’ answers 

Student P: positional notation and decimal base of numbers. 

Student Q: research project in High School about Indian Math (only early civilizations). 

She remembered that the actual system of numbers came from Indian numbers. 

Question 2. Before studying the Kuttaka method, did you know any other way to solve 

this kind of equations (linear with two unknowns)? 

2.1. If yes, where did you learn this other method?    Which one? 

2.2. Evaluate the advantages and disadvantages of both methods. 

Students’ answers 

All of them knew another method for solving this kind of equation. They learned it in 

the subject ofFoundations of Mathematics (1
st
 year). 

Only two of them (students A and B) knew the name: Bézout Identity and only one of 

them (student B) said the full name: Étienne Bézout. 

In general they preferred Bézout’s method. 

Students A & B like Bézout Identity to solve these equations because they think it is a 

proof but they thought “both methods” were similar. 

Question 3.The Kuttaka method is a calculation procedure to solve indeterminate 

equations. Can you cite applications or contexts (current or historical) in which 

indeterminate equations are used? 

Students’ answers 

Five of them relate this procedure to astronomy, the context used in the classroom to 

introduce Kuttaka method. 

The student who knew Étienne Bézout (student B) said that linear equations with two 

unknowns are also used to calculate the intersection of varieties.  

Student C referred to Fermat’s theorem and Pythagorean Triples.  

Question 4. Throughout the Degree in Mathematics or in high school, have you studied 

the solutions of a linear equation with two variables or unknowns?  

Students’ answers 

All students said they had studied how to solve this equation with integer solutions in 

Foundations of Mathematics (1
st
 year). 

One of them studied Diophantus’s method in high school and did a research project in 

high school about Indian math. 

Question 5.Is there any subject in the Degree in Mathematics in which the history of the 

involved conceptswas introduced? 

Students’ answers 

Five students said: no 

Three students said:  

Student A: yes a little, sometimes teacher introduced the historical context and the 

biography of the mathematician who discovered a theorem. 

Student B: yes in many subjects, the biography of the mathematician who discovered a 
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theorem, but never in context. 

Student C: yes but it depended on the teacher of the subject. 

Question 6. Do you remember if any historical development of any mathematical concept 

was introduced in high school? 

Students’ answers 

Six students said: no. One of them said: I would have liked to know something. 

Two students said: no, only about Pythagoras and his theorem. One of them said: the 

goal of high school is for students to understand the concepts in order to pass the 

university entrance exam.  

Question 7. Give your opinion about if History of Mathematics can help to understand 

better the topics studied in the Degree. 

Students’ answers 

All students agree on the importance of knowing the History of Mathematics. In fact, 

they have chosen this elective course. 

There are two points of view: 

a) In order to understand modern concept sbetter. 

b) Although it is not useful for a better understanding of modern mathematics, it 

could be interesting for understanding ancient mathematics. 

Four students take position a) and four in b). 

Question 8.For which mathematical topics would you recommend introducing the history 

of mathematics? 

Students’ answers 

Some students associate history with specific topics: geometry, root of a polynomial, 

limit, calculus, and so on. 

Others said the history of math must be taught at the beginning, in order to understand 

why math developed as well as in high school or in the first year of the degree. 

Yet others said, in general in all the subjects and in both ways: 

a) Related to concepts, to understand why other civilizations use other methods. 

b) Related to problems, to compare motivations to solve problems and to have a 

broader view of the problem. 

5 Final Remarks 

We have been discussing throughout the paper various questions related to each topic 

exposed. As final remarks we can say that the activities based on the analysis of historical 

texts connected to the curriculum contribute to improving the students' integral training, 

giving them additional knowledge of the social and scientific context of the periods 

involved. They also get students to achieve a vision of mathematics, not as a final product 

but as a science that has been developed on the basis of trying to answer the questions that 

mankind has been asking throughout time about the world around us. 

NOTE:  

This research is included in the project: HAR2016-75871-R 
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ABSTRACT 

In this paper I present a pilot case study of three different university mathematics instructors who 

implemented the same primary source project (PSP) as part of the Transforming Instruction in 

Undergraduate Mathematics via Primary Historical Sources (TRIUMPHS) project. I describe four 

implementations (two by the author, two by non-author instructors) using a combination of student and 

instructor interviews, instructor implementation reports, and instructor and student surveys. Survey data 

revealed that most students reported perceived academic gains from their work with the PSP, with the 

author’s students reporting some of the greatest gains. I conclude that there are differences in 

implementation based upon observed lines of communication and how instructors view distinctive features 

of the implementation, including the importance of group work and understanding language use within 

sources.The author stressed the importance of group work and the productive struggle associated with 

language, resulting in a different implementation than both non-authors. 

1 Introduction 

Mathematics faculty and educational researchers increasingly recognize the value of the 

history of mathematics as a support to student learning. The expanding body of literature 

in this area includes recent special issues of Science & Education (Jankvist, Fried, Katz, & 

Rowlands, 2014) and Problems, Resources and Issues in Undergraduate Mathematics 

Education (PRIMUS; Clark & Thoo, 2014), both of which include direct calls for the use 

of primary historical sources in teaching mathematics. For many instructors, the current 

lack of classroom-ready materials poses an obstacle to the incorporation of history into the 

mathematics classroom. As noted by Jankvist (2009), “the ‘urgent task’ of developing 

critical implements for using history in the teaching and learning of mathematics” (p. 256) 

is also essential to further research on the benefits and effectiveness of using history of 

mathematics to teach. 

For decades much of the research literature in the United States on the impact of the 

history of mathematics on students, particularly at the secondary level or tertiary level, 

was focused on students’ attitudes (e.g., Marshall, 2000; McBride & Rollins, 1977). There 

has been little focus on the use of primary sources as a classroom tool in the early work in 

the field of history in mathematics education. While more recent work on the use of 

primary sources has been done in countries such as Brazil (e.g., Bernardes & Roque, 

2018), Denmark (e.g., Kjeldsen & Blomhøj, 2012), and Turkey (e.g., Alpaslan & Haser, 

2015), similar research has not yet been conducted with student populations in the United 

States. Thus, the Transforming Instruction in Undergraduate Mathematics via Primary 

Historical Sources (or, TRIUMPHS) project is committed to investigating the ways in 

which mathematics students respond to being taught concepts within the undergraduate 

curriculum via primary historical sources. 

In this paper we share initial findings on the research questions we identified for this 

pilot study: 
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1. What are the differences between the author’s implementation of a PSP and two 

non-author implementations of the PSP? 

2. How do students’ perceived gains in understanding content-related material differ 

between implementations? 

3. What were the reported benefits and obstacles of each implementation of PSP from 

a student point of view and from an instructor point of view?  How do these views 

align or differ? 

Thus, the aim of this particular analysis was to determine whether differences exist when 

the instructional materials –in this case, the primary source project of interest – are 

implemented by the author of the project when compared to other site-testing instructors. 

In what follows, we explore the data sources that informed our analysis, and the ways in 

which we are attempting to make sense of students’ experiences with PSPs. We will 

discuss the differences we identified from each implementation of the primary source 

project, Solving a System of Linear Equations using Ancient Chinese Methods, the ways in 

which multiple course populations reported similar student gains, and the ways in which 

students’ reported benefits and obstacles for learning with primary source materials can 

inform future implementations in the TRIUMPHS project. 

2 Brief Literature Review 

Numerous examples from the literature describe outcomes of purposeful use of history of 

mathematics in undergraduate mathematics instruction (see, for example, Barnett, 2014; 

Jahnke et al., 2002; Liu, 2014; Ruch, 2014; Tamulis, 2014). However, these examples 

often describe the instructional approach that was undertaken (including important details 

of the primary sources used), or only offer anecdotal evidence observed by the authors, 

regarding their students’ experience with the historical content or instructional materials. 

In other, more empirical examples, the primary focus of the intervention is on pre-service 

mathematics teachers (e.g., Charalambous, Panaoura, & Philippou, 2009; Clark, 2012; 

Huntley & Flores, 2010).An open question for the field of history in mathematics 

education is: What might be possible to investigate regarding the implementation of 

particular instructional materials (in this case, the PSPs being developed)? 

Teaching from primary sources has been widespread in the other fields such as social 

sciences (De Guzmán, 2007; Klyve, Stemkoski, & Tou, 2013). The use of original sources 

enables students – as well as teachers – to enrich their understanding of subject being 

taught (Laubenbacher, Pengelley, & Siddoway, 1994). Due to a lack of appropriate 

classroom materials, the integration of history into mathematics classrooms remains a 

difficult approach for many. 

Precisely because the use of primary sources provides students the opportunity to 

interpret results as they were originally presented and then reformulate them in modern 

terms, original (primary) source readings enable instructors to present a different view of 

mathematics to students. That is, instead of a classroom scenario in which “definitions and 

theorems are usually presented first, and then, motivation and application follow 

afterwards” (Jankvist, 2014, p. 879), primary source materials provide instructors with the 

opportunity to motivate instruction first with a problem or application, “the solution of 

which leads to theorems, proofs, and in the end definitions” (Jankvist, p. 879). In this way, 
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primary historical sources have the potential to transform students’ images of or views 

about mathematics.  

3 The TRIUMPHS project 

3.1 Overview 

In 2015, the National Science Foundation in the United States funded a five-year, seven-

institution collaborative project to design, test, and evaluate curricular materials for 

teaching standard topics in the university mathematics curriculum via the use of primary 

historical sources. The team of principal investigators (PIs) consists of six mathematicians 

and one mathematics education researcher. The primary source projects (PSPs) are 

developed by TRIUMPHS PIs, as well as external authors, and once PSPs have gone 

through an extensive review and testing in the author’s (or authors’) classroom, they are 

site-tested by project PIs (when appropriate) and classroom instructors (mathematicians 

and mathematics teacher educators) who were recruited either through workshops or 

through other recruitment means. There is an extensive evaluation-with-research 

component of the TRIUMPHS project, which addresses aspects of faculty expertise and 

student change. Three TRIUMPHS PIs (two mathematicians and the mathematics 

education researcher) and several graduate students facilitate the evaluation of classroom 

site testing of the PSPs. 

The goal of the TRIUMPHS project is to promote students’ learning and their 

development of a deeper interest in and appreciation of mathematical concepts by creating 

educational materials in the form of PSPs based on original historical sources written by 

mathematicians involved in the discovery and development of the topics being studied. In 

TRIUMPHS, PSPs contain (1) excerpts from one or several historical sources, (2) a 

discussion of the mathematical significance of each selection, and (3) student tasks 

designed to illuminate the mathematical concepts that form the focus of the sources. PSPs 

are designed to guide students in their explorations of these original texts in order to 

promote their own understanding of those ideas. 

The numerous PSPs are the life force of the TRIUMPHS project. During the grant-

funded effort, the PIs promised that some 50 PSPs (which span the undergraduate 

mathematics curriculum, from basic statistics and trigonometry, to real analysis, abstract 

algebra, and topology) will be developed, tested, and evaluated. Of the 50 PSPs, 20 are 

planned to be “full-length” and 30 are what we refer to as “mini-PSPs.” Full-length PSPs 

are designed to typically encompass at least two to four class sessions, which represents 

the same amount of time that it normally takes to teach the mathematical topic of focus 

within the PSP. However, among the full-length PSPS there are also longer ones that 

could be used by instructors to comprise an entire course’s content
1
. Alternatively, “mini-

PSPs” can be completed in one to two class sessions and each of the mini-PSPs have been 

developed to teach a particular topic or concept in mathematics that would normally be 

addressed in a single class session, but which will be done via a primary historical source. 

To date, 28 full-length PSPs and 21 mini-PSPs have been developed. Though we have 

exceeded our commitment to develop 20 full-length PSPs, there are additional full-length 

PSPs in development, as well as the remaining, promised mini-PSPs. 

                                                 
1 In fact, this was done recently (Spring 2018) by Janet H. Barnett, in an Abstract Algebra course. 
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In Fall 2015 the first PSPs were tested in two undergraduate mathematics classrooms in 

the United States; in Year 3 (academic year 2017–18), 46 distinct site testers tested one or 

more PSPs in undergraduate mathematics classrooms. In total, by the end of Year 3, 53 

instructors have site tested PSPs as part of the TRIUMPHS project, with some one-third of 

those serving as repeat testers. In the first semester of Year 4, we have 25 site testers; 

again, of these, we have several repeat site testers, where 14 are new to site testing 

TRIUMPHS PSPs. 

3.2 Solving a System of Linear Equations using Ancient Chinese Methods 

The Solving a System of Linear Equations using Ancient Chinese Methods PSP (Flagg, 

2017) was created to introduced students to row reduction in an introductory linear 

algebra course. The PSP is based upon the text The Nine Chapters on the Mathematical 

Art (Shen et al., 1999) and covers basic arithmetic using counting rods and solving 

systems of equations involving the Fancheng rule (see Appendix for a section of the PSP 

relating to the Fancheng rule). When first learning the Fancheng rule, students perform 

operations using columns operations in grids as opposed to row operations. Modern 

matrix notation is introduced in the latter half of the PSP. The PSP also introduces modern 

terminology, including echelon form, and requires students to complete several problems 

from The Nine Chapters on the Mathematical Art (Shen et al., 1999) using modern 

notation. Flagg (2017) highlights the value of the Fancheng rule in avoiding complex 

fractions until the very end of the row reduction process.   

4 Context and setting for the study 

The Solving a System of Linear Equations using Ancient Chinese Methods PSP (Flagg, 

2017) was implemented in Fall 2017 and Spring 2018
2
. Students completed initial and 

final course surveys, in which they shared their beliefs about mathematics, prior 

experience with primary source materials in undergraduate mathematics courses, views 

about mathematics learning, and general demographic information. Upon completion of 

the PSP, students provided responses to post-PSP survey items, which captured students’ 

perceived gains in skills relating to linear algebra content, general mathematical skills 

including reading and writing about mathematics, and attitudes and confidence in 

mathematics. Additional questions asked about the interaction of students with peers, the 

instructor, and the primary source material inside and outside of class. Finally, several 

open-ended questions asked students to reflect upon their experience with the PSP, 

including their perception of benefits and obstacles of learning mathematics using primary 

sources, and their attitude towards using primary sources in a linear algebra course. 

Implementation reports and surveys were collected from instructors and an instructional 

guide (“Notes to Instructors”) was provided by the author. 

4.1 Instructors and students 

There were three course instructors of interest, across four implementations of the Solving 

a System of Linear Equations using Ancient Chinese Methods in 2017–18. The four 

student populations, as well as the survey data collected for each, are briefly described in 

Table 4.1 1. 

                                                 
2 Flagg is a mathematician and university instructor and not a mathematics education researcher.   
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Table 4.1: Student populations in Linear Algebra courses (2017-18) 

Instructor Number of consenting 

students 

(estimated students enrolled) 

Students completing all surveys 

(I = Pre-Course; P = Post-PSP; F = 

Post-Course) 

Author Flagg 

(Fall 2017) 

14 

(15) 

10 

(I: 14, P: 11, F: 10) 

Professor Monty 

(Fall 2017) 

10 

(25) 

5 

(I: 8, P: 7, F: 5) 

Author Flagg 

(Spring 2018) 

17 

(21) 

7 

(I: 13, P: 11, F: 9) 

Professor Carl 

(Spring 2018) 

29 

(32) 

23
3
 

In addition to the surveys and implementations reports, Professors Flagg and Monty 

were interviewed about their fall implementations. Three students from Professor Carl’s 

class and two students from Professor Monty’s class were also interviewed. The 

interviews were reviewed and relevant excerpts were transcribed for analysis and 

triangulation with data collected from the surveys and implementation reports.  

In the following sections we describe each implementation using either the instructor’s 

perspective, student’s perspective, or both, when available, to describe the ways in which 

the four course populations reported similar perceived learning gains, and the ways in 

which students’ reported benefits and obstacles for learning with primary source materials 

can inform future implementations in the TRIUMPHS project. We begin with our 

conceptualization of implementation of the PSP of interest. 

5 Modeling communication utilized during PSP implementation 

As part of this pilot study, we analyzed the interactions (i.e., lines of communication) 

between students, the instructor, and the author of the PSP in question, Solving a System 

of Linear Equations using Ancient Chinese Methods (Flagg, 2017). First, we considered 

the role of the student and how they supplied information to the instructor and to the 

author. For example, each student could supply information to the instructor (who was 

also implementing the PSP) by completing the assigned tasks and asking questions in 

class. Each student also completed a survey (e.g., post-PSP survey) about the project 

which we also analyzed. Students could communicate with each other via group work 

taking place during class.  

 

                                                 
3 Due to the implementation of the PSP at the start of the semester, students in Professor Carl’s course only 

completed one survey, which included items from each of the three surveys, and was completed 

immediately after the PSP was completed. 
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Figure 5.1: Lines of communication in a PSP implementation 

Another line of communication was in the form of instructors with the students or 

author, through instructors lecturing or leading in-class discussions with students or via 

the instructor communicating directly with the author by email or phone if they had 

questions about implementation. The author was able to communicate both with students 

and the instructor through the written text of the PSP. The author also included “Notes to 

Instructors” with the PSP, which provided suggestions for implementation, including a 

timeline for implementation. Finally, it was possible for the author to further process the 

lines of communication by revising their PSP.  The various forms of communication that 

we conjectured taking place are illustrated in Figure 5.1. 

5.1 Case 1: The author as instructor (Flagg) 

The first case we analyze is one in which the author is the instructor. According to the 

author’s implementation report, a typical class consisted of reviewing the reading and 

homework from the earlier session, doing some group work in class relating to task(s) in 

the PSP, and having a concluding whole-class discussion. Students were expected to read 

the PSP outside of class as well as work on several tasks in the PSP as homework. The 

author was excited to share her passion for the material demonstrated by the following 

passage: 

I benefited from being able to share my passion for where ideas originate with my 

students and give them the opportunity to discover “new” old ideas. The students 

benefited from the struggle of trying to understand the unfamiliar language and 

notation. (Flagg’s Implementation Report, Fall 2017) 

5.2 Case 2: Non-author as “guide on the side” (Monty) 

During this implementation, the instructor provided the students with the PSP and asked 

them to read portions of it outside of class. Class time consisted of students working 

together in small groups, which entailed completing assigned tasks during class. Students 

could ask the professor questions during class, but there was often not a concluding 

whole-class discussion. This is described in the instructor’s implementation report in the 

following passage which described three days of implementation: 

468



 

Students worked in groups (3-4students each) on Tasks 2-9.Students worked on a 

white board (rather than their own paper) so that they had to interact (as I limited it 

to one white board pen for each group). (Monty, Implementation Report) 

This indicates that the instructor saw part of the value and struggle of the PSP as coming 

from the students working as a group.  The instructor also noted in his commentary on the 

implementation that “I probably should have stepped in and brought the entire class 

together. I think some of them were starting to veer off track and re-orienting, them may 

have been helpful” (Implementation Report). This indicates the instructor’s reluctance to 

interfere with student group work during implementation (even when, upon later 

reflection, the instructor indicated it might have been useful).  This implementation is 

characterized by its focus on student interactions as opposed to instructor-student 

interactions (Figure 5.2). 

 

Figure 5.2: Non-author “guide on the side” approach 

5.3 Case 3: Non-author without group work emphasis (Carl) 

During this version of implementation, students were asked to read the material outside of 

class and complete some of the PSP tasks. The course consisted mostly of lecture with 

some in-class discussion but no group work. This implementation is depicted in Figure 

5.3. During this implementation it was possible that the importance of reading was 

undermined by the in-class discussion as represented by the following comment offered 

by a student during a post-course interview: 

We would spend a couple of hours outside of class trying to go through five 

questions and a small section of the reading, and then we would come to class and 

he would answer all of our questions in like 10 minutes. (Student Interview) 

Here the student noted that instructor would cover the material quickly the next day, 

undermining the value of struggling with the material on their own. To highlight this 

point, the arrow connecting author to the student is dotted to represent that the students 

did not struggle through the PSP.   
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Figure 5.3: Non-author, without group work approach  

6 Analysis and findings 

6.1 Perceived student gains 

As Figures 6.1, 6.2, and 6.3 show, students reported perceived gains in three major topics 

related to the PSP. We note several trends from the data collected. First, there is a trend 

toward students’ reported perceived gains as “great gain” and “good gain,” indicating that 

students perceived that they experienced progress in key course topics. Second, for the 

author’s (Flagg) implementations, there was a high percentage of students reporting 

“good” and “great” gains, which might have resulted in the difference in implementation 

between the author and non-authors. Third, Figure 6.3 indicates a trend toward students’ 

reported perceived gains as “no gain” or “small gain.” A possible reason for this trend is 

that students in the United States are often taught back substitution prior to taking a Linear 

Algebra course, thus resulting in students perceiving smaller gains. 
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Figure 6.1: Perceived learning gains:Students’ ability to set-up an augmented matrix 

Figure 6.2: Perceived learning gains: Students’ use of elementary row operation 

on an augmented matrix to find the unique solution of a non-singular matrix. 

Figure 6.3: Perceived learning gains: Students’ use of back substitution method for 

finding the solution of a system of linear equations represented by an upper 

triangular matrix. 
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6.2 Students’ reported benefits and obstacles to using PSPs 

On the post-PSP survey, students were asked what they believed the benefits and 

drawbacks were from learning mathematics by reading primary historical sources used in 

the Solving a System of Linear Equations using Ancient Chinese Methods project. 

Students identified multiple benefits, but one of the most prevalent was that students noted 

that seeing the development of mathematics or mathematical context was important and 

could instill confidence in the material. This is exemplified in the following student 

response: 

I think the benefit is knowing where methods originated, and know that what is 

studied and used today is completely valid and has history. It creates confidence in 

the subject because it has backing. (Flagg Student, Spring 2018) 

A second benefit the students noted was that they experienced a change in perspective 

during PSP implementation. This is exemplified by the following student’s response:  

One of the benefits of learning mathematics by reading historical sources is for 

students to have a perspective [on] how mathematics developed throughout history. 

This also gives [an] example how different societies can have multiple ways to solve 

a mathematical problem that differs from contemporary mathematics. (Flagg 

Student, Fall 2017) 

Students also reported obstacles they experienced during this PSP implementation. 

Two general themes that arose were difficulty with language and general confusion. The 

first obstacle noted was a difficulty with the text itself, in which students described the 

language as archaic or that translations did not provide the clarity they needed. This is 

exemplified by the following comment: 

The main drawback was the archaic language used to describe the methods. I didn’t 

have a clue what the author was asking me to do until the professor explained in 

more fluid language. (Monty Student, Fall 2017) 

It is possible that students used the term “language” to represent general frustration 

with the material. There is some indication that the order in which topics were presented 

in the first implementation was less than optimal. This was acknowledged by students (in 

surveys) and in the instructor’s implementation reports in Fall 2017. The PSP was revised 

for the 2018 implementation by the author (Flagg). Despite these revisions, there were still 

objections to the difficulty of understanding the language contained within the PSP, 

indicating that students were challenged with interpreting some “foreign” and unfamiliar 

terms.   

The second obstacle that students reported was that the material was confusing or 

frustrating. This was often mentioned with reference to difficulty in understanding 

language, but it was not exclusively paired with this difficulty. For example, one student 

reported the following:  

It’s more confusing than learning in a more traditional manner and I struggled with 

even understanding some of the primary source material. (CarlStudent1, Spring 

2018) 

Here it is important to note that the student was comparing the material to traditional 

material. This was another common theme among reported obstacles. This might indicate 
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that students had problems learning from what was not a traditional, didactical text and the 

shift from such a format to something quite different presented a possible difficulty. In the 

United States, it is entirely possible that students might not have encountered a non-

didactical mathematical text prior to this experience; thus, students may not know how to 

approach the text. As well, this is indicated by several students reporting that they had to 

read more than in a standard mathematics class.   

Students were also asked what they would tell a friend about their PSP experience. 

Here, a number of students reported that potential peers should expect confusion and 

frustration, but the confusion and frustration had a payoff in terms of knowledge gains:  

They should expect to have to put a lot of time and effort into the project, but it will 

be worth it in the end. It will also be frustrating, but then interesting. (Carl Student 

2, Spring 2018) 

6.3 Instructors’ consideration of language 

The fact that students experienced difficulty interpreting language was also reported by 

instructors in their implementation reports. In general, there were two views relating to 

this obstacle reported by instructors. This first viewpoint was the perspective of Monty. 

He indicated that language was an unnecessary bug in the PSP, and perhaps the PSP could 

be modified to provide a clearer explanation in terms of modern terminology.  In this 

instance, Monty wanted to “make the unfamiliar familiar” for the students.  That is, Monty 

proposed to do this cognitive work for the students, rather than students potentially 

engaging in productive struggle to do this work. 

The other perspective was that the difficulty interpreting language provided a great 

opportunity to discuss the use of language in communicating mathematical ideas for 

example the need for clarity and precision. This is best exemplified by Carl describing his 

process of “turning it [language] into a feature not a bug.”  This viewpoint was endorsed 

by the author, who stated that  

…some struggle is important to understand the power and challenge of 

mathematical language as [students] go deeper into the subject. A little exercise in 

having trouble reading the PSP can be leveraged into a lesson on why it is 

important to be clear. (Flagg, Fall 2017, emphasis added) 

For both Carl and Flagg, “making the familiar unfamiliar” through the PSP was a 

meaningful and significant aspect of the use of the PSP with regard to overall mathematics 

instruction, and was a shared cognitive activity among students and instructors alike.  

7 Conclusion and Discussion 

7.1 Limitations and future research 

This study was a pilot used as a preliminary analysis of the implementation of the PSP.  

The researcher’s viewpoints into the implementation are a result of self-reported data from 

the students and instructors. These viewpoints may have omitted vital information 

regarding classroom interactions. Any results regarding how the students and instructors 

recalled these interactions are limited. Also, the number of participants included in this 

study is small; therefore, any quantitative results should be considered limited in scope (in 

particular the learning gains).Future research should include data collection (and analysis) 
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of implementation. Observing student teacher interactions may result in increasing or 

decreasing the cognitive demand of the tasks contained within the PSP. This might also 

have an impact on how students perceive the PSP and their own learning gains, and could 

be grounds for further research. 

It is also unclear if the student remarks about the language in the PSP resulted from 

frustration with the mathematics of the problem (which were communicated as language 

issues), issues with translating particular words within the text, the didactical style of the 

text which was different than most traditional text books in the United States, or 

something else. A careful analysis of each of these conditions in future PSP 

implementations might shed some light on what students mean by the claim that the 

language (in the PSP) is frustrating.  

7.2 Discussion 

In this pilot study, the data indicated that there were discernible differences among 

different implementations of the Solving a System of Linear Equations using Ancient 

Chinese Methods PSP. First, there were different lines of communication that were open 

among students, the instructor, and the author. The author’s implementations contained all 

possible lines of communication while some lines of communication were not present in 

non-author implementations of the PSP. The presence of these lines of communication 

might be a contributing reason for why students in the author’s implementations of the 

PSP reported high perceived learning gains.   

While many students viewed language as a difficulty in the PSP, there was a significant 

difference in how instructors viewed language. Carl and Flagg both viewed language as an 

obstacle for students, but one that students should embrace as part of the learning 

experience, as opposed to a bug that needs to be corrected in future implementations.  This 

is in line with the conceptions of Barnett, Lodder, and Pengelley (2014) who stated that  

In short, the primary source is now being used not just to introduce the mathematics 

in an authentically motivated context, but also as a text which the student is 

explicitly challenged to actively “interpret” as part of their personal process of 

making modern mathematics their own. In alignment with this shift, the tasks we 

now write for students increasingly adopt a more active “read, reflect, respond” 

approach to these sources. (p. 10) 

Monty and Flagg viewed group work as productive struggle for students and prioritized 

it in their implementation.  Furthermore, Flagg noted in her implementation that  

I learned a great deal from writing and implementing my project. I think that I 

learned the most from incorporating the readers’ suggestions in framing tasks as 

more open-ended questions. I will continue to use that lens as I create course 

material for all my classes. The implementation of the project also takes me one step 

closer to creating a more interactive classroom. (Flagg, Implementation Report). 

7.3 Implications for Instruction 

Many participants viewed using the PSP as positive experience even if it was frustrating at 

times. The results indicate that some students had a frustrating time reading and 

interpreting excerpts from a primary source.  Some students were able to overcome this 

difficulty by the time they submitted their post-PSP surveys, others were not. This 
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indicates that it is important for instructors to carefully monitor student progress through 

the PSP to ensure that while some student struggle is productive, excessive student 

struggle might make for an unpleasant and unproductive experience. In particular, it is 

important that students receive feedback early and often at the beginning of the PSP when 

they are first encountering a new didactical style, new mathematics, and/or issues with 

translation that might introduce complexity to the problem. 

7.4 Conclusion 

In conclusion, we found that instructors can implement PSPs in vastly different ways, 

even when they are provided with supporting “Notes to Instructors” that are included as 

part of the PSP. Monty viewed the PSP as a chance to change the social dynamic of his 

classroom into a more active learning environment. Carl viewed the PSP as a chance to 

change the academic material presented to engage students in a cognitively different way, 

especially through overcoming the challenge of reading and interpreting the PSP. And, the 

author considered both of these struggles as productive and sought to incorporate them 

into her classroom which resulted in some of the greatest perceived learning gains on the 

part of students. This is only a preliminary report and this pilot study provides some 

evidence that the author might be better positioned to implement their own PSP (in terms 

of perceived student gains). This relationship could be due to the fact that authorship and 

preparation of “Notes to Instructors” require the author to think deeply about not only the 

material, but its implementation in the classroom, which includes the consideration of 

student engagement and learning. We believe that the relationship between authorship and 

quality of implementation is grounds for interesting future research, especially with regard 

to consideration of professional learning experiences for non-author instructors prior to 

PSP implementation. 
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Appendix 

Excerpt from Solving a System of Equations by Ancient Chinese Methods (Flagg, 

2017) 
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ABSTRACT 

In 2016, the author curated an online exhibition of the mathematical works in the Edward 

Worth Library in Dublin. Of about 4400 works, dating from 1475 to 1733, in the library, 

about one hundred are mathematical, the earliest of these printed in 1538. The process by 

which the exhibition was created involved working with twenty undergraduate students 

(on a three-year BA programme) who were taking a module in the History of 

Mathematics. As part of this module, students were required to contribute to the 

exhibition. Specifically, they were asked to choose one mathematical book from the 

collection and explore it in whatever way they could. 

The background to the exhibition, students’ reaction to their initial visit to the library, 

an overview of how students were supported in their work, and a summary of the eventual 

shape of the exhibition are all reported previously (at CERME10). In this paper the author 

reports on how the students coped with unfamiliar and challenging original material 

(mainly in Latin, but with some books in French and English). 

In particular, three stages in the project are highlighted: students’ initial work on their 

author and book, their revised work (an 800-1200 word draft entry for the exhibition) and 

the necessary editing to ensure coherence of the exhibition itself. For the revision (phase 

2) of their work, students were provided with feedback on phase 1 and asked to check out 

resources on the web and in the (university) library relating to their chosen book, its 

author and the context of his life. 

Inevitably students’ approaches to the project varied greatly, as did the level of 

engagement. It cannot be claimed that the insights reported here might apply to another 

‘similar’ cohort of (mainly) Irish students, and, even less, to students elsewhere. 

Nonetheless, it is hoped that a detailed presentation of the experience of working with 

these particular students will contribute to the discourse of working with original sources 

in an undergraduate programme where the students have some mathematical background 

but no prior exposure to the history of the subject. 
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O binómio de Newton é tão belo como a Vénus de Milo.  

O que há é pouca gente para dar por isso. 

 

Newton’s Binomial theorem is as beautiful as the Venus de Milo. 

The problem is that very few people are able to realize it. 

 

Álvaro de Campos [heteronymous of Fernando Pessoa] 

 

ABSTRACT 

In this paper, we intend to present the project Histórias com Ciência na Biblioteca Escolar [(Hi)stories with 

Science in the School Library], a project which brings History of Science topics to high schools in the city of 

Aveiro (Portugal). This project is a joint project of the University of Aveiro and the Rede de Bibliotecas 

Escolares [School Libraries Network, a program of the Ministry of Education]. The goal of this project is to 

join the University and High Schools in promoting scientific dissemination, namely the research carried out 

in the University, as well as extending the scientific culture to a pre-university audience. This project is 

coordinated by Professor António Andrade (Department of Languages and Cultures) and consists of a cycle 

of nine conferences in high school libraries by several investigators of the University. The themes of these 

conferences are very diverse and include areas such as astronomy, medicine, botany, literature, physics and 

mathematics. These conferences are always centered on episodes of the history of science, for instance, 

botany in the work of the epic Portuguese poet Camões, the importance of amateur astronomers in the past, 

the history of syphilis, the importance of the phonograph in Portugal, among others. In this paper, we will 

present the three mathematical conferences in detail. 

1 Introduction 

The History of Mathematics Group of the University of Aveiro participates in the project 

Histórias com Ciência na Biblioteca Escolar [(Hi)stories with Science in the School 

Library] with three conferences: Portuguese Arithmetic Books in the Portuguese 

Discoveries (Teresa Costa Clain), Real Problems – Historical Mathematical Solutions 

(Hélder Pinto) and Amateur Mathematicians – passions with limits? Simple problems, big 

challenges… (Helmuth Malonek). 

In Clain’s conference, the practical arithmetic treatises written in Portugal during the 

16
th

 century are presented. According to the traditional model, these treatises are 

mathematics texts with a practical vocation and with the objective of answering to the 

needs of professional training in the commercial world. Commercial arithmetic also 

became a source and a vector for the dissemination of an important set of problems that 

would mark the history of knowledge for centuries. In this session, the Praticad' 

483

mailto:hbmpinto1981@gmail.com
mailto:tcostacaracol@gmail.com


 
 

Arismetica (1540) by Ruy Mendes is briefly presented and some problems proposed by 

Bento Fernandes are analyzed, which illustrate the ludic side of mathematical knowledge 

at the time. 

Pinto’s conference shows several historical examples of real problems that were solved 

using mathematics, for instance, how to measure the distance to a ship in the sea (Thales), 

how to determine the size of the earth (Eratosthenes), how to measure the height of a 

mountain (China), how to measure the sun´s altitude (Portuguese instrument) and how to 

improve calculation with rudimentary calculators. In this conference, as an introduction, 

several examples that everyone who knows some mathematics are presented, such as 

percentages (e.g.: taxes and store promotions), measuring areas, “reading” schedules and 

tables, and so on (for instance, as an example to students, even when using a clock, several 

mathematical notions are being used: why is 17:15 the same as “a quarter past 5 pm”?). 

Malonek’s conference was not presented in the ESU-8 meeting because it is the most 

recent one in this project, only being implemented this year. However, in this paper the 

situation of the project is updated and this conference is also presented. 

Finally, note that this project is not only about the contents presented in the 

conferences, the major goal is to enhance the scientific culture of high school students. 

This is a small step to increase, in the future, the audience that can understand the 

importance of science and mathematics through the history of mankind. Mathematics and 

science are very useful and beautiful; the major problem is that very few people realize 

this. 

2 The project Histórias com Ciênciana Biblioteca Escolar 

The University of Aveiro and the Network of School Libraries, a program of the 

Ministry of Education, met to jointly develop a project of scientific dissemination 

among high school students, centered on the School Library. 

 

Figure 2.1: The project logo. 

This project, entitled [Hi]stories with Science in the School Library, is made up of 

nine conferences, stimulated by a group of teachers and researchers with research 

developed in their areas of knowledge and composed by the following sessions: 

 Plants in the Lyric and Epic of Camões. (Jorge Paiva / Functional Ecology 

Center of the University of Coimbra); 
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 Amateur astronomers - passions without limits? (Vitor Bonifácio / UA-DF / 

CIDTFF); 

 The unicorn and the bezoar: between myth and reality. (António Andrade / UA-

DLC / CLLC); 

 The Phonograph, which presented on Sunday constipated and hoarse, presented 

on Monday clear and clear as never before - The phonograph and its presence 

in the teaching and popularization of science (19th century). (Isabel Malaquias 

/ UA-DF / CIDTFF); 

 Portuguese books of arithmetic in the Discoveries. (Teresa Clain, History of 

Mathematics Group, CIDMA – UA; D. Maria II High School); 

 Real Problems - Historical Mathematical Solutions. (Hélder Pinto, History of 

Mathematics Group, CIDMA – UA; ESE – Instituto Piaget); 

 Changes in history seen from a Chemistry perspective: some examples of 

molecules that have changed the world. (João Oliveira / UA-DQ / CESAM); 

 Madness, medicine and literature (from the Archipathology of Filipe Montalto). 

(Joana Mestre Costa, UA-ISCA / CLLC); 

 Amateur Mathematicians - passions with limits? Simple problems, big 

challenges… (Helmuth Malonek, History of Mathematics Group, CIDMA - 

UA). 

The coordination of the conference cycle links schools and researchers. In this 

project, the School Library represents an aggregator of diverse knowledge and 

resources that could be implicated in the change of educational practices, by 

supporting learning methods and the curriculum. 

The project [Hi]stories with Science in the School Library began with high schools 

in the city center of Aveiro and quickly spread to other schools in the region of Aveiro 

(and beyond). In these sessions, we try to show that Science is a “passion“, the result 

of human curiosity in an attempt to discover the world and everything that is part of it, 

including Mankind. Without knowledge of the origins, we hardly understand the 

present, hence the importance of this cycle of lectures. 

In the following text, the contributions of the History of Mathematics as part of the 

history of science will be presented, namely the sessions facilitated by the History of 

Mathematics Group (GHM) of CIDMA of the Department of Mathematics of the 

University of Aveiro. 
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2.1 Portuguese Arithmetic Books in the Portuguese Discoveries (Teresa Costa 

Clain) 

In the following subsection, the practical arithmetic treatises written in Portugal in the 16
th

 

century will be presented: Tratado da Pratica d’arismetica (Nicolas, 1519), Pratica 

d’Arismetica (Mendes, 1540) and Tratado da Arte de Arismetica (Fernandes, 1555). The main 

goal of this presentation is: to show that mathematical themes are present in the arithmetic 

treatises, as well as to disclose the authors’ performance in the face of challenges of the 

surrounding commercial world and their contributions to the mathematical knowledge of 

the time, giving them a place in the historiography of Mathematics in Portugal. For this 

purpose, some axes on which the session will be developed are presented, that is, an 

approach around a socio-economic framework addressing the following issues: What was 

the economic, social and geographical context? Who were the authors? What do they tell 

us about themselves and their motivations? 

At this point, the Portuguese empire and commercial expansion is explained. The large 

deals associated with expansion were not “going the right way”. The arithmetic treatises 

are testimony of a preparation for the daily life of the national merchant in order to open 

up to the international markets. Territorial expansion was also synonymous with 

commercial expansion, and new social and natural realities. The arithmetic treatises 

addressed some business issues and dealt with problems related to the New World. One 

example was the spices business, which often had a loss of merchandise due to poor 

travelling conditions. Further, the “weight” of the fourth and twentieth tax on goods was 

added on top of this, as Gaspar Nicolas claims. Two important institutions of the 

Portuguese commercial network are also referred to: the House of India and Flanders 

Factory. 

Biographical data on the authors is scarce; however, their motivations are explicit. A 

reading of the three treatises leads us to believe that the three authors presented similar 

themes through different methodologies to serve the same objectives. Gaspar Nicolas 

frequently mentions the questions that were asked in the House of India when he arrived 

in the city of Lisbon. Ruy Mendes, dealing with the same subjects, does so in a “more 

academic” manner, by organizing the subjects, considering his taste in problems with 

numbers and through the method in which he introduces the themes. Bento Fernandes 

transmitted through his work his experience as a merchant. He wrote a treatise for 

merchants and gave special emphasis to commercial rules, focusing on the importance of 

training merchants. 

A global approach to these works will be: What is the organization of the treatises? 

What are the topics covered? New commercial routes, with an enormous amount and 

variety of products in circulation, as well as the emergence of increasingly complex 

commercial techniques required that the actors act wisely. Merchants needed to record, 

calculate earnings and predict risks. For these purposes, arithmetic knowledge was 

necessary. 

In the session, the structure of the work by Ruy Mendesis presented. This is the only 

one of the three authors that separates the knowledge of basic rules from their 

applications. In this treatise, there are “raw” mathematics and commercial mathematics. 

An approach around the mathematical language of the works is used: What are the 

concepts covered? What is the scientific vocabulary used? What arithmetic was it? Also, 
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notice that the use and vulgarization of the Indo-Arab numbers transform the notion of 

arithmetic and allowed for the dissemination of written calculation.  

To begin, basic calculations and basic operations are presented, such as the Lattice 

method of multiplication according to the Table of Multiplication. 

 
Figure 2.2: Multiplication Table by Ruy Mendes (f. 13) 

 

 
Figure 2.3: Lattice method of multiplication by Gaspar Nicolas (769 x 496 = 381424) 

The entire division by galera method (Galley division) is also introduced. 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: An example of Galley division. 

An example is presented by choosing 98765 as the dividend and 432 as the divider. The 

Galley division algorithm is considered difficult; however, this activity is proposed to the 
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students who attended the session. The algorithm is outlined in the following intermediate 

steps by interpreting figure 2.4: 

987 2 432 123

1236 2 432 1236 2 (400 30 2) 1236 (800 60 4) (1236 800) (60 4)

376 4 372

3725 8 432 3725 8 (400 30 2) (3725 3200) (240 16)

(525 240) 16 285 16 269

  

               

 

           

    

 

The students know the theme of “sequences” and in this context, a problem of “walks” 

is proposed, where several steps need to be fulfilled: 

-Understanding the problem in the original text; 

-Studying and comprehending the author’s solution; 

-Solving the same problem using knowledge acquired in school. 

Here, the problem at hand is outlined: consider two men walking, which can be 

described by two arithmetic progressions. One of the men walks 9 miles each day and the 

other walks 1 mile more than the previous day. The author wants to know when they meet 

for the first time. The author’s solution: duplicate 9 and take 1 away, we have 17. 

In current language, the equation can be solved with a second degree    
      

 
. To 

“avoid” the resolution of the two-degree equation, Nicolas proposed the equivalent 

expression   
   

 
, where           (Nicolas, 1963, f. 52 v). 

Classical themes, such as progressions, and square and cubic roots, though 

disconnected from the mercantile world, have taken a prominent place in the Portuguese 

treatises. These themes are associated with calculating practices. Moreover, they present 

rough sketches of processes similar to those associated with mathematical thinking. 

In the lecture, local characteristics are linked to the treatises: How have the themes 

presented been adapted to Portuguese commerce? What are the specific rules in 

Portuguese commerce? 

The main goal of the treatises was essentially a commercial application of the 

developed methodologies. Among the classic rules considered, such as companies and 

leagues, there are particular Portuguese rules of commerce, such as the fourth and 

twentieth tax rule, and the rule of the account of Flanders. The fourth and twentieth tax 

rule established a model for calculating the payable tax for goods from the East by 

applying the rule of threes (80---23---a (to the tax) and 80---57---b (to the merchant)). This 

tax was an important source of revenue for the kingdom and corresponded to 28.75% of 

earnings. The account of Flanders was a conversion rule. Through these models, a 

mathematical understanding of the issues can be reached, as referred in Almeida 

(Almeida, 1994). 

Nicolas, Mendes and Fernandes present the problems of the fourth and twentieth rule 

by addressing three steps to calculate the tax, see (Clain, 2016, p.352): a quarter of the 

merchandise, the twentieth of three-quarters of the remainder and finally what the 

merchant will keep after the taxes have been paid. The presence of this trichotomy in the 

statements for the practice of the fourth and twentieth rule can be observed. 

On the rule of companies, the students are presented with problems similar to(Mendes, 

1540, f. 71): 
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Three merchants, Pedro, Luys, and Andre created a company in which Pedro 

invested 56 cruzados, Luys 78 and Andre 85. They earned a hundred tostões, how 

should they distribute the gains between the three of them? 

With the students, the relation of the gains is established through the model 

 

 

 

and we have, for example, Pedro’s gains in this company 

 

 

 

In the scope of proportional division, some problems of a playful nature, such as the 

classic inheritance problem, is presented: 

A man was about to die and his wife was pregnant, and he made a will in this way: 

he said that he left 600 cruzados in money, which he ordered to be distributed in this 

way: in case the woman had a male child, her son had 2/3 of the 600 cruzados and 

his wife 1/3. If his wife had a daughter, the daughter received 1/3 and the wife 

received 2/3. After the man died, the wife had a daughter and a son. How are the 600 

cruzados to be distributed among the family? (Fernandes, 1555, f. 101v) 

In the session, the problem is solved in current mathematical language, through a 

system of three equations and three unknowns (x – son; y – mother and z – daughter): 

 

 

These treatises have a large number of problems. The mathematical contents are found 

in the solutions presented by the authors. Through some stories told in the library and the 

examples presented, the students perceive that they are currently studying subjects that are 

found in the 16
th

 century treatises, although the mathematical language is different. 

Symbolic language was not part of the 16
th

 century, but mathematical thinking was. We 

leave the testimony of the students of the LH2 11th grade class: 

The class considered that the lecture was very enriching, constructive and 

appropriate to our course since it displayed mathematics in the historical context, 

more specifically, in the Discoveries. It allowed us to acquire a perception of how 

calculations were performed at that time and how much it has since evolved. The 

fact that we put into practice some of the processes used at the time of the 

Discoveries, made the speech more dynamic, interesting and useful. Given the 

vastness of the theme, we felt it was a short time since there was much more to be 

addressed. In short, the class considered that this kind of activity should be 

implemented in the classes more often. 
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2.2  Real Problems – Historical Mathematical Solutions (Hélder Pinto) 

In this session, Pinto begins to sensitize the students to everyday life mathematics. 

The speaker intends to express the following message: mathematics are more present 

in our life than we imagine and, sometimes, those mathematics are very simple. The 

topics covered are diverse and offer different perspectives. Some examples are 

described: 

- Hours and clocks: the sexagesimal system that everyone knows, fractions 
 

 
  

 

 
  

(half an hour, a quarter), the multiplication table of the number 5 (that “appear” in the 

minutes clock pointer) and Modular arithmetic (12h / 24h) are presented. In the 

conference, the high number of divisors of 60 (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 

60) are referred to, which constitutes a possible reason for the appearance of this 

numbering system. This session is an occasion to review some aspects of number 

theory that are outside the curriculum of high school education in Portugal. 

- Percentages (bank loans, sales, taxes, etc.): in Portugal, the Languages and 

Literature students take the Applied Mathematics to Social Sciences course, where 

financial models, among others, are studied. In this course, students are faced with 

financial calculations necessary in the everyday life of a taxpayer (state taxes on 

supermarket purchases, property tax, etc.). The students attending the Science and 

Technology course are not familiar with these topics since they arenot in the course´s 

curriculum. However, it is important for students to have an education in finance. A 

special focus on the use of percentages is addressed to calculate bank loans, sales and 

taxes. This knowledge fosters a practice for citizenship, avoiding unrealistic spending 

situations, and promoting consistent financial education. 

After the first part of the conference, we explain that the utility of mathematics can 

be possibly found in many topics in the history of mathematics. Specifically, remark 

that the geometry of measurement is present in the mathematics curricula in Portugal 

and students are familiar with the basics of trigonometry. So, to introduce topics of the 

history of Mathematics, it is pertinent, above all, to show that mathematics has always 

been present, over time, in solving everyday life problems, such as construction, 

navigation, among others (see, for instance, Swetz (1994) and Katz (2000) for 

activities and to understand the importance of using History in teaching). In this 

context, several themes are presented: 

- Measure the distance to a ship at sea (Thales of Miletus): in this part, different 

possibilities on how this measurement could have been done at the time are shown using 

only similarity or equality of triangles. 
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Figure 2.5: One possibility using similarity of triangles. 

 

Figure 2.6: Another possibility using equality of triangles 

- The height of a pyramid (Thales of Miletus): the situation with proportions is 

presented but it is also pointed out that the easier solution is to wait for the time of the 

day when all objects have shadows “perfectly equal” to themselves… 

 

Figure 2.7: A representation of a pyramid and a vertical stick with their shadows 
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- Determination of the earth´s meridian length (Eratosthenes): how amazing that it 

was possible to do this measurement with absolutely no modern technology just using 

mathematics! 

 

Figure 2.8: Picture shown to students to explain the Eratosthenes method 

In another part of the conference, Napier rods and Genaille-Lucas rulers are 

presented in detail. We explain how these ancient instruments of calculation work 

(suitable only for multiplications) and highlight that the second instrument is an 

ingenuous improvement of the previous one (the second rulers are easier and quicker 

to work with). The aim in this part is to show that mathematics, like other sciences, is 

the consequence of the effort of several people and has evolved overtime. For a 

description of these instruments and how to use them in the classroom, see Pinto 

(2009) and (2010); for more information about these calculation methods see 

Seaquist, Seshaiyer & Crowley (2005). 

 

Figure 2.9: Examples of these rulers used in classroom 

Finally, the shadow instrument of Pedro Nunes is shown in this conference. Pedro 

Nunes (1502-1578) was a mathematician, cosmographer and professor at the 

University (the only one in Portugal in that time). Nunes lived in the period of the 

Portuguese Discoveries and had many contributions to the introduction of rigor in 

geometry and mathematics in 16
th
 century Portuguese culture. 

 In his works, Pedro Nunes suggested several instruments that he imagined were 

useful for astronomical navigation used during the Discoveries. At stake was the 
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measurement of the height of the Sun and other stars, namely the Polar Star. Using 

this measure, pilots could calculate latitude, which was very important in astronomical 

navigation; as stated in the conference, it was like the “GPS” of thetime. Among his 

creations, there are three that have survived and heavily contributed to the progress of 

scientific instrumentation: the Nónio, the Nautical Ring and the Instrument of 

Shadows, of which several examples are known. Among these, the instrument of the 

shadows is highlighted, which was a modest instrument, similar to a solar clock, but 

with a very ingenious innovation that made it possible to directly measure height 

through the shadows projected by the Sun. 

 The Instrument of Shadows was constructed like this: the base was a plate, usually 

square, where a circle was inscribed and a tangent to that circle was drawn. Mounted 

on the circle was a board similar to a style or gnomon, as in solar clocks. This plate 

had the shape of a rectangular isosceles triangle, with the legs´ length equal to the 

radius of the circle. The triangle had a hut resting on the radius of the circle that 

touched the tangent line, as shown in figure 2.10. A diameter parallel to the tangent 

was marked in the circle and the circumference from 0° to 90° was drawn in the 

directions from the diameter to the point of the tangent. To measure the height of the 

sun, one started by placing the base of the instrument horizontally. This base was then 

rotated until the edge of the shadow of the triangle coincided with the tangent line. 

The height of the star was directly “read” in the graduated circle. However, remark 

that this instrument was not used in real life because it was very difficult to have a 

completely horizontal surface athigh sea… 

 

Figure 2.10: Representation of the Instrument of Shadows 

The geometric principle of this instrument is very easy to understand: the sun’s 

rays make an angle with the horizontal plane that corresponds to the angular height of 

the star. When placing the plate to match the shadow with the tangent line, this angle 

is transferred to the horizontal plate, where it is directly “read”. The geometric 

demonstration is very basic and only use two mathematical results that students 

already know (see figure 2.11): the angles SS’T and TS’O are equal because the 

triangles [SS’T] and [TS’O] are equal (they have one common side as [TS’], [ST] and 

[TO] have the same length because of the instrument’s construction and both triangles 

are rectangle; the LAL criteria is used); the angles TS’O and XOA are equal because 
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they are alternate angles between parallel lines. For more detailed information about 

this instrument, see Crato (2003). 

 

Figure 2.11: The correct position of the shadow in the instrument 

The Instrument of Shadows is easily introduced in the classroom because it is very 

easy to construct replicas using only paper and cardboard (figure 2.12). For detailed 

explanations about how to construct these replicas and how to create activities with 

this instrument in the classroom, see Pinto (2009) and (2010). 

 

Figure 2.12: A replica of the instrument made with paper and cardboard 

Pinto’s lecture aims to motivate the learner to the practices based on the 

construction and use of simple instruments. In addition, Socio-Economic Sciences and 

Humanities course students are familiar with the theme of the Discoveries through the 

History of Portugal classes. Pedro Nunes is a heavily mentioned figure in the 

literature and his important contributions to the scientific knowledge are presented. 

The students of the SE1 10th grade class left their opinion about this session: 

Professor Hélder Pinto showed that Mathematics is present in everything, from a 

simple clock to the most advanced spacecraft. In times when knowledge and 

technology were more rudimentary, mathematics was used to solve real 

problems, which today are considered substantially simpler. The class was 

surprised by the fact that certain measures of interest, such as the earth’s radius, 
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were very similar to the values obtained using more modern and rigorous 

processes. The lecture was very enriching and allowed us to realize that since 

the earliest times Man has always tried to perceive the world around him and to 

interact with it. We would like to participate in more activities of this nature, 

since it gave us a different perception of mathematical knowledge. 

2.3 Amateur Mathematicians - passions with limits? Simple problems, big 

challenges… (Helmuth Malonek) 

In this lecture, Malonek always starts by talking about his taste for mathematics, 

emphasizing the difference between amateur mathematicians and professional 

mathematicians. He introduces and explores several examples of problems developed 

by amateur mathematicians. Among others, the “friendly numbers”and the famous 

Goldbach conjecture, which is one of the oldest unresolved problems in mathematics, 

which says “any even number greater than 2 can be represented by the sum of two 

prime numbers”. It is known that computer-based techniques have already confirmed 

this conjecture; however, the actual mathematical demonstration has not yet been 

presented. During the lecture, Malonek interacts with the students by telling some 

stories about his experience as a mathematician, raising their interest. Furthermore, 

the school library, where the lecture occurs, fosters a taste for reading. Malonek 

presents the book of Apostolos Doxiadis The Uncle Petros and the Goldbach 

Conjecture, a bestseller of the year 2001 (Doxiadis, 2001). During this session some 

chapters of this book are addressed, the main topics of the book are highlighted, i.e., 

the passion for studies, the discovery of mathematics, learning persistence, and the 

importance of a pedagogical practice based on trial and error. At the end of the 

conference, the students were invited to give their opinion on the session (The session 

was held in the library of the High School of Caldas das Taipas with the students of 

the SE2 10th grade class). We quote a student: 

It was a very enjoyable session, where we had the privilege of being able to 

listen to an experienced and well-known mathematician and above all, to learn. 

We all became aware of the reason for this theme and also had the opportunity 

to learn a little more about various mathematicians who, while amateurs, made a 

valuable contribution to the development of mathematics. 

3 Final Remarks 

The project is now in a consolidation process. The number of conferences available to 

schools is increasing and each speaker goes, on average, to three or four schools each 

year. The majority of the students that attend to conferences are, typically, 16-18 

years old but, in some cases, the attendants were younger (13-15 years old). Overall, 

this is a very low cost project (each school only provides, sometimes, transportation to 

the lecturers) and each school chooses the best way of implementing this project: in 

some schools, the conferences were given along the school year (usually on the same 

week day, typically two each month); in others, the conferences were given in special 

weeks, for instance, during “science weeks“, integrated in other initiatives of the 

schools. In the figure below, we show that the three mathematical conferences were 
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given on the same dayin the High School of Caldas de Taipas, integrated in the Math 

day of the Semana de Ciência e Tecnologia [Science and Technology Week]. 

 

Figure 3.1: Photo in upper left corner: from left to right, Hélder Pinto, Teresa Clain, 

Helmuth Malonek and Fernanda Carvalho (library coordinator of the highschool, Escola 

Secundária de Caldas das Taipas). Photo in the lower right corner: from left to right, 

Teresa Clain, Gorete Branco (coordinator of the math department of the highschool, 

Escola Secundária de Caldas das Taipas), Helmuth Malonek and Hélder Pinto. The 

lectures are announced on posters. In this case, by Americo Costa of the same highschool 

(the first three images of the bottom line). 

With these mathematical conferences, we intend to change the students’ 

perspective about mathematics and humanize the discipline. In the end, we hope that 

the history of mathematics can help students understand the following: 

Mathematics contains some very subtle devices that serve not only to satisfy 

those who are intrigued by mathematical problems but also to help with all 

practical and mechanical endeavors and to lessen men's labors. (Descartes, 1637, 

p.7). 
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ABSTRACT 

This paper discusses the concept of isomorphism from the analysis of Camille Jordan’s book “Traité des 

substitutions et des equations algébriques”. Methodologically, we resort to qualitative text analysis (Kuckartz, 

2014), considering three levels of analysis: reference card of the work, context and purpose of the work and of 

the author, and presentation and treatment of the group isomorphism concept. The results show that Jordan 

explicitly introduced the concepts of holoedric (total) and meriedric (partial) isomorphism in the context of 

substitutions groups. Thus, Jordan used the term isomorphism to designate what is currently known as bijective 

homomorphism (isomorphism) and surjective homomorphism (epimorphism), distinguishing them with the 

terms holoédrique and mériédrique, respectively. This distinction suggests the possibility of a correspondence or 

transmission of some properties from one group to another, recognizing the usefulness of this concept due to the 

similarity of the properties presented by groups that are isomorphic. 

1 Introduction 

Over the past four decades there has been considerable interest and growth in research in 

Mathematics Education towards the line of historical research (Fauvel & van Maanen, 2000; 

Matthews, 2014; Clark, Kjeldsen, Schorcht, Tzanakis, & Wang, 2016). Two areas of study 

can currently be distinguished in relation to the contributions of history in this field 

(differentiated themes in the International Congress on Mathematical Education [ICME]): the 

history of the teaching and the learning of mathematics; and the role of the history of 

mathematics in mathematics education. The first focuses on the history of Mathematics 

Education due to its development as a scientific discipline, while the second emphasizes the 

importance of integrating historical and epistemological issues in the teaching and learning of 

mathematics. 

Clark et al. (2016) point out that “mathematical knowledge is determined not only by the 

circumstances in which it becomes a deductively structured theory, but also by the procedures 

that originally led or may lead to it” (p. 136). However, the teaching of mathematics usually 

presents the final products of years of mathematicians’ work and does not consider the 

process of constructing those products, which would otherwise contribute to the appropriation 

of the meaning of mathematical concepts. In this regard, in the teaching and learning of 

mathematics, the integration of historical and epistemological aspects can favor the 

understanding of specific parts (e.g., concepts, theorems) of mathematics, and also lead to a 

deep awareness of the discipline itself (Clark et al., 2016). 
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Various researchers (e.g., Fauvel & van Maanen, 2000; Jankvist, 2009; Furinghetti, 2019) 

have provided arguments in favor of the use of history indicating the ways in which it can be 

used in the teaching and learning of mathematics. For example, Jankvist (2009) proposes two 

categories of arguments for the use of history, as a tool and as a goal. In the first category, 

history plays an important role as an auxiliary or supportive means of teaching and learning 

the in-issues of mathematics: mathematical concepts, theories, methods, algorithms, among 

others. In the second category, history as a goal, it is stated that although history can have a 

positive side effect of supporting the learning of mathematics, the main purpose of its use is 

not this one; it concerns the teaching of meta-issues of mathematics as a scientific discipline 

and its history. 

We consider the use of history as a tool that can enhance a deep understanding of 

mathematical concepts, seeking to make more explicit the mathematical construction of a 

specific mathematical concept and other underlying concepts (in-issues) (Jankvist, 2009). 

Thus, we could see mathematics as something that develops and can be constructed, that is, 

highlighting the creative side of mathematics rather than the cultural side (Menghini, 2000). 

Furthermore, “to be interested in the process of knowledge construction requires a history of 

mathematical ideas and, therefore, an epistemological reflection” (Barbin, 1997, p. 21). 

Epistemology here refers to the question of the meaning of mathematical concepts and 

theories, what Barbin refers to as épistémologie historique (historical epistemology), 

considering that what gives meaning to concepts and theories are the problems they solve. In 

this respect, the historical and epistemological of concepts takes on special relevance. 

On the other hand, a way in which historyhas been integrated into teaching and learning 

(as a tool and as a goal) of mathematics has been using primary (original) sources, that 

according to the categorization of Jankvist (2009) on how history may/should be used, the 

information from these materials is usually used as: (1) small extracts in historical epilogues 

(illumination approaches) and (2) readings of original sources or student projects (modules 

approaches). In this paper we consider the use of original sources for a historical and 

epistemological study in the (3) history-based approaches, where the main concern lies in the 

problems of mathematics, whose interest lies in their learning, and “do not deal with the study 

of the history of mathematics in a direct manner, but rather in an indirect fashion” (pp. 246-

247), that is, the historical information is not directly discussed with the students.In particular, 

the analysis of an original source is intended to highlight the characteristics of a mathematical 

concept itself (e.g., its meaning and applications), and the social and cultural aspects that 

influenced its construction, and from the available information, rescuing episodes or enabling 

elements that can help students to understand mathematical concepts (Anacona, 2003). 

Thus, we situate this work within the second area of study in relation to the contributions 

of history to mathematical education, namely, the role of the history of mathematics in 

mathematical education. We propose that a historical and epistemological analysis of 

concepts based on original sources, reveals the different approaches that mathematicians 

made around a concept, the difficulties that they had to overcome, the genesis of the concept 

and how other aspects determined the evolution of this concept until its consideration as we 

know it today. In this respect, some investigations justify that a historical approach to the 

concept may favor its understanding (e.g., Anacona, 2003; Furinghetti, 2019). 
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Specifically, we have carried out a historical and epistemological analysis of the group 

isomorphism concept that despite the importance of this concept in abstract algebra (Lajoie, 

2000), research carried out around their teaching and learning in a first course of abstract 

algebra has shown difficulties presented by undergraduate students to understand this 

concept. For example, Larsen (2009) identified difficulties in determining when two groups 

are essentially the same (the same structure whose elements are not necessarily labeled 

differently), and in the formulating of the formal definition of isomorphism, that usually is 

given in terms of a bijective function, whereas the operation preservation property does not 

emerge easily. Leron, Hazzan, & Zazkis (1995), Lajoie (2000, 2001), Weber (2001), and 

Weber & Alcock (2004) showed difficulties in proving that two groups are isomorphic and in 

constructing an isomorphism between specific groups. In addition, Lajoie (2000, 2001) 

identified difficulties: in giving the interpretation experts give, to the idea that isomorphic 

groups are similar, in considering more than one possible isomorphism between two 

isomorphic groups, in seeing isomorphism both as an equivalence relation on groups and as a 

particular correspondence between two isomorphic groups, and in recognizing a usefulness to 

the isomorphism concept in algebra. 

We specifically investigated the following questions: 

 What kind of problems were the mathematicians of the 19th century trying to solve, 

which favored the emergence of the concept of group isomorphism? 

 What meanings were attributed to the concept of group isomorphism by 19th century 

mathematicians? 

This document presents the results of the analysis of the book by Camille Jordan (1838-

1922): “Traité des substitutions et des equations algébriques”, published in 1870 in the 

sections that refer to the concept of group isomorphism. The presentation of a didactic 

intervention based on the results of historical and epistemological analysis of this concept in 

Jordan’s work is beyond the scope of this paper. 

2 Method 

This document studies the work of Jordan (1870), which from a literature review of secondary 

sources (Wussing, 1984; Kleiner, 2007), was identified as the work where the definition of 

isomorphism appears for the first time explicitly in the context of substitution groups (what 

today we would call a permutation of a finite number of letters). 

For the analysis of the work we used the qualitative text analysis method (Kuckartz, 2014). 

Three levels of analysis (González, 2002) were considered, each one of which deepens in the 

information obtained in the previous one: reference card of the work, context and purpose of 

the work and of the author, and presentation and treatment of the group isomorphism concept 

(Table 2.1). The second and third levels have been subdivided into categories, which were 

constructed in a deductive-inductive way (Kuckartz, 2014). 

The first level (reference card of the work) corresponds to the information specific to the 

work, which includes the name of the author, dates of birth and death, title of the work, year, 

publisher and place of publication analyzed and location of the work. 
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The second level (context and purpose of the work and of the author) provides an overview 

of the work, contextualizing it so that it can be properly analyzed in terms of the facts that 

influenced its writing and publication. The resulting categories were the following: (1) 

Contextualization of nineteenth century mathematics, which informs about the historical-

cultural moment of the mathematics in which the work was written; (2) Contextualization of 

the work, which provides information about the historical (scientific) moment in which it was 

produced, the goals or intentions of the author about the work, as well as the innovations 

introduced in the work; (3) Characterization of the structure of the work, to show the extent 

and distribution of the content and the works considered as reference at the time of writing; 

(4) Professional information of the author, to inform about the institutions where he carried 

out his main studies, as well as the influences that he received from other mathematicians of 

the time, to highlight the most important works published by the author and to recognize his 

link with the mathematical object of interest. 

The third level (presentation and treatment of the group isomorphism concept) considers 

the context of application of the concept by the author because it unravels its meaning and 

scope. In addition, a concept is only one element of a conceptual field that conveys its 

meaning to it, so a concept will never appear isolated, which was considered in determining 

how the concept of study was justified and applied (Schubring, 2005). The resulting 

categories were the following: (1) Definition, which are descriptions related to the 

mathematical concept group isomorphism, in which they are characterized from a theoretical 

mathematical point of view and which will depend on the context in which it was introduced: 

classical algebra, number theory, geometry or analysis; (2) Other concepts involved, which 

are the concepts underlying the group isomorphism concept and which are associated with its 

development; (3) Types of examples that the author uses to present the mathematical object 

group isomorphism; (4) Applications of the concept, to identify the importance of the group 

isomorphism concept from the problems that are solved by this, as well as to identify the 

scopes and the limitations of the definition. 

Table 2.1: Methodology for the analysis of historical mathematical works 

Levels of analysis Categories Units of analysis 

Reference card of the 

work 

Name of the author 

Date of birth and death of the author 

Title of the work 

Year, publisher and place of publication analyzed  

Location of the work 

Context and purpose 

of the work and of the 

author 

 

 

 

 

 

 

 

Contextualization of nineteenth 

century mathematics  

Historical-cultural 

moment of the 

mathematics 

Contextualization of the work 

 

 

Historical moment and 

place where the work was 

written 

General objectives of the 

work 

Innovations introduced in 

the work 
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 Characterization of the structure of the 

work 

 

Extent and distribution of 

the content 

References 

Professional information of the author Author’s education 

Other published works 

Presentation and 

treatment of the group 

isomorphism concept 

Definition 

Other concepts involved 

Types of examples 

Applications of the concept 

3 Analysis and interpretation of Jordan’s work (1870) 

With respect to the presentation of the work, the proposed levels of analysis have been 

considered in an orderly manner: reference card of the work, where the data of the analyzed 

material are established; context and purpose of the work and of the author, for which in 

addition to the information that the analyzed material has been able to provide, it has been 

necessary to consider secondary sources such as Brechenmacher (2012), Kleiner (2007), 

Lebesgue (1926), Neumann (1999), Schlimm (2008), Timmermans (2012) and, Wussing 

(1984), these sources were selected according to two criteria: (1) review of mathematics 

history books where elements of Jordan’s life and academic work where identified, and (2) 

review of articles in mathematics history that provided specific information about life, 

Jordan’s academic work, and where specific content of the Traité was discussed; and finally, 

presentation and treatment of the group isomorphism concept. The development of the 

exposition of the work is organized according to the levels of analysis and is based on the 

categories and units of analysis previously established (Table 2.1). 

Reference card of the work 

Author: Marie-Ennemond- Camille Jordan. 

Author’s date of birth and death: 1838-1922. 

Title: Traité des substitutions et des équations algébriques. 

Year, publisher and place of the edition analyzed:1870, Paris: Gauthier-Villars. 

Location of work: Library of Sciences. Mathematics. University of Zaragoza. Spain. 

Symbols: MAT-Ant 102; ZGG 404. 

Context and purpose of the work and of the author 

The French-Italian mathematician Joseph-Louis de Lagrange’s (1736-1813) work in 1770-71 

had initiated the study of permutations in connection with the study of the solving of algebraic 

equations and had influenced, in the first third of the 19th century, the work of other 

mathematicians such as the Italian Paolo Ruffini (1765-1822) and the Norwegian Niels 

Henrik Abel (1802-1829), developing elements of the theory of groups of permutations 

(Kleiner, 2007). It was the French Évariste Galois (1811-1832) who first used the term group 

and distinguished between the general principles of what is now known as Galois Theory and 

an application of this, namely the solvability of algebraic equations by radicals. Galois’ ideas 
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transmitted from his writings were not understood and assimilated by his contemporaries. The 

main works of Galois were published after his death for the first time in 1846 by Joseph 

Liouville (1809-1882), who like his French compatriots Charles Hermite (1822-1901), Victor 

Puiseux (1820-1883) and Joseph-Alfred Serret (1819-1885) studied and continued the works 

of Galois (Wussing, 1984); until they received a complete treatment by Jordan in his “Traité 

des substitutions et des equations algébriques” (Neumann, 1999). 

In the first half of the nineteenth century, the French mathematician Augustin-Louis 

Cauchy (1789-1857) also made important contributions to the development of theory of 

groups of permutations, and it is because of Cauchy that this theory has been developed 

autonomously. In this regard, Kleiner (2007) points out that “before Cauchy, permutations 

were not an object of independent study but rather a useful device for the investigation of 

solutions of polynomial equations” (p. 24). 

In France, a deep and rapid advance that revealed the wide range of the concept of 

permutation group through mathematics was achieved by establishing a connection between 

the Galois and Cauchy approaches (Wussing, 1984). The work of Serret of 1866, the third 

edition of the“Cours d’Algèbre Supérieure” and two Comments of Jordan on Galois, the first 

“Commentaire sur le Mémoire de Galois” of 1865, and its continuation “Commentaire sur 

Galois” of 1869 are examples of this interest of unification; but it would be Jordan’s work 

“Traité des substitutions et des equations algébriques”, in which the ideas of Galois and 

Cauchy were finally unified, which had a great influence on the evolution of group theory. 

Jordan published more than 30 articles on groups in the period of 1860-1880, and “the 

Treatise embodied the substance of most of Jordan’s publications on groups up to that time” 

(Kleiner, 2007, p. 25). 

Camille Jordan was born on January 5, 1838 in Lyon, France. Jordan was admitted to the 

École Polytechnique in 1855. In 1873 he was appointed examinateur at the École and 

professor of Analysis, replacing Hermite in 1876. Jordan was elected member of the 

Académie des Sciences after the death of the French Michel Chasles (1793-1880) in 1881. 

Furthermore, in 1883 he was appointed professor at the Collège de France as Liouville’s 

successor and in 1885 he assumed the position as director of the Journal de Mathématiques 

Pures et Appliquées, one of the main mathematical research journals of the time (Lebesgue, 

1926). 

Jordan’s book “Traité des substitutions et des équations algébriques” of 667 pages was  

published in 1870 by Gauthier-Villars. In the preface the author states that the main goal of 

the work is “to develop the methods of Galois and compile them into a body of doctrine, 

showing how easily they solve all the major problems of equation theory” (Jordan, 1870, p. 

VII, our translation; see note 1). In addition to mentioning the influence of Serret’s work, 

“Cours d’Algèbre supérieure”, whose study inspired Jordan to contribute to the progress of 

Algebra, he recognized the contributions of Galois, for the invention of the principles of the 

Galois theory and the Italian Enrico Betti (1823-1892), for writing an important Memoir, 

where it was established for the first time the complete series of the theorems of Galois in a 

rigorous way. Jordan also mentioned the contributions of Germans Leopold Kronecker (1823-

1891) and Abel, Hermite, and the Italian Francesco Brioschi (1824-1897) on the Galois 

groups of certain division problems of elliptic and Abelian functions, as well as the 
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investigations of the German geometers Otto Hesse (1811-1874), Alfred Clebsch (1833-

1872), and Ernst Eduard Kummer (1810-1893), the British Arthur Cayley (1821-1895), the 

Irish George Salmon (1819-1904), and the Swiss Jakob Steiner (1796-1863), who studied 

various geometrical problems to which Galois’ methods can be applied. 

The concept of substitutions group and its application not only to the theory of equations 

but in other areas of contemporary mathematics allowed Jordan to unify in his Traité the 

results of Galois, Cauchy and other mathematicians (Wussing, 1984; Kleiner, 2007). In 

general, Jordan’s Traité contains sections dedicated to the study of substitution groups, to the 

Galois theory itself and to the applications of the Galois theory to equations that arise in 

several areas of mathematics. 

Jordan’s work (1870) is not a book with pedagogical intent. In fact, as Wussing (1984) 

indicates: “it was an expression of Jordan’s deep desire to bring about a conceptual synthesis 

of the mathematics of his time. That he tried to achieve such a synthesis by relying on the 

concept of a permutation group” (p. 160). Also, Kleiner (2007) points out that “his aim was a 

survey of all of mathematics by areas in which the theory of permutation groups had been 

applied or seemed likely to be applicable” (p. 25).On the Traité of Camille Jordan one may 

consult Brechenmacher (2012). 

The Traité consists of four books, each divided into chapters. Book I deals with the main 

notions related to congruences. Book II is divided into two chapters, the first dedicated to the 

study of substitutions in general and the second to linear substitutions. Book III is made up of 

four chapters. The first presents the principles of the general theory of equations and the other 

three contain applications of the Galois theory in algebra, geometry and problems concerning 

transcendental functions. Finally, in Book IV, divided into seven chapters, Jordan determines 

the general types of equations solvable by radicals and for each of them he obtains a complete 

classification system. 

It is in Book II of Jordan’s Traité entitled “Des substitutions”, where the isomorphism 

concept can be found, and in which Jordan proves a part of the Jordan-Hölder theorem, “one 

of the fundamental theorems in the theory of groups” (Schlimm, 2008, p. 409).The first 

chapter deals with generalizations about substitutions and presents a synthesis of previous 

results from French mathematicians such as Cauchy, Serret, Joseph Bertrand (1822-1900), 

and Émile Mathieu (1835-1890). Jordan presents concepts (which had previously appeared in 

his “Commentaire sur Galois” in 1869) such as a substitution, an unit substitution, the product 

of two substitutions, a group (Jordan uses the term faisceau as a synonym for group), the 

derived group (le groupe dérivé), the order of a group, the degree of a group, the simple and 

composite groups, and alternating group. About Jordan’s work on groups, he considers them 

as groups acting on sets and uses a generator and relations approach to groups. In Jordan’s 

group definition, closure under multiplication is the sole property required. 

23. One gives the substitution name to the operation by which a number of things are 

exchanged than can be assumed to be represented by letters a, b, …. […] 

27. One says that a system of substitutions forms a group (or a bundle) if the product of 

any two of the substitutions of the system is again a member of that system. 
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The various substitutions obtained operating successively whenever we want and, in 

any order, certain substitutions given A, B, C ... obviously form a group: we will call it 

the derived group of A, B, C, ..., and we will designate it by the symbol (A, B, C, ...). 

(Jordan, 1870, pp. 21-22, our translation; see note 2) 

Jordan also proves the Lagrange theorem and the Cauchy theorem and introduces the 

isomorphism concept. In addition, he conducts an important study on transitivity and 

primitivity for substitution groups. In the second chapter of Book II, Jordan is devoted to the 

study of the properties of the General and Special linear groups. 

Presentation and treatment of the group isomorphism concept 

Jordan’s Traité is an extensive and complex work. In this paper we do not present a general 

study of Jordan’s group concept, rather, we consider a fragmented reading of the Traité, 

extracting some interesting elements about the isomorphism concept of this monumental 

work. 

In Book II: Des substitutions, in §V.- Symmétrie des fonctions rationnelles, Jordan 

addresses the problem of the number of values taken on by a function of n variables as a result 

of their permutation, that it had been the subject of previous study by the same author in his 

1860 thesis. Also, Jordan treats the concept of isomorphism. 

Jordan imported the terms holoédrique (total) and mériédrique (partial) from Auguste 

Bravais’ “Études cristallographiques” to substitution groups. “Similarly any two groups of 

operations applying to any object (movements of solid objects, substitutions of the roots of an 

equation, etc.) can transmit, in whole or in part, some of their properties” (Timmermans, 

2012, p. 45). 

Jordan used the word isomorphism to refer to what is now known as bijective 

homomorphism and surjective homomorphism, but distinguished between the two using the 

terms l’isomorphisme holoédrique and l’isomorphisme mériédrique, respectively. However, 

we must keep in mind that Jordan’s isomorphism is not seen as maps.  

67. A group  is said to be isomorphic to a group G if it is possible to establish between 

their substitutions a correspondence such that: 1° to each substitution of G there 

corresponds a unique substitution of  and to each substitution of  one or more 

substitutions of G; 2° to the product of any two substitutions of G there corresponds the 

product of their respective corresponding substitutions. 

An isomorphism is said to be meriedric if many substitutions of G correspond to the 

same substitution of  , and holoedric in the opposite case. (Jordan, 1870, p. 56, our 

translation; see note 3) 

Jordan does not present concrete examples of isomorphic groups. However, he explicitly 

shows the application of the definition of meriedric isomorphism by deducing that if a group 

has isomorphic groups of this type then it is composite (see note 4), as shown in the following 

quotation: 

Suppose, to fix the ideas, that G contains m substitutions 1,..., mg g  corresponding to the 

same substitution of group . Let  another substitution of  , g a substitution of G 
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corresponding to it: 
1

1g g will correspond to 1   , and consequently each of them 

substitutions
1 1

2 1 1, ,..., mg g g g g g g   will correspond to 1     . Each substitution of

having thus m corresponding in G, the order of will be m-fold smaller than that of G. 

Group   contains substitution I. Let
1,..., mh h be the corresponding substitutions of G: 

they form a group to which all the substitutions ofGare permutable. Because if g is one 

of these,   is its corresponding: 
1

1g h g
 has the corresponding 1I I   : therefore, it 

belongs to the sequence
1,..., mh h . 

If    , the group  1,..., mh h cannot be reduced to the only substitution I: it will be less 

than G, if we assume that is not reduced to the only substitution I; therefore G will be 

composite. Hence this conclusion: The composite groups have only meriedric 

isomorphs (not formed exclusivelyby substitution I). (Jordan, 1870, p. 56, our 

translation; see note 5) 

Jordan then poses as a problem the determination of isomorphic groups to a given G group. 

In the development, Jordan treats the problem by constructing a new group through the values 

taken by a function of n variables as a result of their permutations, which turns out to be 

transitive (see note 6) and isomorphic to G: 

68. PROBLEM. — Determine the isomorphic groups to a given group G. 

The problem is reduced to determining those groups that are transitive. […] 

69. So let’s search isomorphic groups at G and transitive. We will see that their 

determination is reduced to that of the various groups contained in G. 

Let
1, ,...x x be the letters that G exchanges between them;  1H= ,..., nh h any group 

contained in G. Substitutions of G can all be put in the form of 1, ,..., ,..., mh g g g g  

which are appropriately chosen substitutions, the first of which is reduced to unit and 

whose number m equals the proportion of the orders of G and H. 

Now let 
1F be any rational function of

1, ,...x x , invariable by substitutions H; Fs

becomes substitution s. The m functions 1F ,...,F
mg will be transformed into each other by 

any substitution of G. Indeed, the substitution h g    transforms Fg
, for example, into

Fg h g   
.Moreover g h g    , belonging to G, can be put in the form h g   and h does not 

alter the function 1F : soFg
will be transformed into F Fh g g    

 . 

Each substitution of G, performed in the functions 1F ,... , is thus equivalent to a certain 

substitution performed between these functions. The latter substitutions obviously form 

a group , isomorphic to G. This new group will be transitive, the substitutions 

1,..., mg g make it possible to transform 
1F into any of the functions 1F ,...,F

mg . 
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70. We will show reciprocally that any transitive group, isomorphic to G, is identical to 

one of those we have just formed. […] 

Our proposition is thus established. (Jordan, 1870, pp. 56-59, our translation; see note 7) 

Finally, in Jordan’s treatment of the concepts of isomorphism and isomorphic groups, 

some theorems involving them can be identified, for example, in section §XI. Groupes 

isomorphes aux groups linéaires of Book II; as well as in Book III: Des irrationnelles, in 

Chapter IV: Applications a la théorie des transcendantes in the section § III. Fonctions 

hyperelliptiques; and in Book IV: De la résolution par radicaux, in the first chapter, 

Conditions de résolubilité. Below is a theorem taken from Book III. 

THEOREM. — Any group of degree q isisomorphicnot meriedricto a group of the 

degree 22 1k  , with abelian linear substitutions, where k is the largest integer contained 

in
1

2

q 
.(Jordan, 1870, pp. 364-365, our translation; see note 8) 

4 Discussion 

Implicitly, the groups became the object of study in algebra when mathematicians like 

Lagrange and Ruffini used permutations when dealing with one of the main problems of the 

eighteenth and nineteenth century in this mathematical domain, the solvabilityof algebraic 

equations of degree higher than the fourth by radicals (Kleiner, 2007).Abelproved that it was 

impossible solving the general equation of the fifth degree by radicals and posed the 

following problems: (1) Constructing all algebraic equations of a given degree that are 

solvable by radicals. (2) Given an equation, recognizing whether it is soluble by radicals and 

make this resolution when possible (Lebesgue, 1926). 

On the other hand, the term group was usedfor the first time, without being defined, by 

Galois, who created a theory (Galois theory) considered one of the great achievements of the 

nineteenth century, and its application to the solvability of equations by radicals. After the 

publications of Galois’ writings by Liouville in 1846, the interaction between the theory of 

equations and the theory of permutations favored the emergence and consolidation of the 

concept of a permutation group (Wussing, 1984). Thus, initially, group theory was considered 

under the aspect of finite group theory of permutations. 

The independence of the theory of permutations resulted in the application of the concept 

of a permutation group outside the theory of algebraic equations, for example, in geometry, 

analysis, number theory, and mechanics in the works of mathematicians such as Jordan, 

Serret and Hermite,  just to mention a few (Wussing, 1984).In fact, Schlimm (2008) points 

out that with the publication of Jordan (1870), “the theory of substitution groups was 

established as an independent tool for the study of algebraic equations” (p. 410). 

Jordan (1870) explicitly introduced the concepts of isomorphism holoédrique (total) and 

mériédrique (partial), terms which he imported from crystallography, particularly from Études 

de Auguste Bravais, to his “Traité des substitutions et des equations algébriques” in the 

context of substitution groups. The distinction between meriedric and holoedric isomorphism 

presented by Jordan proves that isomorphism was not always bijective (holoedric). In his 
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Traité, Jordan uses the term similitude (similarity) to refer to the properties of isomorphic 

groups identiques (identical), which he acknowledges as a utility of isomorphism. The 

approach to the definition of Jordan’s meriedric isomorphism in 1870 suggests the possibility 

of a correspondence or transmission of some properties from one group to another. 

Two groups are isomorphic (similar), if it is possible to establish a biunivocal 

correspondence among their elements in such a way that the product of the corresponds is 

equal to the corresponding product; that is, the operation is preserved. The correspondence 

Jordan refers to is what is called today group isomorphism. 

On the other hand, the usefulness of the notion of isomorphism of substitution groups, 

according to Jordan (1870), concerns “the similarity of properties that isomorphic groups 

present between each other. […] therefore in many cases replace the direct consideration of a 

group by that of any of its isomorphs” (p. 60). Today, the importance of isomorphism is 

difficult for students to recognize; for example, Lajoie (2000) showed that the ideas, images 

and conceptions that students assign to group isomorphism do not allow them to understand 

the importance of this concept in mathematics. Students tend to refer to isomorphic groups 

with expressions such as similar or equivalent, and in practice, to determine whether two 

groups are isomorphic, students tend to rely on the literal interpretation of these words, so 

they try to find similarities between the operations or elements of the groups. 

Finally, an important idea for the design of tasks has been extracted from the analysis of 

the work; this idea includes asking the students to construct a group of permutations 

isomorphic to a given group G. 

Acknowledgments: We thank Jesús Romero Valencia for helpful discussions. 

NOTES 

1 de développer les méthodes de Galois et de les constituer en corps de doctrine, en montrant avec quelle facilité 

elles permettent de résoudre tous les principaux problèmes de la théorie des équations. (Jordan, 1870, p. VII) 

2 23. On donne le nom de substitution à l’opération par laquelle on intervertit un certain nombre de choses que 

l’on peut supposer représentées par des lettres a, b, …. […] 

27. On dira qu’un système de substitutions forme un groupe (ou un faisceau) si le produit de deux substitutions 

quelconques du système appartient lui-même au système. 

Les diverses substitutions obtenues en opérant successivement tant qu’on voudra et dans un ordre quelconque 

certaines substitutions données A, B, C,… forment évidemment un groupe : nous l’appellerons le groupe dérivé 

de A, B, C,…, et nous le désignerons par le symbole (A, B, C,…). (Jordan, 1870, pp. 21-22) 

3 67. Un groupe   est dit isomorphe à un autre groupeG, si l’on peut établir entre leurs substitutions une 

correspondance telle : 1° que chaque substitution de G corresponde à une seule substitution de , et chaque 

substitution de   à une ou plusieurs substitutions deG ; 2° que le produit de deux substitutions quelconques de 

G corresponde au produit de leurs correspondantes respectives. 

L’isomorphisme sera dit mériédrique, si plusieurs substitutions de G correspondent à une même substitution de

 , holoédrique dans le cas contraire. (Jordan, 1870, p. 56) 

4 Jordan (1870) points out that: “un groupe G est simple, s’il ne contient aucun autre groupe auquel ses 

substitutions soient permutables, composé dans le cas contraire” (p. 41). 

5 Supposons, pour fixer les idées, que G contienne m substitutions 
1,..., mg g  correspondantes à une même 

substitution   du groupe . Soient    une autre substitution quelconque de , g une substitution de G qui 
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lui corresponde : 
1

1g g   correspondra à 1   , et par suite chacune des m substitutions 

1 1

2 1 1, ,..., mg g g g g g g    correspondra à 1     . Chaque substitution de   ayant ainsi m 

correspondantes dans G, l’ordre de   sera m fois moindre que celui de G. 

Le groupe   contient la substitution I. Soient 
1,..., mh h  les substitutions correspondantes de G : elles forment 

un groupe auquel toutes les substitutions de G sont permutables. Car soient g l’une de ces dernières,   sa 

correspondante : 
1

1g h g
 a pour correspondante 1I I   : elle appartient donc à la suite 

1,..., mh h . 

Si    , le groupe  1,..., mh h  ne peut se réduire à la seule substitution I : il sera d’ailleurs moindre que G, si 

l’on suppose que   ne se réduise pas à la seule substitution I ; donc G sera composé. D’où cette conclusion : 

Les groupes composés ont seuls des isomorphes mériédriques (non exclusivement formés de la substitution I). 

(Jordan, 1870, p. 56) 

6 According to Jordan (1870),“un groupe est transitif lorsque, en opérant successivement toutes ses substitutions, 

on parvient à faire passer une des lettres à la place de l’une quelconque des autres; plus généralement, il sera n 

fois transitif si ses substitutions permettent d’amener simultanément n lettres données a, b, c, ... aux places 

primitivement occupées par n autres lettres quelconques a', b', c', …” (p. 29). 
7 68. PROBLÈME. — Déterminer les groupes isomorphes à un groupe donné G. 

Le problème se réduit à déterminer ceux de ces groupes qui sont transitifs. […] 

69. Cherchons donc les groupes isomorphes à G et transitifs. Nous allons voir que leur détermination se ramène 

à celle des divers groupes contenus dans G. 

Soient en effet 
1, ,...x x  les lettres que G permute entre elles ;  1H= ,..., nh h  un groupe quelconque contenu 

dans G. Les substitutions de G peuvent toutes être mises sous la forme 1, ,..., ,..., mh g g g g    étant des 

substitutions convenablement choisies, dont la première se réduit à l’unité et dont le nombre m est égal au 

rapport des ordres de G et de H. 

Soient maintenant 
1F  une fonction rationnelle quelconque de

1, ,...x x , invariable par les substitutions H ; Fs
 

ce qu’elle devient par la substitution s. Les m fonctions 1F ,...,F
mg  seront transformées les unes dans les autres 

par toute substitution de G. En effet, la substitution h g    transforme Fg
, par exemple, en Fg h g   

. D’ailleurs

g h g    , appartenant à G, peut être mise sous la forme h g    et h  n’altère pas la fonction 
1F  : donc Fg

 

sera transformée en F Fh g g    
 . 

Chaque substitution de G, effectuée dans les fonctions 
1F ,... , équivaut ainsi à une certaine substitution effectuée 

entre ces fonctions. Ces dernières substitutions forment évidemment un groupe , isomorphe à G. Ce nouveau 

groupe sera transitif, les substitutions 
1,..., mg g  permettant de transformer 

1F  en l’une quelconque des 

fonctions 1F ,...,F
mg . 

70. Nous allons montrer réciproquement que tout groupe transitif, isomorphe à G, est identique à l’un de ceux 

que nous venons de former. […] 

Notre proposition se trouve ainsi établie. (Jordan, 1870, pp. 56-59) 

8 THÉORÈME. — Un groupe quelconque de degré q est isomorphe sans mériédrie à un groupe de degré 

22 1k  , à substitutions linéaires abéliennes, k étant le plus grand entier contenu dans 
1

2

q 
.(Jordan, 1870, pp. 

364-365) 
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ABSTRACT 

This chapter presents the summary of a talk given at the Eighth European Summer University, held in Oslo 

in 2018. It attempts to show how art, literature, and history, can paint images of mathematics that are not 

only useful but relevant to learners as they can support their personal development as well as their 

appreciation of mathematics as a discipline. To achieve this goal, several metaphors about and of 

mathematics are explored.  

1 Every story is a journey 

This chapter is based on the talk given in Oslo in 2018, and as such it cannot and will not 

attempt to cover all that was said and not said. During questions after the talk also, much 

was discussed which would be unfair to summarise here, and so that will not be 

attempted.What is presented here is therefore a summary of what was said and at the same 

time a new piece of work. The aim of the chapter is to paint a picture of how history of 

mathematics can support learning in a personal way, and in the time in which it is 

becoming increasingly unclear what visions of the future we share – in Europe as well as 

the US.  

The story that follows is that of a personal journey that I have shared with my students 

and colleagues, and the ways I used metaphors in mathematics education.  

So let me begin. It was an honour to be invited to give the lecture on which this chapter 

is based, and it came at an important time for me personally. I had been, until the summer 

of 2018, in mathematics education for more than twenty years in various roles from 

working as a teacher, to being a teacher instructor and educator. Towards the end of that 

period, and leading up to this lecture, I have moved from teaching secondary to primary 

teachers. I also knew at the time that this period itself was coming to an end as I was 

looking to move to another position teaching students in STEM professions, and further 

away from educating teachers for reasons that will become imminently clear further 

bellow. This was therefore, a period in which my sense of purpose and the role(s) I had in 

mathematics education was moving from educating teachers to a wider educationalremit 

of using mathematics both as an applied discipline and, more importantly for me, as a tool 

by which my students can learn to think about and solve greater problems of their lives.  

This was, therefore, an opportunityfor me to summarise a couple of decades’ long 

experience and through some examples of my research show lessons that the history of 

mathematics can teach. To be able to do this in a relatively short time, and manifest the 

ways in whichmathematics history can help, support, and enhance learners’ experience of 

mathematics education, requires a little bit of an art. Theart in question was therefore 

decided to rely on an underlying structure of a kind, and the use of some tools. I decided 
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to paint some images of mathematics through metaphors that can be used for learning, and 

that I used in my work with teachers. Let us then, begin our journey of exploring such 

images.  

1.1 Wise women and men (or paying the homage to mathematics and 

mathematicians) 

A couple of years ago I did some experiments with my colleagues mathematicians: I asked 

a room fool of them to raise a hand if they were a mathematician. This may sound slightly 

illogical, but there was a preceding discussion to this experiment that made me realisethat 

some mathematicians don’t consider themselves to be mathematicians. The answer to my 

question was intriguing – only three people out of about seventy admitted to being so. 

From this came a little research project (Lawrence, 2016) that showed the disparity of the 

views of mathematicians from within and without the profession. While pursuing the 

project, it became apparent to me that, as groups of professionals go, this one has been an 

incredibly nice one to do a research on. Nice in this case I use to mean unpresumptuous 

and unassuming, rather than, for example, superior, or rather I found almost no one in this 

group having images of themselves of being superior in any way.  

It turned out that the status of mathematician was so highly rated by the group, that this 

was only bestowed by individuals from the group on those who changed the field in a 

major way or had a calling of a professor. To aim high, and to maintain such a discipline 

(however within the discipline) was I thought quite nice. It did not give much favours to 

the profession or the view of it from the outside, but it showed true humility.This paper is 

therefore, an homage to all those who do mathematics professionally, and are oriented 

towards education, pedagogy, and history, and are not even boasting that they do make a 

huge difference in the world.How? Let’s hope what follows may explain that. 

1.2 Desert of mathematical education landscape – where has the sea gone? 

In 2004, a national enquiry about took place in England and Wales (Smith, 2004) that 

would have major consequences for mathematics education in this country. A 

question was posed to young people from around the country on what words describe 

their experience of mathematics education best. The two most commonly used words 

were ‘boring’ and ‘irrelevant’ (Lawrence & Ransom, 2011). Following this enquiry, 

the problem being identified, huge efforts have been made by successive UK 

governments to ensure this is rectified. Finally, from 2014, a large number of further 

studies, enquiries, and projects, led to a unified solution: to introduce Mathematics 

Mastery in state schools, therefore learning from the Chinese mathematics education 

experiences and successes (Mathematics Mastery). 

To use a little metaphor, overnight the mathematics educational landscape became an 

unknown territory for hundreds of thousands of teachers entering the profession. The new 

system had no, or very little, history or familiarity with the existing. History of Chinese 

mathematics and history of its mathematics education is unfortunately, not a well-known 

field among mathematics teachers and educators in England. But there was a help at hand 

– a nation-wide network of consultancies and projects started to be funded by the 

government to introduce the system, a process still on-going across the country. 

Notwithstanding pluses and minuses of this novel system, it is worthwhile mentioning that 

schools must buy into and subscribe to it at a considerable expense (Benson, 2016; 2018).  
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In this context, it became even more important than before to remind how history can, 

apart from all other aspects of its benefits to mathematics education (Barbin et al., 2015), 

give teachers and learners opportunities to find their authentic pathways for learning and 

development. 

The following chapter therefore is meant as a metaphorical travelogue from my last 

couple of years as a teacher educator in this new landscape of mathematics education. 

1.3 Metaphors and their role in the world of education 

The role of a metaphor has long been recognised in mathematics education (Latterell 

& Wilson, 2017; Bishop, 2012; Erdogan et al., 2014; Gibson, 1994; Presmeg, 

1997).To present the types and uses of such metaphors, I will first begin with a 

metaphor about the pillars of wisdom – something I picked when researching the 

history of geometry in England in the early modern period (Lawrence, 2002). In this 

tradition, there is a reference to Euclid, for example, and the two pillars of wisdom are 

mentioned as means through which geometrical knowledge was transferred during 

and beyond the great flood as described in the Bible (Lawrence, 2002). 

 

Figure 1.1: Two wise pillars of Novum Organum (1645, 2
nd

 edition), London, Francis 

Bacon 
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But we can also think of twopillars of wisdom as central symbols of Francis Bacon’s 

(1561-1626) Novum Organum (1620) which were about finding the essence of a thing’. 

This, Bacon suggested, is done by the use of inductive reasoning, which is illustrated by 

the two mythical pillars of Hercules that stand at the either side of the Straight of 

Gibraltar, and should be smashed through to open up possibilities to explore new world of 

exploration. 

What relevance is there of a metaphor of the ‘pillars of wisdom’ to mathematics 

education? I will explore thismetaphor and use it so we can see how a construction of an 

edifice that mathematics education can be seen as,could withstand the destructive forces 

(whatever these may be) and could even be erected in our newly developed metaphorical 

desert. 

2 Solving or resolving: a dichotomy of the current system in 

mathematics education 

In the introduction I mentioned why the history of mathematics is becoming increasingly, 

in my opinion, more important to mathematics education in the UK. Here I want to 

identify and name what I believe is going on currently: the moving of the focus from 

something that teachers have free access to (known sources and resources of mathematics 

and mathematical cultures) to something that can be done only via an agent (sometimes 

the state assuming this role) and through controlled exchanges and publishing projects, is 

a de facto process of de-contextualising mathematics education. But how is this 

detrimental to the outcomes of mathematics education? The question can indeed be 

discussed for much longer than I intend and am able to here, but we will concentrate on 

one simple focal point: by de-contextualising mathematics a whole field of appreciation of 

the discipline, its history, methods, and traditions are lost.  

Let us look now at two divergent but perhaps equally important aims of education in 

any discipline: proficiency and skill on the one hand, and the appreciation of the discipline 

in question on the other.  

At this point it is important to make clear that, in my opinion, appreciation of a 

discipline could not be the sole purpose of education in general, and mathematics 

education in particular; here I agree with Paul Sally (Sally, 2008). And equally, the other 

‘pillar of wisdom’ of the discipline, the teaching of appreciation, cannot be replaced by a 

process which leads to acquisition of skills and utility only. Arguments have been made 

around this question for centuries: let us then through them examine whether we can say 

that two aims, skill and appreciation, are equally important in mathematics education. In 

other words, can we use the metaphor of two ‘pillars of wisdom’ for mathematics 

education in this way? 

2.1 Arguments for appreciation of mathematics in education 

Dewey’s argument for appreciation is this: aesthetic experiences are ones that promote 

growth of an individual, and this goal must be central to the conception of the goals of 

education (Dewey, 1934). Wilson’s example is similarly related to the creation of 

community of individuals, the cornerstone of any peaceful and successful society: he 

points that the universally shared aesthetic preferences contribute to building of such 

societies (Wilson, 1998). Žižek sheds some further light on thisparticular aspect (building 
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of society) from a political and ideological stance of a philosopher: and says that there is 

no movement without a poet (Žižek, 2001). This is, Žižek says, because poetry ‘continues 

to give us artistic pleasure long after its historical context disappeared; this universal 

appeal is based in its very ideological function of enabling us to abstract from our concrete 

ideological-political constellation by way of taking refuge in the “universal” 

content’(Žižek, 2001: 2). So these are views that relate in general to the importance of 

aesthetics in societies. 

We can further analyse and see how this can actually work in educational practice. Le 

Lionnais, for example, gives us a classification scheme of facts and methods and points us 

to another vantage point from which we can see mathematics education.Facts can be seen 

as artefacts, methods as proofs or techniques, and our choice of study is based on 

subjectivity of aesthetic experience (Le Lionnais, 1948).  

If we think of how important it is that our pupils become individuals who can think for 

themselves too, Pinker and Dissanayake’s argument can be useful. It goes to tell us of the 

consequential dimension of human behaviour, the way in which ‘‘making special’’ or 

‘‘registering enabling acts’’ forms the basis for aesthetic sensibility as a necessary tool in 

education (Pinker, 1997; Dissanayake, 1992). 

2.2 Aesthetics and elitism 

For a book relating to mathematics education though, Poincaré’s view must certainly be 

somewhere there at the top of the important views. It is quite well known that he promoted 

the view that the aesthetic dimension of mathematics is the defining characteristic of 

mathematics, and not the logical. This was met with the charges of elitism as most learners 

will not have the opportunity to do (real) mathematics, whilst others will not be capable of 

experiencing the aesthetics of it as they may not know enough of it (Papert, 1978). But 

does this charge mean that we may not try? And not try to teach the teachers how to find 

such aesthetic dimension in mathematics either?  

2.3 Value of aesthetics in mathematics education 

To go back in history, I found a couple of views which were interesting. Alexander 

Baumgarten (Baumgarten, 1735) emphasised aesthetics as the experience of art, and this 

subsequently as a means of knowing. In the same vein, Ehrenfels (Ehrenfels, 1897) 

explored the meaning of value in education. Value, he said, is attributed to something, 

contingent through desiring it: “We desire things not because we comprehend some 

ineffable quality ‘value’ in them but we ascribe value to them because we desire them” 

(Ehrenfels, 1897, p. 44). Certainly this type of thinking has made consumer society 

flourish. But let us stick to mathematics education: there are many papers and books that 

have been written on this, too numerous to mention, bar the ones given to begin 

investigating such claims (Sinclair, 2008; Betts, 2003). 

The aesthetics is generally then accepted as an important aspect of social life, and of 

educational experience. How can then mathematics education flourish and inspire if it is 

stripped of such experience and searching for it in various examples rich in different 

contexts, some of which would surely be historical?  
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3 Metaphors about mathematics 

In this section I will first look at some examples of metaphors that can be used in 

mathematics education.  

There are a few metaphors which are often used for mathematics. An example is 

‘mathematics is a universal language’. Like all metaphors, this is partly true, depending on 

the possible interpretation. The quote is a take on the original by Galileo: 

This book (i.e. the universe) is written in the mathematical language, and the 

symbols are triangles, circles and other geometrical figures, without whose help it is 

impossible to comprehend a single word of it; without which one wanders in vain 

through a dark labyrinth…(Galileo, 1623, p. 178). 

Then there are other famous metaphors about mathematics: ‘mathematics is a universal 

language’ is about what mathematics is or can be. ‘Structures are the weapons of the 

mathematician’ is a metaphor also often used that tells us about how that is possible, a 

famous quote by Bourbaki (Bourbaki, unknown date). Luckily we have a particular 

example of this ‘weapon’ in Euclid: “Reductio ad absurdum, which Euclid loved so much, 

is one of a mathematician’s finest weapons. It is a far finer gambit than any chess play: a 

chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers 

the game” (Hardy, 1941, p. 12). In the same book, Hardy of course offers a few more 

metaphors – but perhaps in our context of mathematics and aesthetics, it is most pertinent 

to mention his view that “mathematician’s patterns, like the painter’s or the poet’s must be 

beautiful; the ideas, like the colours or the words must fit together in a harmonious way. 

Beauty is the first test: there is no permanent place in this world for ugly mathematics” 

(Hardy, 1941, p. 84). 

In a very short space, we have therefore seen three metaphors: about what mathematics 

can be described as being, about what tools it has, and about how mathematicians act and 

use mathematical tools. 

3.1 Grounding metaphors  

The three previous metaphors about mathematics require some experience and knowledge 

of what mathematics is like, but are in effect not too complex. They provide the ground 

upon which mathematics can be further explored through the study of metaphors related to 

its pursuit and history. Let me however give an example of a complex metaphor – one 

which can only be understood by having some knowledge of mathematics (in this case 

geometry).  

3.2 A hope from Flatland 

The value of such a complex metaphor is that it can provide a basis upon which to explore 

the mathematical content in education. An example that I have often used in work with 

teachers was that of Flatland (Abbott, 1880; Lawrence, 2015). This mathematical novella 

uses mathematics to provide opportunity to consider other aspects of life of an individual 

and society: “I exist in the hope that these memoirs… may find their way to the minds of 

humanity in Some Dimensions, and may stir up a race of rebels who shall refuse to be 

confined to limited Dimensionality” (Abbott, 1884, p. 3). 

Now this is a complex metaphor – to understand and appreciate Abbot’s text, both an 

understanding and knowledge of context and history are needed, as well as the 
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understanding of some mathematical ideas (Lawrence, 2015). In fact Abbott used 

mathematics here to give a message about society and equality. 

 

Figure 3.1: Front page of Flatland, 1884, a novel by Abbott. Abbott is a good example of 

complex metaphor using mathematics to promote a message about equality between 

people.  

Such metaphors are complex to recognise, deconstruct, and use in mathematics 

education. They are a good pathway to introduce the learning the mathematics and its 

history which are needed in order to understand the meaning of the text. This in turn offers 

opportunities not only for the learning of our discipline, but for examining and considering 

the values of societies of which we are part.  

These are then the types of metaphors that I have used and developed in my work with 

teachers in the past decade. Whilst I have here explained what kinds of metaphors can be 

used, I will now explore two of my projects to show how that can be done. 

4 Mathematics is a space 

One of my projects was about searching for an aesthetically based experience based on a 

historical piece of art, which would lead students towards learning some new 
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mathematics. The aim of this particular approach was to take my students away from an 

increasing pressure of (often and increasingly, state-) prescribed approaches and the 

utilitarian view of mathematics, and to remind them of our ‘second pillar of wisdom’, 

where they would explore how to teach appreciation of beauty contained in mathematics, 

and how to attempt to facilitate such experience in aprocess of learning mathematics.  

I have describedmy project on Euclid already in other publications (Lawrence, 2016a; 

Lawrence 2018), so will not go into details about this project, but will need to describe 

what has been the new lawyer to this existing base.  

4.1 Nature of mathematical space 

The image on which my Euclid project was based was Raphael’s The School of 

Athens, a fresco in the Vatican, painted between 1509-1511. The image portrays most 

famous scholars from the Greek tradition: Aristotle and Plato walk together and are 

surrounded by some of the finest minds of their civilisation, finding themselves in an 

imaginary space in which they discuss their work.  

 

Figure 4.1: Rafael’s The Academy of Athens, Vatican, 1509 - 1511 

In this painting, I first concentrated (Lawrence, 2018) on the figure of Euclid, and his 

demonstration of a theorem on a little black-board. From there, the journey began to find 

which theorem exactly was being demonstrated. This led to consider mathematics from 

the Euclid’s Elements and the late antiquity contributions by pseudo-Euclid, believed to be 

mathematicians from late antiquity, Hypiscles and Isidore of Miletus (Lawrence, 2018). 

The journey further continued by the examination of Proclus’ claim that the Elements may 

have been writtenin order to present all mathematics one would need to understand regular 

polyhedra: 
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Euclid belonged to the persuasion of Plato and was at home in this philosophy; and 

this is why he thought the goal of the Elements as a whole to be the construction of 

the so-called Platonic figures (Proclus, p. 57; Rosán, 1949: pp. 11-35; Sanders, 

1990). 

Although that was refuted by Heath, (Heath, 1956: I, p.2) it is an interesting and 

possibly truthful view, and one that is important in the contact of the discovery and re-

discovery of semi-regular polyedra in Antiquity and then during the Italian and European 

Renaissance (Field, 1997).  

In this, probably best described as the second leg of the research journey, we worked on 

Platonic and Archimedean solids and conversed about artists and mathematicians such as 

Piero della Francesca, Dürer, Luca Pacioli, Barbaro, and later Kepler. An exciting result 

was to realise that the rhombicuboctahedron, the translucent object subtended from the 

ceiling behind Pacioli, painted (c. 1500) by de’Barbari (c. 1460-1516) was actually for the 

first time visualised, ordrawn and recorded, in this image. This is interesting as there have 

been some charges of plagiarism, by Pacioli, of Piero della Francesca (Stakhov, 2009). 

The proof that this may not quite be so was to be found (not in the pudding this time, but) 

in this painting of Pacioli. The project ended up by considering mathematical knowledge 

needed for such a painting to be made, and the importance of the supremacy of invention 

in mathematics. This in turn is an important aspect of both the history of mathematics and 

the understanding of the concept of originality in mathematics, and how these can be 

explored in education.  

 

Figure 4.2: Luca Pacioli, portrait of the famous mathematician by Jacopo de’Barbari, 

1500. 

One can take a view that the nature of mathematical space is such that it has to be 

described and constructed in some way. A step towards that would be to be able to 

construct regular and semi-regular three-dimensional solids which can populate such a 
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space (Sanders, 1990). And that is where the lesson of that particular project, designed for 

secondary (therefore specialist) mathematics teachers rested. So what could possibly be 

done further with the primary teachers? 

4.2 Euclid and his friends  

Whilst I could go into the details of mathematics contained in the original image (Euclid’s 

diagram on Rafael’s painting) and subsequent research with specialist mathematics 

teachers, the primary mathematics teachers in training could not access that mathematical 

content due to their lack of pre-entrance qualifications in mathematics. The majority of my 

work with them was therefore to a) enable them in their functional skills in mathematics 

and b) venture with them into the world of mathematics history to offer views of 

mathematics that would draw them into further study. In this way, I hope, they would be 

able to build their own subject-knowledge in years to come. The focus therefore changed 

slightly. Whilst with the secondary teachers my focus was on the history of mathematics, 

by the way of investigating mathematical examples, with the primary teachers my focus 

was shifted onto the method by which they could learn some mathematics through 

historical research.  

The work therefore focused on re-creating the journey I had undertaken in previous 

couple of years with secondary teachers as if creating a travelogue for the primary school 

teachers. Avoiding mathematical detail, there was much left from the research that could 

still be explored. The emphasis turned from understanding mathematics to understanding 

the relationships between those who create mathematics, whether they are contemporaries 

or somehow grouped by their interest or their ‘pursuit of truth’ through mathematics.  

An interesting outcome was the exploration of other sources as a consequence. One 

student mentioned at some point that Pacioli, Rafael, Dürer, could be put in a 

friendship‘group’. There ensued my re-reading of the Euclid and His Modern Rivals with 

the students of this ‘year group’, which then made a connection between literature (easily 

accessed by primary school teachers) and mathematics. I of course refer to the author of 

both Euclid and His Modern Rivals, as well as novels Alice in Wonderland, and Alice 

Through the Looking-Glass, Charles Dodgson (1832-1898). From here on we could 

explore many aspects of correspondence between mathematics, logic, and literature. We 

followedsome of Dodgson’s dialogues that are topical in the current global rise of fake 

news, and imagined where and when we could produce arguments such as these:  

“Alice laughed: ‘There's no use trying,” she said; “one can't believe impossible 

things.’  

‘I dare say you haven't had much practice,’ said the Queen. ‘When I was younger, I 

always did it for half an hour a day. Why, sometimes I've believed as many as six 

impossible things before breakfast’” (Dodgson, 1871: 24). 

And so Euclid was able to again take us from 300BC to 2018AD, and from finding 

solutions to mathematical problems to those of contemporary every-day life. What new 

lessons could we find in Euclid’s Elements, and how can the history of mathematics 

support general goals of education? I will come back to this point in the conclusion.  

4. 3 How is mathematics ‘space’? 

As metaphors go, ‘mathematics is a space’ is not perhaps the most ‘catchy’ one. But 
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notwithstanding its lack of appeal at first sight, let us now examine what it refers to. 

When I used that metaphor with my students towards the end of the work with them 

in both cases when the project run (with secondary and then primary teachers) I was 

referring to mathematics that transcended cultures, eras, and personal connections and 

that had made possible the creation of a universal space. This space, which may well 

be imagined as The Academy of Athens, is where ideas can be exchanged, tested, and 

discussed, just as in the Rafael’s painting.  

Against this backdrop we may look at some images of modern Academies in the UK. If 

you conduct search on the Internet for such images (one local to me, Thomas Clarkson 

Academy for example), you will see fantastic new architecture being made to house the 

new state-private enterprises that schools are becoming, which are changing not only the 

landscape of school architecture, but the landscape of educational values too. Within that 

landscape however, there is not much change in terms of providing ‘space’ for children, 

teachers, their supporters – sponsors and business partners of such academies, and parents, 

to discuss mathematics, challenge each others’ views, or simply try to agree on their aims 

of education.  

Mathematics education, I propose, and ideas that are contained within mathematics, 

require space, and offer space, to do just that: discuss, challenge, find common ground. 

But not, it seems, just now (West and Wolfe, 2018).  

My final thought on that for this chapter is that the metaphor is a valuable tool for all 

involved in mathematics education. Mathematics is a Space as a metaphor points to an 

ideal space where people from different times and backgrounds can test validity of their 

ideas, so that they are empowered as well as educated, to make their own decisions based 

on facts and consensus. 

5 Mathematics is an ocean 

The metaphor of mathematics as an ocean is linked to a project I did some years ago with 

the students working on the Shakespeare’s Tempest, as part of the cross-curricular project 

in the schools in South-West of England. The aim of the project was to enable students, 

teachers in training, to build framework of cross-curricular explorations, look beyond the 

curriculum, and design activities that would inspire their pupils of middle-school 

age(years nine to twelve). The original hurdle was to find how to connect Tempest with 

mathematics. Tempest is a story about how a disposed duke, with his daughter, finds 

himself in a tempest (tempest itself here being a metaphor for both a real-life event and a 

political turmoil) but manages to return to his rightful place through dialogue, forgiveness, 

and some magic (Shakespeare, 1611).   
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Figure 5.1: Prospero disarming Ferdinant, an illustration of the scene from the Tempest, 

Shakespeare’s play with same name. Henry W. Banbury and Francesco Bartolozzi, 1793, 

London. 

5.1 Dee’s one book for which he is most famous 

The problem of how to connect such a story with mathematics for the middle school 

children and their teachers was luckily short lived. It transpired that John Dee (1527-1608) 

was most probably the inspiration for the central character of the play, Prospero (Grant 

1976, Lawrence, 2011). Dee was a mathematician, astronomer, philosopher, and advisor 

and code maker for Queen Elizabeth I. Most famous for his introduction to the first 

English-language translation of Euclid’s Elements by Henry Billingsley (d. 1606), Dee’s 

most famous work is his Mathematical Preface. This preface is a treasure-trove to discuss, 

with mathematics teachers and students alike, a classification of mathematical sciences, 

including some ‘jabberwocky’ disciplines such as ‘traumaturgike’ (Lawrence, 2011). 

Discussions about views of whether such disciplines belong to contemporary mathematics 

can shine a light on the understanding of what constitutes mathematics, and its importance 

for a society as well as individual. 

Dee spent six years journeying Eastern Europe, visiting Poland, and Bohemia, and 

staying in Prague for some years. He was not only an avid traveller but also had a special 

interest in scientific exploration of the New World. He gave instruction and advice to 

pilots and navigators of the English travellers conducting exploratory voyages to North 

America, and even conjured angels to help them on their voyage. The angels also 

suggested to Dee to name the new colony ‘Atlantis’, which, as we know, was not to be. 
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During his travel to Poland in 1583 however, his library was ransacked, with most 

books and objects stolen, never to be found in one place again. 

5.2 Bibliotheca Mortlacensis 

It is known that Dee had amassed a large library of books, manuscripts and curious 

objects. We know this as he compiled the inventory of this collection of about 3000 

items before he set on his journey, and listed books on mathematics, mechanics, 

astronomy, optics, military and naval sciences, philosophy and magic. Among these 

books was a copy of Apollonius of Perga’s (late 3
rd

 – early 2
nd

 centuries BC) Conics 

(Apollonij, 1537).  

This book had an interesting page written in Dee’s hand facing the title-page: it was 

Dee’s attempt at classifying the mathematical sciences, a sketch that would serve as a 

basis for his later diagram in Mathematical Preface, his Ground plat.   

5.3 To survive a tempest 

This book survived the destruction of Dee’s library (at the time of writing it is on sale 

with a New York antiquary for half a million US dollars). Strangely enough, Dee had 

a premonition that his library will be destroyed and wrote about this in his diary: 

I dremed that I was dead, and after my bowels were taken out I walked and talked 

with diverse, and among other the Lord Thresorer who was come to my house to 

burn my bokes… (Dee, 1582, as reported by Sherman, 1995, p. 51). 

When talking about the burning of his books, Dee’s dream, and ransacking of his 

library, a reality that was to befall him (and by all accounts contribute to his demise), is a 

point to note in its own right. The ‘burning of the books’ as a metaphor in dangerous times 

may turn into action. Dee was aware of this possibility - and we would do well to also 

remember and teach this - the power of knowledge contained in such books and the desire 

to destroy it by those who fear knowledge is an archetypal energy and event that is 

repeated throughout history.  

There is of course a happy ending for the mentioned copy of Apollonius’ Conics. The 

book was bought by John Winthrop the Younger, in the year when he was to leave for 

America to join his father, the first governor of the Massachusetts Bay Colony, in 1631. 

Through Winthrop Jr., Dee’s work spread to Puritan New England (Woodward, 2011; 

Calis, et al. 2018), and hence some of Dee’s library survived the tempest of his life and 

was passed on to the new land of which he cared so much and which he wished to call 

Atlantis.  

5.4 How is mathematics an ocean? 

History teaches us not only of the successes, but also of lost and burnt libraries and books, 

of suffering and tempests. But mathematics survives such events, and knowing of such 

historical instances can give us not only hope but structure. Like in Shakespeare’s story 

about tempest, it is good to know that keeping a clear mind can get us out of a big trouble. 

In mathematics education, teaching how to do that is a valuable lesson. 

6 Conclusion 

To complete my chapter, I chose to mention finally our pillars of wisdom again. In this 
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case though, I want to mention my namesake’s famous Seven Pillars of Wisdom 

Lawrence, 1935). For anyone who has read this book, the first question that comes after 

reading close to some seven hundred pages, must surely be: where are these seven pillars 

to be found? There really are no pillars to speak of that are explicitly mentioned in 

Lawrence’s book.  

Could we really describe the pillars of wisdom that mathematics is (using a metaphor), 

and for that matter what is then mathematics education? I would suggest that we could 

certainly try, and by using metaphors, history, art, and literature, we can attempt to paint a 

picture of mathematics that is enchanting, inspiring, and gives hope to our young people. 

It also offers some concrete instructions, through mathematical history as well as through 

learning how to solve mathematical problems, on how to use mathematical thinking and 

make it a safe place, even a harbour in the troubled, even tempestuous times. Such 

education gives examples and practices the mind on how to conduct a conversation in a 

mathematical and logical space that the peoples of our era share with many who have 

explored similar ideas before us. We can paint the pictures of mathematics as a space to 

think and live in, and through which one can communicate and make friendships.  

One of the threads that connect these metaphors that I did not have the time to go into 

detail here but had discussed in my talk in Oslo, is also one that is about the overarching 

purpose of education, and of mathematics. Love of a discipline, of learning, and of truth: 

I loved you, so I drew these tides of men into my hands 

And wrote my will across the sky in stars 

To earn you Freedom, the seven-pillaried worthy house, 

That your eyes might be shining for me… (Lawrence, 1935: dedication). 
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ABSTRACT 

After the French Italian wars, military architects tried to reply to the power of cannons by creating new 

shapes taking into account the straight lines of cannonballs trajectories: the bastions. Different models were 

invented by a variety of authors, but none of them gave real reasons for their constructions. The first 

mathematical proofs were given by Jean Errard de Bar-le-Duc, a military engineer of King Henry IV of 

France. His works were well received in the Low Countries, where they inspired a new Dutch “manner of 

fortification” (i.e. shapes with algorithms of construction). Among the authors linked to the Leiden school of 

engineers, Samuel Marolois was the first to explain the use of trigonometry to compute the distances and 

prove the shapes to be fitted for defense. This paper compares different manners of constructing bastions and 

different uses of geometry to be found in the original texts. 

1 A short history of “modern fortification” 

Fortification is a matter of geometry, as anyone would agree considering the star shaped 

forts, citadels or cities enclosures that are still visible around the world including Norway, 

with the famous Akershus fortress in Oslo. All of them are visible from the sky through 

Google Earth or other satellite imagery services
1
. The reasons for that geometric choice 

must be sought in the history of war technologies, as it is a response to the progress of 

artillery in the 15
th

 century. Let’s give the floor on this subject to a Dutch writer of the 

golden age, Matthias Dögen, whose Architecture militaire moderne ou fortification 

(Dögen, 1648) gives one of the best short histories of fortification. 

According to Dögen, the oldest usual way to protect people in the cities was to build 

large stonewalls around them, but there was a huge drawback: the assailants could come 

under the cover of the walls, when the defenders had to get uncovered to try to repel them. 

In the Antiquity, architects invented the principle of flanking: they built outer towers to 

allow defenders to shoot their enemies from behind when these enemies dared to approach 

the walls. This principle was still in use in the medieval castles with their round towers at 

the edges of the main walls.  

But as Geoffrey Parker showed (Parker, 1988), when the Western world discovered the 

use of gunpowder, it was a real revolution in attacking as well as in defending and 

building fortresses. The high medieval towers were ideal targets for the newly melted 

cannons and their easy remote destruction caused casualties inside the cities without any 

damage for the assailants. Height had become a tactical disadvantage; bastions were to be 

born. The bastions are a kind of low pentagonal towers, intended to host the defenders’ 

canons and cannonballs, hence their names bulwarks (from the German Bollwerke). The 

                                                           
1 For regular polygons, we recommend travelling by Google Earth in this order: Forte San Pedro, Cebu, 

(Philippines); Vardøhus, Finnmark (Norway); Fort Belgica, Banda Neira (Indonesia); the citadel of Saint 

Tropez (France); the Alba Carolina citadel in Alba Iulia (Romania); the cities of Neuf-Brisach (France) and 

Palmanova (Italy). Finally, the old city of Nicosia (Cyprus) with its eleven bastions might hold the record. 
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geometric shape of the bastions was generated in such a way as to force the trajectories of 

gunfire and to reduce damage on the walls, but as we can see on heritage monuments or 

original maps, there is a variety of sizes and angles according to their creators and time of 

their conception. The set of consistent shapes, along with their algorithms of constructions 

and even their justifications, were called manners of fortification. Early modern writers 

distinguish three principal manners at the turn of the 17
th

 century: the Italian, the French 

and the Dutch
2
. All of them find their origin in the Italian one, but we can question the 

reasons of their differences and the use of mathematics for the generation and justification 

of shapes, especially the use of Euclidian geometry. In order to render unto Caesar the 

things which are Caesar’s, we start with the Italian architects and follow their inventions 

towards North, to France and the Low Countries, where military architecture would find 

their (temporary) perfection through mathematics. Then we give examples of 

constructions described in texts designed for officers to study or practice the “new” 

fortification. 

2 The creators of modern fortification 

Modern fortification was invented in Italy around the end of the 15
th

 century, during the 

Italian Wars. Architects like Michelangelo or Leonardo took part to a large movement of 

research about new shapes of city enclosures. The first inventor of the bastion remains 

unknown, if he ever existed, but this shape (see for example Figure 3.2) was widely 

accepted in Italy as a response to the power of cannons. Everywhere in Europe, new 

bastions would be built in the Italian manner of fortification, undertaken by Italian 

engineers themselves. Many local authorities had connections with Italy. All the Kings 

and Dukes, every City Council urged their recently engaged Italian counselors to secure 

their places with new enclosures à l’italienne
3
 (Rogers, 1995; Parker, 1988, ch. 1). 

Though universally acknowledged as taking its origins in Italy, modern fortification 

can’t be reduced to the presence of bastions at the corners of city walls. As an architectural 

artefact, the bastion, and more generally the fortified enclosure would know many 

enhancements, practical as well as theoretical. Before the end of the 17
th

 century, when the 

manner of Monsieur de Vauban becomes hegemonic, at least two major stages of 

successive improvement are notable as far as geometry is concerned: in France, initiated 

by Jean Errard with his Fortification reduicte en art et demonstrée (Errard, 1600) then in 

the Low Countries after the publication of Samuel Marolois’s Fortification (Marolois, 

1615). Let’s describe in short the national contexts. 

2.1 Italian authors, before 1600 

Architects-artists like Leonardo and Michelangelo didn’t publish their researches 

about the shapes of city walls. Before the mid-16
th

 century, only a few books were 

published (De la Croix, 1963), but we find in Book 6 of Tartaglia’s Quesiti et 

invention diverse (Tartaglia, 1546) a first attempt of reflection about the rules every 

architect should follow in fortifying a city. While admitting not to be a practitioner, 

                                                           
2 Some authors add a fourth one, the Spanish manner, which can somehow be seen as a variant of the Italian 

manner. 
3 For a critical point of view on the expression Italian trace, see Bragard, 2014. 
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Tartaglia approaches the problem of fortification with his intellectual tools, and he 

determines six principles about the shape, size and areas of the cities enclosures. 

Tartaglia’s followers won’t extend his reflection, but mostly publish their methods to 

draw the star shaped fortresses. The reasons for particular designs are kept secret, giving 

way to discussion on their concrete fulfillment on the field. Some of the treatises which 

are published will be translated into foreign languages, mainly in French (for example: 

Cataneo, 1574; Theti, 1589). In general, these books deal with architecture more than 

geometry. However at the very end of the century, an interesting controversy occurs 

between two architects in charge of building the Palmanova fortress, Giulio Savorgnano 

and Buonaiuto Lorini (La Penna, 1997). Having rather different conceptions about the 

final shape of Palmanova, both had had to advocate their own views before the Venitian 

Senators. Lorini published his rules as an appendix of his Delle fortificationi (Lorini, 

1597), while Savorgnan left his unpublished. But Savorgnan’s manuscript was found 

amongst Galileo’s papers, which indicates a certain consideration. 

In order to show the significant demand for knowledge on fortification, let’s mention 

the private courses given by the same Galileo in Padova around 1590 (Valleriani, 2015). 

The manuscript of the course, Trattato di fortificazione, begins with many usual 

techniques of practical geometry, such as the drawing of perpendiculars, parallels, regular 

polygons, and so on. No doubt that there was a need for a theorization of fortification 

practices. Finally Jean Errard arrived. 

2.2 Jean Errard and the French geometric School on fortification 

At the end of the Italian Wars, the conflicts moved from Italy to the North, 

concentrating on the frontiers of the Spanish Habsburg Empire. Following the same 

path, many unemployed Italian engineers were recruited here and there in Europe to 

build new ramparts for fragile cities.  

In France for example, when King Francis I ordered the construction of a fortified 

harbor at the mouth of the river Seine, this task was attributed to Girolamo Bellarmato, an 

Italian architect who worked in several other cities in France. Along with Castriotto and 

Marini, Bellarmato was one of the major military architects in France at the time. Till the 

end of the 16
th

 century, it seems that no French engineers had been able to supervise the 

creation of important fortresses, and even more so to write something substantial about 

fortification. But there was a need for an elite corps of French engineers. Little by little, 

the Italians were replaced by local military architects, and King Henry IV ordered his 

favorite engineer, Jean Errard de Bar-le-Duc, to write the first French book on 

Fortification. The title of this book is indicative of its project: La fortification reduicte en 

art et demonstrée (Errard, 1600) meaning that the whole process will be established on a 

detailed analysis of the needs, then fully described, and finally justified by mathematical 

demonstrations. In the preface, Errard himself justifies the title (Errard, 1600, p. 1): 

I dared undertake what every engineer so far hasn’t dared or wanted, at least 

nothing was written about that science. Because the discourses on mechanical 

things do not deserve this Title, not being here a matter of strokes which for 
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someone could succeed by accident, but a matter of Geometrical demonstrations 

that will give infallible certitude to anyone
4
. 

As one can read the specificity of Errard’s approach lies in his attempt to turn the 

practices of fortification into a true science. For that purpose, the book starts with a 

description of all the cannons in use in the French armies, and the conversion of their 

power into the men’s working days which would be necessary to reconstruct the collapsed 

walls. Four principles, called the Maxims of fortification, are then presented, the principal 

two dealing with the flanked angle, which must be right, and the line of defense, whose 

length must not exceed the reach of the defender’s weapons (see figure 3.6 for a glossary). 

The algorithms of constructions are given in detail and the different steps are well 

illustrated. Some places in the North of France were fortified according to Errard’s 

principles, especially the citadel in Amiens, still visible now, except for the two Eastern 

bastions, which were destroyed to leave space for an enlarged road. 

Errard’s manner was abandoned shortly after his death in 1610, but his Fortification 

demonstrée kept a reference book for many authors, especially teachers, till the end of the 

17
th

 century (Métin, 2016). His legacy was received and prospered by Dutch engineers 

related to the famous school of engineering at the University of Leiden. 

2.3 The Leiden School 

During the Eighty Years’ War, many cities were besieged, even alternately by one and 

the other side, namely the Spanish Empire and the Dutch Republic. The young Dutch 

Republic had to face an experienced enemy, but Maurice of Nassau lacked time, 

money and trained engineers to fortify towns and protect citizen from the Spanish 

furia. Following the advice of his closest counsellor Simon Stevin, he founded in 

1600 the Duytsche Mathematique, an engineering training course in theoretical and 

practical mathematics taught in Dutch (Dijksterhuis, 2017). Stevin had written a 

treatise on fortification (Stevin, 1594), but apparently no fortresses was built on the 

field according to the shapes he created. 

Of course, fortification practices already existed before the foundation of the Duytsche 

Matematique. Italian engineers such as Paciotto and Marchi worked for the sovereigns of 

the Spanish Low Countries. But we also find non-Italian mathematics practitioners at 

work in Antwerp, such as Michel Coignet, a mathematics teacher and an instrument maker 

(Meskens, 2013) who became the equivalent of Stevin in the court of the Archdukes 

Albert and Isabelle of Austria, governors of the Habsburg Netherland. Several subsisting 

manuscripts show that Coignet gave lessons in French, Italian and Spanish. His taught 

manners are revealing of the transition between Errard and the Dutch fortifiers. 

Michel Coignet’s explanations on the practices of his time and military side are 

exposed in a French manuscript course on trigonometry (Coignet, 1612). The author gives 

a first method of fortifying polygons, which deals with lengths and no angles at all, but he 

is not satisfied with it. Asserting that the flanked angle needs to get a unique value of 90°, 

he gives a second method starting based on angles, following Errard’s view. Meanwhile in 

the opposite camp, the disciples of Stevin free themselves from the constraint of the right 

                                                           
4 J’ai osé entreprendre ce que tous les Ingénieurs, jusqu’à présent, n’ont voulu ou osé, au moins n’en paraît-il 

rien par aucun écrit traitant de cette science. Car les discours des choses mécaniques ne méritent point ce 

Titre, n’étant ici question des traits, qui à quelqu’un pourraient réussir à l’aventure, mais de démonstrations 

Géométriques qui donnent à tous assurance infaillible {with modernized spelling}. 
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angle, thanks to trigonometry. Before 1650, publications will follow one another, more or 

less inspired by the first of them, Marolois’ Fortification (Marolois, 1615). 

Marolois’ book was published at the time he was unsuccessful in applying to the job of 

professor at Leiden school of engineers. It is the third and last part of a complete 

mathematical textbook for the use of engineers including geometry, the use of surveying 

instruments, gauging, trigonometry, perspective and fortification (Marolois, 1616). The 

Fortification is composed of two parts, the first of which consists in a case study of a 

variety of shapes, from the square to the dodecagon, each of them being divided into 

several sub-cases. In his attempts to find the perfect shape is, Marolois explores the 

different values he can assign to the proportion between face and curtain, or flank to 

gorge, or even flanked angle to flanking angle (see glossary on figure 3.6). After having 

studied fifty or so cases, he opts for simple proportions (3 to 2 or 4 to 3) and gives the 

eleven maxims which will define the first Dutch manner of fortification. His successors 

will more or less follow the same rules, leaving aside explorations to focus on now 

universally accepted shapes. 

We’ll show in concrete terms in §3.3 the importance of trigonometry in Marolois’ 

works and more generally in Dutch fortification. In Western countries, trigonometry had 

found his corner stone in Regiomontanus’s De Triangulis (Regiomontanus, 1533), 

including the Law of Sines and the resolution of triangles. But Regiomontanus’s main 

goal was to provide the astronomers with useful theorems (Maior, 1998, 41-46). Grattan-

Guinness also points out the prominent role of trigonometry during the period 1540-1660 

that he names “age of trigonometry’ (Grattan-Guinness, 1998, 174-233), but he mostly 

mentions astronomy, surveying and navigation. According to him, one of the most 

important books for this period is Pitiscus’s Trigonometria, (Pitiscus, 1600). A close 

examination of the different editions shows the growing range of applications of 

trigonometry: a first version in 1595 contained only two theoretical parts, but from 1600 

on, it would be completed with the tables of sines, tangents and secants, plus an appendix 

on applications of trigonometry to a variety of problems in surveying, geography, 

gnomonic and astronomy. In the 3
rd

 edition (Pitiscus, 1612), the appendix is extended to a 

new domain: architectonic, that is military architecture. The huge influence of this work 

amongst engineers and fortifiers can be measured by its numerous quotations and even 

reproductions of its contents in many books for decades in Europe. 

Now we examine the three different manners we introduced above. 

3 The Manners of fortification 

Our paper reports a workshop, the “working part” of which consisted of studying 

different manners of fortification with ruler and compass. The main goal was to 

question the role of geometry in these several manners, beyond the simple use of 

instruments to draw the required shapes. We essentially describe the participant’s 

procedures. 

We have chosen to focus on the three major steps in the researches on fortification: the 

Italian use of diagonals in polygons, Jean Errard’s hexagon “reduced into art and 

demonstrated”, and Samuel Marolois’s “trigonometricky” hexagon. Due to their minor 

role in history, we had to leave aside Michel Coignet’s propositions (Coignet, 1612), 

despite their interest as transition markers between Errard and his Dutch followers.  
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3.1 Two examples of Italian architects 

Despite Tartaglia‘s investigations on the fundamentals of fortification and his 

expression of what should be its principles, we find but few real justifications in the 

Italian books on military architecture of the 16
th

 century. Even if the fortresses were 

fully described, using many diagrams, they were more detailed as stone and earth real 

life fortresses than as ink and paper diagrams. 

In a majority of Italian books and manuscripts, the construction algorithms keep 

undisclosed and the reader has to make sense of the figure himself. This non-didactical 

aspect might be due to the identity of this targeted reader, who may have been an 

engineer, or at least a well-skilled person. To give a typical illustration of this specific 

manner, let’s examine first a manuscript we found in the Jagiellonian Library in Cracow 

(Anonymous, 16th century). Its anonymous author writes in Italian, but he favors the 

figures: the only comments describe lines and angles in terms of stone and earth fortresses, 

but don’t explain the generation of the shapes. For instance, below a diagram of a fortified 

hexagon we can only read: “All lines are drawn from and through the points and the 

intersections. Thus, measuring is not needed.”
5
 (Anonymous, 16th century, fol. 12v). 

Let’s try to apply this principle to reconstructing one of the numerous fortified shapes 

in the manuscript, for example the fortified square on fol. 24v (Fig. 3.1). Our intuitive 

view leads us to start with the largest square ABCD and its diagonals (AC) and (BD). The 

side of the square is twice the opening of the compass, that is to say the diameter of each 

arc drawn inside ABCD. These arcs, centered at A, B, C and D, give the midpoints of the 

sides, respectively E, F, G and H, so the medians (EG) and (HF) can be drawn. If we then 

draw the arcs centered at midpoints E, F, G and H, we obtain useful points, namely I, J 

and K, L, which allow us to draw further symmetrical straight lines, as do points M, N and 

O, P. Our initial square is now divided into sixteen smaller squares. 

  

Figure 3.1: Original drawing and attempted reconstruction (Anon., 16
th

 century, fol. 24v) 

 

 

                                                           
5 Tutte le line sono tirate per i punti et intersegationei regolari. Et peró non c’é di bisogna la misure (All 

translations into English were made by the author of this paper). 
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But the arcs centered at E and G intersect vertical lines (MN) and (OP) at Q and R 

respectively. Lines (HQ) and (HR) meet two opposite sides of the square at S and T 

respectively. It looks like (ST) bisects the formerly drawn squares. Indeed S and T could 

have been found as midpoints of segments, but no indication is clearly given on the 

original figure. To complete the construction, we just have to produce rays [TH) and [SH) 

to their intersection with the diagonals of the initial square, and repeat this operation three 

times to get the four vertices of the bastions. Finally, we pick the appropriate segment 

lines to obtain the desired shape, as shown on the top left of the reconstruction in Figure 

3.1. 

We take our second example from a very rare book (Scala, 1598) in which the 

constructions are based both on unmeasured lines and on lines measured by a scale. It has 

been written by Giovanni Scala, a Roman mathematician and engineer, otherwise known 

as the geometer who completed the edition of Pomodoro’s Geometria prattica (Pomodoro 

& Scala, 1599). It is likely that Scala gave lessons on fortification to several German and 

Polish officers in Roma before 1600. His book on fortification was first published as a 

portfolio of plates, and we can find copies of it with hand-written comments in Poland and 

in Paris. A frontispiece and a preface to Henry IV King of France were added in 1598 in 

order to make it a real book. It contains more than 50 various shapes of bastions, the 

constructions of which are more or less explained. As far as we know, none of them were 

actually built on the field. 

In Figure 3.2, we show the bastion on plate 6.  

 

Figure 3.2: Giovanni Scala’s bastion (reconstructed from Scala, 1596, plate 6) 

Here is our reconstruction of the figure: take segment [AB] of 180 steps
6
; on [AB] draw 

the half-circle Γ and the perpendicular bisector (IJ), which intersect at J. Join the midpoint 

C of [IJ] to A and B; from C as a center and with radius 25 steps, draw the circle Γ’, which 

cuts (CA) and (CB) at E and F respectively. Put point D on [JC] at 10 steps from C, and G 

on [IC] at 30 steps from C; join both points to A and B; segments [CA] and [CB] cut circle 

Γ’ at respectively; produce lines [IE] and [IF] to the circumference of Γ and draw 

segments [DA] and [DB]; from A and B, draw the tangents to circle Γ’, which meet at H; 
                                                           
6 The passo, or geometric footstep, was the thousandth part of the Roman mile, i.e. around 1.5 meters. For 

our reconstruction, we took the numerical values from the figure, using the scale engraved on it. Our starting 

point was the value of 180 footsteps, which is the explicit basis of several other Scala’s constructions. 
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from G, draw two segments parallel to (IE) and (IF) respectively, ending on [AD] and 

[BD] respectively; K is the midpoint of the segments cut on line [IE) by lines [AD] and 

[AI]; draw an arc with center K and radius 12.5 between these two lines, and do the same 

symmetrically with L. The bastion is obtained by selecting the appropriate arcs and line 

segments among the various ones that have been drawn (in bold red on Figure 3.2). 

Of course, we can’t be sure of our reconstruction, especially when they deal with 

tangents or measures, as the engravings in the portfolio are sometimes imprecise, or show 

hesitations. Nevertheless, we can assume that the engraver, and consequently the inventor 

of the shape (they may be the same person), were aware of construction programs. These 

programs may have had to keep illegible for non-specialists, which would explain the lack 

of instructions in the texts. Anyway, the shapes do not look like they had been created 

responding to scientific principles, but rather in an aesthetic aim. The way of generating 

them indicates a global idea of the bastion profile, but no mathematics is used, except the 

usual geometrical concepts and drawing procedure. This will be changed in 1600 by 

French engineer Jean Errard de Bar-le-Duc. 

3.2 Jean Errard, and the Euclidean proof 

Errard’s fundamental example is the regular hexagon, explained on one of the six 

equilateral triangles it is composed of (cf. Fig. 3.3). In fact, the author considers the 

triangle, the square and the pentagon as unfit for receiving right-angled bastions, what 

can be justified nowadays by the impossibility of applying Errard’s general algorithm 

of construction to these particular shapes.  

 

Figure 3.3: Errard’s hexagonal construction (after Errard, 1620, p. 40) 

Here is the text given in the posthumous edition made by Alexis Errard, Jean’s 

nephew and also an engineer, supposedly according to his uncle’s will. We give this 

version preferably to the very first one, as it clearly separates the construction and the 

proof (Errard, 1620, p. 40):  

Let be proposed to fortify a hexagon, as far as the hexagon can be divided into six 

equilateral triangles. On AB describe the equilateral triangle ABC, and angle CAD 

of 45 degrees. Draw line AE equal to line BD, then drawn line BE. Divide angle 

EAD into two equal parts by AG, & let DF be taken equal to EG. Draw the curtain 
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wall GF, as well as FH perpendicular to BE. Let AI be taken equal to BH, and GI be 

drawn perpendicularly as FH. So are described the two half-bastions AIG & FHB
7
. 

Since Errard based his construction algorithms on scientific principles, he had to prove 

that the results met his requirements, the most important being about the line of defense 

(i.e. AF on Fig. 3.3 or BF on Fig. 3.4), whose length must not exceed 100 toises
8
. Here 

follows a modernized version of Errard’s demonstration (after Errard, 1600, p. 24; Errard, 

1620, p. 41-42; see Fig. 3.4). 

 

Figure 3.4 : Errard’s demonstration (after Errard, 1600, p. 25 & Errard, 1620, p. 42) 

Remembering that F is on the bisector of angle OBG, let’s draw a circle centered at F 

and tangent to the sides [BO) and [BG) of angle OBG at H and G respectively. The circle 

cuts [FD] à Z. We first consider triangle DBB: since HBB = 60° and HBG = 45°, then 

DBB = 15°, same for DBB, by symmetry. Thus BDB = 150° and consequently 

FDG = 30°. Now let’s examine triangle FDG: right-angled at G, it has an angle of 30° at 

D, so DFG = 60°. But ZF = ZG, so FZG is equilateral and FZ = ZG = FG; moreover, 

FZG = FGZ, so ZGD = 30°, ∆ZGD is isosceles and ZG = ZD (= FH).  

Having linked these lengths together, Errard takes FG = FG = 16 toises as a common 

unit for all of them. Using the Pythagorean theorem in right triangle FGD, he obtains 

713.271632D 22 G  (he takes 27
4
3 ). in the isosceles right triangle OHF, 

63.22216 OF  (Errard gives 22
5
3 ), and finally, in the isosceles right triangle BGO, 

5
338 FOGFGOBG . The line of defense FB (or FB) can now be evaluated: 

2
1

5
3

4
3 98382732DDDFDF  GBGFGBGB , which is less than 100. 

Thanks to his choice of appropriate angles, Errard needed only basic Euclidean 

propositions to systematically find what was missing. No trigonometric lines there but 

essentially the Pythagorean Theorem. We would call this demonstration Euclidean, no 

doubt it would have pleased Jean Errard. But this pleasant aspect of the right angle has 

major drawbacks on the field: the defenders on the flanks are turned towards the walls 

instead of the counterscarp, and the faces of the bastions are too large to resist a long time 

                                                           
7 Soit proposé à fortifier un Hexagone, d'autant que l'Hexagone se divise en six triangles équilatéraux. Soit 

sur AB décrit le triangle équilatéral ABC, puis soit fait l'angle CAD de quarante-cinq degrés. Soit faite la 

ligne AE égale à la ligne BD, en après soit tirée BE. Soit divisé l'Angle EAD en deux également par la ligne 

AG, & soit prise DF égale à EG, & tirée la Courtine GF : comme aussi FH perpendiculaire sur la ligne BE. 

Soit prise AI égale à BH, & soit tirée la ligne GI perpendiculairement comme FH. Ainsi seront décrits les 

deux demi Bastions AIG, & FHB {modernized spelling}. 
8 An old unit, roughly corresponding to the human height (approximately 195 meters). 
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to the pounding of artillery. Errard’s heirs in Holland would use the newly invented 

methods of trigonometry to get rid of the right flanked angle and set the generation of 

bastions free of it. 

3.3 Samuel Marolois’s “trigonometricky” hexagon 

Unlike Errard, Marolois doesn’t establish his constructions on necessity and principles 

drawn from the field practices. The first few pages of his Fortification state the values 

of angles for any regular polygon from the square to the dodecagon. The flanked 

angle is not right; on the contrary its value depends on the angle at the center of the 

polygon. The different values given in a table (Marolois 1638, 5) correspond to a 

simple algorithm, which is guessable at first glance as in a modern spreadsheet, but 

not formally expressed. In our time, it would be: flanked angle = half-angle at the 

center + 15°. Knowing that the angle between the flank and the curtain is always right, 

all the other angles are determined. It is only after a variety of case studies according 

to diverse proportions of lengths that Marolois gives “the manner how to describe 

succinctly the designs or Plots of some regular Fortifications” (Idem, 27) and finally 

the Maxims of regular fortification (Ibid., 43). 

Here is a slightly modernized version of the English translation of the first example, the 

design of a hexagonal fortress (Ibid., 29-30, to be followed on figure 3.5, using the 

glossary on figure 3.6 for specific terms
9
): 

Let there be given a Hexagonal Fortress to be fortified, whereof the face AC makes 

24 rods
10

, and the flanked angle 80 degrees, according to which the interior flanking 

angle will make 20 degrees, and the exterior 140 degrees. Let the curtain be 30 [i.e. 

32] rods, which gives the reason of the face to the curtain as 3 to 4. To do this, we 

shall draw the infinite covered line AB, by the help of a graduated instrument, the 

other angle CAD of 20 degrees (of 20, because the interior flanking angle, which is 

always equal to it, makes here 20 degrees) by means of the indefinite line, upon 

which you make the length of the face 24 rods, as from A to C; from which point C, 

the perpendicular CD being drawn upon the line AB, shall be placed from D the 

length of the curtain, which is here 32 rods as from D to E. Finally the distance AD 

from E to B, and the perpendicular EF the distance of CD as from E to F. Drawing 

the line FB, you have the other face, so that all the part of the given reason are 

described; […] we make the angle HKA only of 35 degrees, according to which the 

gorge in the flank will be almost as 4 to 3, or somewhat more by reason of the line 

HK, cutting the diagonal line AG at H, from which point H the line HN being drawn 

parallel to AB, you shall have the interior Polygon, upon which the lines CL and FN 

being drawn in length, the lines DC to L and EF to M. In doing so, all the essential 

parts of the said fortress will be described. 

This excerpt needs some comments. The first four lines remind us of the previously 

calculated angles, of the chosen length of 24 rods for the face, and of the proportion of the 

face to the curtain, that is 3 to 4. This being established, the construction program is 

described step by step: on line AB as a basis, with an angle of 20 degrees and a length of 

24 rods, we draw the face AC of the left bastion; we put on line AB the following points: 

                                                           
9 According to Marolois’s notations, the figure shows lowercase letters, while the text in written in capitals. 

Moreover, the letters in figure 3.6 are not consistent with those in figure 3.5. 
10 The unit of measurement is the Rhineland rod (a 12-foot rod, approximately 3.8 meters), used during the 

reign of Maurice de Nassau. The contemporary English rod is equivalent to 5.5 yards (around 5 meters). 
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D, by orthogonal projection of C on AB, then E and B such as DE = 32 (length of the 

curtain wall), and EB = AD. Symmetry is at work, even if not mentioned; point K is 

determined on line AB by AKC = 35°, then point H as the intersection point of (KC) and 

the side AG of equilateral triangle AGB (G is not visible on figure 3.5); (HN) is drawn 

parallel to (AB), then C is orthogonally projected on (HN) to get L, and the complete 

shape ACLMFB is obtained by symmetry. 

 
Figure 3.5 : Marolois’s construction (after Marolois, 1615, plate 13, fig. 72) 

 

 

Figure 3.6: Glossary (after Marolois, 1615, plate 1, fig. 1) 

The profile being constructed, Marolois doesn’t give any calculation or demonstration, 

because all of them have been detailed before. His translator Henry Hexham is even terser, 

writing for example (Ibid., 20): 

Here is nothing but that which is ill calculated by the Author, or rather by his 

disciples, as from the beginning (without all doubt) seeking to help themselves with 
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the figures put here under, which was needless, supposing that they are skilled in 

Trigonometrie. 

In fact, trigonometry is excessively used by Marolois to calculate every length and 

distances in every case study in the first part of his book. The hexagonal fortress we 

showed the construction above had already been the subject of calculations in the 44
th

 

example (Marolois, 1615, fol. Tv). For example, DL is take, as the sine of DAC, 

providing that the face AC (of 24 rods) corresponds to the sinus totus
11

 of 100 000 parts. 

Then AD is computed using the sine rule in triangle ACD. Unfortunately, the flanked 

angle (i.e. twice HAC), chosen of 80° according to the rectified table of angles of part 1, 

is in fact taken of 75° according to the unrectified table. The demonstration is thus entirely 

in conformity with another case, what turns the readers into confusion. This may be the 

reason why it doesn’t belong to the English version.  

4 Conclusion: towards an European military architecture 

From the Italians to the Dutch we have shown changes in the way of using geometry. 

In a certain way we could infer that Italian architects were driven by the images of 

what should be the final shapes, together with a bright idea of symmetry and even 

beauty. Following this supposition, Errard may be seen as a direct heir of their way of 

thinking. It is quite clear that the final shape of the bastion led his thinking throughout 

its establishment process. Indeed Errard’s bastions having three right angles are 

truncated squares. Demonstrations and calculations are based on the existence of these 

right angles, which allow the use of classical Euclidean theorems without need for 

trigonometric tables. But this makes the difference between Errard and his Italian 

predecessors: the rigorous approach of Errard promotes scientific discussion and 

anticipation for future adaptation to the improvements of attacking practices. The 

Dutch, thanks to their virtuoso practice of trigonometry, do not seem to be stopped by 

a closed vision of the final shapes, but create them with more liberty. The use of the 

sine rule and trigonometric methods allow them to master the distances, lengths and 

angles, whatever the proportions they choose. It was a necessity for them to keep their 

fortresses suitable for new material conditions of sieges, especially the use of 

explosives and the trench approaches. 

Even off the field, the question of adapting the shapes of fortresses was taken seriously. 

For instance mathematics teachers of that time had links to the milieu of military 

architects. The numerous courses on fortification of the 17th century, printed as well as 

manuscripts, that we found in France echo the discussion of engineers about the qualities 

of one or another angle. Teachers expose and compare the constructions, generally 

drawing their examples from Errard, Marolois and the next generation of French military 

engineers, especially Antoine de Ville and Blaise-François Pagan. The manners of 

fortification were not unified yet, but it would be the case at the end of the century, when 

everywhere in Europe engineers would fortify places according to the manière of 

Monsieur de Vauban (or Menno van Coehoorn, his counterpart in the Low Countries). 

Unfortunately for us, Vauban didn’t promote a mathematical approach of fortification. 

Quite the contrary, he claimed that geometry was useless for that purpose. 

                                                           
11 That is: the radius of the trigonometric circle. 
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For the reader to realize how simple and non-mathematical it was, here is a summary of 

Vauban’s manner of bastionning a line AB of 180 toises
12

 (Muller, 1746): AB being 

perpendicularly bisected at C, set point D on the perpendicular 30 toises off from C; then 

put E on [AD] 50 toises from A and H on [BD] 50 toises from B; G and F are the 

symmetrical points of H and E with respect to D. The profile of the two half-bastions is 

given by AEFGHB (readers are invited to drawn this profile themselves; as an easy 

exercise). As one can see, there are no angles to consider here, but only distances, which 

are to be taken with the compass on a scale of 180 toises. 

In fact, the former period is much more interesting for nowadays mathematic educators. 

The military revolution process is more attractive than his final results about fortification, 

especially when you consider the role played by geometry. At the beginning of the 17
th

 

century, things were not entirely determined and many controversies happened, on the 

field as well as in the offices, in the mansions or even at the Royal Courts. Nobles, 

whether officers or not, had to know the terms, concepts and practices of fortification 

perfectly. Many noble families needed mathematics skills to be taught to their teenagers, 

because geometry was the language of fortification. For our present math classes, studying 

fortification in the original texts can bring the students a good example of a concrete use 

of geometry and justify the learning of this vanishing discipline. 
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ABSTRACT 

Since 1992 I have developed many lessons that use history in the mathematics classroom. These lessons are 

cross-curricular using events from history to enthuse students in their learning of mathematics. They show 

that the mathematics used today had, and continues to have, applications to everyday life. As well as being 

classroom lessons these episodes form mathematics master classes done on Saturday mornings around the 

UK. The lessons use old and new technology to provide students with an insight into how they are made and 

used. Recent developments with the STEM (science, technology, engineering and mathematics) initiative in 

the UK mean these lessons are even more relevant. One episode is described here; others have been 

presented at previous conferences.  

1 The research impetus 

I incorporate events from history into mathematics lessons because I find it very 

interesting to see the practical applications of mathematics set into the period when it was 

used. My research questions are qualitative and are concerned with whether students and 

teachers find the mathematics interesting and clear. I chose to write about this episode 

since it has been developed since 2003 and is very rich in both mathematics and history. 

Tzanakis & Thomaidis (2011) classify the arguments and methodological schemes for 

integrating history in mathematics education and my episodes fit into the two-way table 

mainly as History-as-a-tool and Heritage though there are overlaps into the History-as-a-

tool and History cell. The over-riding concept in my work is History-as-a-tool. The 

distinction between history and heritage was made by Grattan-Guinness (2004) where he 

writes in the abstract of his article:  

Their [mathematicians’] normal attention to history is concerned with heritage: that 

is, how did we get here? Old results are modernized in order to show their current 

place; but the historical context is ignored and thereby often distorted. By contrast, 

the historian is concerned with what happened in the past, whatever be the modern 

situation. Each approach is perfectly legitimate, but they are often confused.  

The reliability of this research in the sense of reproducibility by someone else is 

impossible to quantify, since teachers use such episodes in different ways with different 

students and probably not in costume! Every session I do with students is different 

according to local conditions and the knowledge students bring to the sessions, so results 

will vary. 

2 The evolution of the episode 

Back in the 1990s I was introduced to the Royal Institution mathematics masterclasses for 

gifted and talented 13/14-year-old students. These took place (and still do) on Saturday 

mornings and last for 2½ hours. They are organised by local groups of interested teachers 
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and generally take place at prestigious places covering schools within travelling distance. 

They put on a programme of 4 to 8 sessions (though most places do 6) inviting staff at 

local schools to nominate a couple of students who would benefit from these master 

classes. Members of staff are also invited to attend and without these volunteers the 

sessions would be difficult to run since they attract between 30 and 60 students each 

session (I prefer to work with groups of about 30, because it is difficult making good 

contact with larger groups to ensure all remain focussed for the whole session.). These 

volunteers help when students are involved in the tasks since the sessions involve a lot of 

interactivity. The topics offered vary considerably and cover a wide range of mathematical 

topics. As the years progressed I felt that there was plenty of material that was suitable for 

general classroom work and so by developing the master classes I do in my own 

classroom I was able to trial the work with a wide variety of ages and abilities. In the 

1990s I was inspired by John Fauvel to include various historical activities in my 

classroom and this was at a time when there was far more autonomy in the UK on what to 

teach and how to teach it: a description of the situation at the time can be found in Fauvel 

& van Maanen (2000) on page 16. 

In my opinion the work should have relevance to the students, so I always try to include 

material that covers mathematics primarily and history secondly. However, science, 

engineering and geography also play significant parts and all these are brought together to 

provide a holistic coherent scenario in which to develop the mathematics. 

Sometimes the opportunities arise by chance: a suitable anniversary, an interest or an 

opportunity can be the spur to spending many hours pursuing threads which gets sewn into 

a rich tapestry of mathematics. The STEM (science, technology, engineering and 

mathematics) initiative in the UK is aimed at developing an interest in those subjects since 

they have shown a fall in numbers at degree level over the years. By tackling these areas 

with scenarios that show how they were dealt with in the past I believe it gives students 

enthusiasm for mathematics and provides them with a rich background of general 

knowledge. The episode I mention here has been trialled with teachers and students in the 

classroom and then improved after feedback from them and my peers in the last year. The 

research questions used in this paper are based on three sessions with 107 13/14-year-old 

students in November 2017; 35 trainee teachers in August 2017 and August 2018 together 

with 46 similar trainees in January 2018; and with 16 participants at my ESU8 workshop 

in July 2018. 

3 Description of the episode 

Full details of this can be found in Ransom (2004). The workshop presented at ESU8 

focuses on fewer activities due to time constrictions. The mathematics involved stems 

from an event that took place on the night of 16 May 1943 when a significant raid took 

place during World War II. Full details of this can be found in Sweetman (2003). 

The workshops are always presented by Flight Sergeant ‘Kidnap’ Ransom in 1940’s 

Royal Air Force uniform and participants work in twos. They hear about the Dambusters 

raid of 1943 and how mathematics was used to navigate the Lancaster aeroplanes over 

Germany. Participants plot the route on A3 maps, working with scales and bearings then 

look at how the lights were arranged on the plane so that it travels at 60 feet above the 

surface of the water, using geometrical constructions to find the angles at which the lights 

were inclined. They also problem solve by finding the position of the plane when the 
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bomb needs to be released and the time taken for the plane to pass over the edge of the 

dam. These two worksheets are illustrated in Figures 3.1 & 3.2: 

 

Figure 3.1: Working with scales and construction of a perpendicular to a line from a point 

 

 
Figure 3.2: Problem solving, using construction of a perpendicular bisector 
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These two activities involve ruler and compass constructions and are excellent 

problem-solving activities. They develop their mental geometry with a short exercise that 

should improve their 3D coordination. With clips from the Dambusters film they then 

make a bomb-aimer’s sight and test it. This activity involves creativity in the mathematics 

classroom. As far as possible, the workshops recreate, in the form of mathematical theatre, 

what happened with Squadron X (later known as Squadron 617, the Dambusters squadron) 

in 1943. There is also a civilians’ sheet (Figure 3.3) which deals with the coinage of the 

time and how that relates to the decimal system used today. That sheet is illustrated here. 

 

Figure 3.3: Working with historical objects (coins) and inverse proportion 

 

Figure 3.4: Teachers test their bomb-aimer’s sights with Flight Sergeant ‘Kidnap’ Ransom  
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The other benefits to this class’ learning included the following: working cooperatively 

and developing their creative skills. 

Did the historical aspect make a difference? I have no evidence to say ‘yes’ or ‘no’ at 

this point since no question was directed at this aspect. (This links in with the History side 

of the two-way table mentioned in Tzanakis & Thomaidis (2011)). However, there are 

some comments about the history in the feedback analysis section of this paper. 

When trialling new work with my students I never know what will happen, but with 

over 30 years’ experience of the 11-18-year-old classroom I think I can judge reasonably 

well what will be accepted. In the plenary at the end of a session students are asked about 

what they learnt and it is only the comments that students offer at the end of the session 

that give me an insight into whether these sessions are successful or not. Comments such 

as ‘The part I enjoyed least was going home’ and ‘It was interesting because we were 

given a realistic scenario for the maths.’ encourage me to continue with such sessions 

adapting them for different groups. Comments such as ‘The civilian’s sheet wasn’t very 

clear’; ‘I didn’t enjoy the mental geometry at the start’ means I make amendments to the 

work if something is not enjoyed by most students. 

4 Sensitivity issues 

The UK is a multi-cultural society with students from many different nationalities and this 

subject is dealt with as sensitively as possible. War sets nation against nation and is not to 

be treated lightly or jingoistically, which is why I explain to the students the fact that 

although the raid on the dams was seen as a success at the time, most of the casualties 

were civilians, rather than militia. I also mention that this had an effect on the Geneva 

Convention, resulting in an amendment that said dams, being a non-military target, were 

not allowed to be attacked under the articles of war. 

It is unfortunate that mathematics and science both make progress during wartime. We 

see how the mathematics of fortification improved during the 17
th

 and 18
th

 centuries in 

France when Vauban played a major part in fortifying strategic towns and cities. The 

study of projectiles during this time also developed. Then we see the development of the 

computer under Alan Turing during WW2, with the original intention of cracking the 

Enigma Code. This is a great benefit, less so the development of nuclear warfare. 

I also mention the fact that Barnes Wallis, the inventor of the ‘bouncing bomb’ that 

allowed the mine to bounce along the surface of the water and run down the inner face of 

the dam, felt that the success of the raid was far out-weighed by the loss of eight 

Lancasters and their crew – a total of 56 young men of the RAF. 

5 Feedback analysis from 13/14-year-old students 

No formal survey is conducted after every workshop, but for ESU8 I thought it would be 

useful to collect some simple data in a format that was easy for students to complete. 

Bearing in mind that students who have survived 150 minutes (with a 10-minute break) of 

working with a partner they have not met before do not want to spend more than a couple 

of minutes filling in a feedback form, this is kept simple. 
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Figure 5.1: Feedback form used with students 

It is important to me that the mathematics I present is accessible by both genders, hence 

the last part of the form. This was used with 107 students over two sessions in November 

2017 (one with 45, the other two with 32 and 30) and the data gathered (not everyone 

returned a feedback form) are shown in the following tables: 

Female results 

Please rate the session Poor Average Good Very good Excellent 

How interesting was the session?   6 24 12 

How clear was the work?  4 13 21 4 

 Too low Just right Too high 

The level of the session was … 1 41 0 

Male results 

Please rate the session Poor Average Good Very good Excellent 

How interesting was the session?  2 10 29 10 

How clear was the work?  4 13 25 9 

 Too low Just right Too high 

The level of the session was … 3 48 0 
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So, overall, 95% of the replies indicated that the level of the work was ‘just right’, 

which indicates to me that the work is most suitable for the ability of the students. This is 

a 10% difference in the genders between how interesting they found the session: 86% of 

the females found it very good or excellent, compared to 76% of the males. I thought that 

if there would be any difference it would be the opposite way around. There is a 7% 

difference in the genders between how clear they found the work: 60% of the females 

found it very good or excellent, compared to 67% of the males.  

As a further check on whether there is any significant difference in the interest between 

the genders, I started with the null hypothesis that there would be no difference in the 

interest of the material between the genders and used Fisher’s exact test to see whether 

this hypothesis should be accepted or not. This produced the following two-way table: 

 Male Female Row total 

Very good / Excellent 39 36 75 

Poor / Good 12 6 18 

Column total 51 42 93 

This gives a probability of 0.270, which is well above the probability of 0.05, below 

which the null hypothesis would be rejected. Therefore, I accept the null hypothesis that 

there is no difference in the interest of the material between the genders. 

To keep the wording at a minimum on the worksheets I keep the instructions as concise 

as I can because these tasks are the type of problem-solving activities that is being 

promoted in the UK. Students are expected to tackle problems using the mathematics they 

have learnt and for sessions like this where students are working in pairs with others from 

different schools it encourages them to communicate mathematically and suggest 

approaches to the problems that they have not seen before. 

I found it interesting that 44% overall (48% of the females and 41% of the males) 

enjoyed the making of the bomb aiming sight the most. This was by far the most enjoyable 

part that was mentioned in the feedback form. However, there were six comments (6.5%) 

about the history (or history related) being the most enjoyable part: here are some of their 

replies to the question ‘Which part did you enjoy most?’ with the gender of the responder. 

 Learning the back story (female) 

 It was interesting because we were given a realistic scenario for the maths 

(female) 

 History behind lesson (female) 

 Learning about the history of it (male) 

 Historical math(male) 

 It being maths + history(male) 

6 Feedback analysis from trainee teachers 

This analysis consists of feedback from three groups. These consisted of 35 Quantum 

Scholars (trainee teachers who have come from different countries to teach in the UK, 
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some of whom have taught for a small number of years) in two cohorts, one of 13 in 

August 2017 and the other of 22 in August 2018. The third group was 46 Mathematics 

Scholars in January 2018. These are trainee teachers who have been through a rigorous 

selection process to gain the prestigious title of Scholar. They are given no extra money, 

but receive two years’ free membership of The Mathematical Association, the London 

Mathematical Society and the Royal Statistical Society as access to various resources and 

a community entitled to attend various events for their benefit without charge. The 

Quantum Scholars sessions lasted 2½ hours, like the 13/14-year-olds, the Mathematics 

Scholars had a shorter 1¼ hour session. 

The data gathered from these groups (again, not everyone returned a feedback form) 

are summarised in the following tables. This time, because there was little difference 

between the results for each gender (and two sheets were returned without any gender 

identification), I have not separated out the results based on gender, but on the different 

types of trainee since they had sessions of different lengths. 

Quantum Scholars results 

Please rate the session Poor Average Good Very 

good 

Excellent 

How interesting was the session?   1 12 22 

How clear was the work?  1 6 20 8 

 Too low 
Just 

right 
Too high 

The level of the session was … 0 27 0 

Are you likely to use any of this material in 

the future? 
No 2 Yes 33 

Mathematics Scholars results 

Please rate the session Poor Average Good Very 

good 

Excellent 

How interesting was the session?   8 23 15 

How clear was the work?  3 17 17 9 

 Too low 
Just 

right 
Too high 

The level of the session was … 0 45 1 

Are you likely to use any of this material in 

the future? 
No 3 Yes 43 

552



  

 

For these trainee teachers the level of the session was ‘just right’ for all bar one, which 

indicates to me that the work is most suitable for the ability of the trainee teachers! This is 

a 14% difference in the two groups between how interesting they found the session: 97% 

of the Quantum Scholars found it very good or excellent, compared to 83% of the 

Mathematics Scholars. I thought this difference was probably due to the different time 

spent with each group. This is important feedback for me as it indicates that one should 

not try to rush to include as much as possible in the session, but to allow people more time 

to think and discuss the work with others. There is a 23% difference in the groups between 

how clear they found the work: 80% of the Quantum Scholars found it very good or 

excellent, compared to 57% of the Mathematics Scholars.  

As a further check on whether there is any significant difference in the interest between 

the genders, I started with the null hypothesis that there would be no difference in the 

clarity of the material between the two groups and used Fisher’s exact test to see whether 

this hypothesis should be accepted or not. This produced the following two-way table: 

 Quantum scholars Mathematics scholars Row total 

Very good / Excellent 7 28 35 

Poor / Good 20 26 46 

Column total 27 54 81 

This gives a probability of 0.016, which is well below the probability of 0.05, below 

which the null hypothesis would be rejected. Therefore, I reject the null hypothesis that 

there is no difference in the clarity of the material between the two groups and accept that 

the Mathematics Scholars found the work less clear than the Quantum Scholars. As 

mentioned in the previous paragraph, this is probably due to the shorter time the 

Mathematics Scholars had to digest the material. 

To keep the wording at a minimum on the worksheets I keep the instructions as concise 

as I can because these tasks are the type of problem-solving activities that is being 

promoted in the UK. Again, I think this is due to the time spent and lack of the discussion 

time. 

The bomb aiming sight was not made with the Mathematics Scholars due the time 

restriction. An extra question “Are you likely to use any of this material in the future?” 

that was not used with the 13/14-year-old students was added to the feedback form as I 

wanted to know whether any of the trainee teachers would find the materials useful when 

they are teaching full-time. 94% of each group said they would use some of the material in 

the future, which I find most encouraging as I always hope to pass on useful material. 

There were 31 comments (38%) about the history (or history related) being the most 

enjoyable or interesting part, with 34 comments (42%) about it being real-life applications 

of mathematics. Here are some of their feedback comments that I enjoyed reading most! 

 How the women were involved and how maths made a difference in the war. 

 Learning about something I had no idea about. 
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 The nice mix of maths topics. 

 Really nice contextualisation of a few topics. 

 History of it really brought it [the mathematics] to life. 

 Presentation of material – very good delivery. The chap was a character. 

 The way Peter created learning without noticing – hands on with real life 

connections. 

 Hands on, real world content – highly engaging and collaborative. 

7 Feedback analysis from ESU-8 participants 

Feedback was received from 16 participants from various countries at my workshop on 

July 21, 2018. This was timed for 1½ hours, but since it was timed against other 2-hour 

workshops most (if not all) participants stayed for 2 hours. The feedback here is far more 

varied than for the previous two sets of feedback as those present have generally spent far 

more time in different branches of mathematical education. Therefore, I have listed more 

comments as I find these very helpful in developing my teaching. Due to some incomplete 

feedback forms the numbers do not always add up to 16. 

Participants’ results 

Please rate the session Poor Average Good Very 

good 

Excellent 

How interesting was the session?    4 12 

How clear was the work?   3 6 7 

 Too low 
Just 

right 
Too high 

The level of the session was … 0 14 0 

Are you likely to use any of this material in the 

future? 
No 3 Yes 11 

So, overall, 100% of the replies indicated that the level of the work was ‘just right’, 

which tallies well with the feedback from previous sectors. A higher proportion of this 

group (21%) were unlikely to use any of this material in the future, which is what I 

expected, given that few of this group are teaching 13/14-year-olds. Here are their replies 

on what they found most useful: 

 The connection between mathematics and military (the real problem). 

 The stories in the history. They can be used to teach mathematics. 

 Change of perspective, transformation geometry, estimation. 

 Range of mathematical tasks the context applied to. 

 The turning card. That was nice and surprising. I think this is especially adequate 

for teacher training. 
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 The use of simple, even primitive material, to solve significant and interesting 

problems. 

 To see how the approach was a hands-on approach. It was a wonderful 

performance! Thank you! 

 Mathematics teaching is teaching a story. The more authentic we can make the 

story, the more students appreciate its utility. 

 I am no more teaching mathematics, but it will inspire me with my grandchildren! 

Here are some of their replies on what they found most interesting: 

 The use of mathematics to solve the actual problem. 

 Measure and draw the bomb aimer’s sheet. 

 Different kind of math concept applied in one lesson. 

 The whole story and the connection with real sources as well as the personal 

bonding. 

 The authentic setting was both interesting in itself and quite relevant to the kinds of 

problem needed to solve. 

 I liked the concrete calculations and it inspires me to do similar things in other 

contexts. 

 All the different applications of math (trig, data analysis, spatial reasoning, 

constructions) all in one thematic context. 

8 Development 

I am always looking for new material to include in these sessions and since doing the 

research in this paper I have come across a navigator’s mapping board, shown below. 

  

Figure 8.1: Navigator’s mapping table with movable arm allowing a course to be plotted 

and detail of the North pointing arrow (circled) and movable protractor 

The board itself is made of wood and is hidden underneath the map. The metal arm 

allows the movable protractor to be put on any position on the map and is a very 

interesting linkage, consisting of two sets of parallel rulers, joined by a right-angled 

isosceles triangle. Thus, since the sides of the triangle always remain parallel to the sides 
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of the board, the small metal arrow always points North and the course can be read from 

the protractor. So, this board will be shown at future student workshops and students will 

be allowed to use it, if time permits. 

9 Conclusion 

My experience with using history in the mathematics classroom is in relating the 

mathematics students do with episodes from history when it was used. I believe students 

need to see where mathematics has been used to appreciate its importance. I imagine that 

teachers will not run a similar session in its entirety as few mathematics lessons are long 

enough to do that. However, some of the activities are stand-alone and can be used when 

appropriate. This activity was developed for use in the classroom and master classes, not 

as a research project, so the evidence of their success (or failure) is mainly ephemeral 

through comments received by participants after each session.  

Finally, I wish to express my thanks to all the students and colleagues who have 

provided the feedback on the sessions, and my reviewers whose comments (especially 

with regard to using Fisher’s exact test) on this paper have been invaluable and very much 

appreciated. 
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ABSTRACT 

Mathematics is a human activity (Gardiner, 2009) which combines pattern analysis, 

logical reasoning, creative problem solving and communication. Every human is 

unique, making sense of mathematics in their own way, thus good teachers 

incorporate students' existing funds of knowledge (Moll et al., 1992) as well as 

culturally relevant activities (Ladson-Billings, 1995) and community involvement 

(Civil & Bernier, 2006) to improve learning opportunities, experiences and 

satisfaction for students of all cultural backgrounds. Combining teacher/student and 

student/student interaction patterns (Mohatt & Erickson, 1981), improving 

mathematical practice and discourse, as well as finding connections with other 

disciplines and with social issues (Boaler, 2000), lead to animated classes and a strong 

student knowledge and cohort base. Thirty years of teaching mathematics to 

underrepresented students of diverse backgrounds has informed a pedagogy rich with 

these methods, producing students who feel mathematically confident and 

empowered. These students have increased life opportunities going forward. Teachers 

implementing these methods appear to have increased satisfaction. After a brief 

introduction of background theories, this constructivist, interactive, hands-on, 

activity-based workshop will model classroom behaviors and methods that lead to 

positive student and teacher outcomes rich multifaceted mathematical learning. 

During this exciting workshop, participants will learn briefly about Indigenous 

beadwork history and designs in North America. Resources for further study will be 

provided. Traditional Sami textile designs will also be discussed. I am not an expert in 

Sami designs, so I will elicit comments from participants. Subsequently, each participant 

will design his or her own simple beadwork piece with colored pencils on graph paper. 

Partners will work together to come up with functions, relations, or patterns which could 

generate their specific designs. Participants will share their work and give each other 

constructive feedback on their process, comparing symmetries of different design patterns, 

and exploring the possibilities of color and dimension. If time permits, they will build 

their own simple, Native American, bead looms to actually create their beadwork pieces 

with string, cardboard, tape and colorful glass beads provided. Lastly, we will explore the 

Virtual Bead Loom, designed by Dr. Ron Eglash, and its applications in school 

mathematics. https://csdt.rpi.edu/culture/legacy/na/loom/index.html 

This activity can be simple or advanced. I have used it with students from the middle 

level, approximately aged ten years, to the advanced level in which we explore university-
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level graphing, functions, relations, geometry, symmetries, basic group theory, and 

abstract algebra concepts. Students love this activity, because it empowers their individual 

creativity, shows them that mathematics abounds in visual designs, encourages them to 

communicate with each other, and highlights often-overlooked, indigenous, mathematical, 

reasoning. There are numerous adaptations and extensions for this activity.  

I have been teaching mathematics at Oglala Lakota College for 13 years. This is a tribal 

college, serving indigenous students in North America. 99% of our students are Lakota 

people, and our college requires that all students learn Lakota history, language, culture, 

and arts. Instructors at Oglala Lakota College are encouraged to learn as much as possible 

about Lakota history and culture in order to better serve our students. I have been taking 

classes in Lakota arts, language, and psychology since 2011. I am not Lakota myself, but I 

have found that the more aware an instructor is of the cultural origins of her students, the 

better she is able to teach them and work with their learning styles. (Ladson-Billings, 

1994; Leonard & Guha, 2002; Kilman, 2006 ; Oglala Lakota College School of Education 

Vision Statement, 2017; Eglash, 2007). Research into underperforming and marginalized 

groups of students in mathematics is showing increasingly that when multiple ways of 

sense-making in mathematics are valued, students thrive. In my personal experience, the 

student evaluations of my teaching are consistently excellent. Students in my classes learn 

the standard mathematics topics required by our curriculum, and also gain a confidence in 

mathematics that they did not have prior to working with me. I create a supportive, 

discourse-full, culturally responsive, learning environment that really leads to success.  

I grew up in New Jersey, learned to speak French at a young age, was fascinated with 

and embraced diverse cultures. As an undergraduate at Smith College, I learned about 

symmetry pattern classifications of three-dimensional crystals and wall pattern designs. I 

continue to enjoy such explorations. Upon earning my Bachelor’s degree in mathematics, 

I taught middle level mathematics in the Central African Republic for two years at the 

C.E.G. d’Ippy. It was there that I became interested in the intersection of mathematics, 

arts, and culture. I learned about the field of Ethnomathematics in the late 1990s, and 

joined the International Study Group for Ethnomathematics, where I met highly-esteemed 

scholars such as Ron Eglash, Jerry Lipka (who has done extensive work with the Inuit 

people of Alaska), and Claudia Zaslavsky. In the autumn semester of 2000, I began 

incorporating cultural relevance and ethnomathematics in the Mathematics for Educators 

courses that I taught at Chadron State College. The students gave me very positive 

feedback about this, and requested that we share our activities with the community 

preschools and at the Earth Day fair, both of which served children of diverse 

backgrounds. I gave presentations on our activities at the National Council for Teachers of 

Mathematics Annual Meetings in 2004 and 2011. I have continued to develop activities, 

with the help of my students and colleagues. I have been too busy teaching to write 

extensively on this subject, but I began writing an activity book last summer, and I am 

currently working on a doctoral degree at the University of Wyoming, which will focus on 

equity and culture in mathematics education. In my doctoral program, I am gaining 

proficiency at researching and writing articles, with the goal of improving the mathematics 

learning and teaching experience for all people. 
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ABSTRACT 

In this paper, we present the work of an ongoing project, devoted to 13–15 years old students in southern 

Italy, aiming to improve their mathematical literacy. 

Starting point of our research was the way to spread the culture in the sixteenth century Academies. 

There were about 800 Academies in Italy in 1525-1700 years: they were fundamental for the development of 

intellectual networks and the dissemination of ideas in Europe. In these Academies, interdisciplinary paths 

were developed, including literature, arts, natural sciences, medicine and mathematics. 

In Mathematics, there was a fervent discussion about “new geometry”, i.e. calculus vs “old” synthetic 

geometry. Because of calculus success, some very interesting results about synthetic geometry were 

neglected.  

Aim of present work is planning and experimenting an interdisciplinary learning unit, focused on some 

hidden historical theorems of synthetic geometry developed for 1500-1800 years about “Cevian, Orthic and 

Pedal Triangles”, by simulating “old Italian Academies” in a modern key, also by using ITC.  

These theorems are quite interesting from a Maths and Physics point of view, too. We studied, in particular, 

Ceva's theorem and Fagnano's problem. 

Both Ceva and Fagnano theorems may be generalized, under some conditions, to orthic quadrilaterals of a 

convex quadrilateral and Fagnano's problem may be extended to “polygonal billiard” physics, too.  

In order to re-discover these hidden theorems, blended learning and flipped lessons methodologies have 

been also used.  

The planned learning unit has been experimented with about thirty students, attending the second year of a 

Secondary School in South of Italy. Italian Academies have been simulated in two ways: virtual and blended 

academies were founded, respecting main characteristics of ancient Academies. English has been chosen as 

universal language, instead of Latin used in the past.  Nevertheless, some historical documents (e.g. Ceva 

theorem) have been studied in Latin and in archaic Italian, to critically analyze original fonts.    

Information Technologies can provide significant advantages in this learning – teaching approach: they have 

been used to share and communicate main results, to create “virtual Academies” and to realize multimedia 

materials (a final video, summarizing all the activities), too, which are “modern fonts” to be archived on 

cloud software’s.  

The experimented educational path shows that, although students generally consider Geometry as a difficult 

branch, they may excite if they study it in an innovative way and in an historical environment. 

1 Introduction 

A scientific revolution arose during the seventeenth centuries, thanks to the introduction of 

a new Maths branch with respect to traditional “Synthetic geometry”: the “calculus” 

(1666-1687), also known as “the new Geometry”, due to the mathematicians Isaac 

Newton (Newton, 1687) and Gottfried Leibniz, who independently invented it, with a 

different symbolism and approach. Because the success of calculus, some very interesting 

results about synthetic geometry were neglected. 

This scientific revolution depended not only upon the introduction of new ideas, but 

also upon the development of new institutions for the acquisition and dissemination of 
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knowledge. The most important of these new institutions were the princely court and the 

informal Academy (Ruscelli et al., 1984). 

Over 800 academies flourished in Italy in the period 1525-1700, forming a significant 

and influential aspect of social and intellectual culture. Interdisciplinary in their interests, 

bridging literature, arts, medicine, and sciences, the Academies operated outside, but were 

often interconnected with official institutions like universities, courts, political and 

religious bodies, and offered a more flexible, apparently ‘free’ and ‘equal’ form of 

association. Members or affiliates could sometimes include socially marginal figures like 

women and artisans. Academies also attracted foreign intellectuals and their networks 

extended across Europe.  

Scientific Academies were in all the Italian towns, first of all in Salerno and in Padua. 

In scientific Academies, some “geometric problems” were also discussed, taking into 

account both calculus and synthetic geometry solutions. Few details may be found about 

these “discussions”, also due to the general “academic rules”: the members could only 

have access to all the research material developed inside the Academy. 

In the present work, we show an interdisciplinary educational path, in which “hidden” 

(i.e. absent on the schoolbooks) synthetic geometry theorems have been re-discovered by 

simulating scientific Academies in a modern key, in a second class of a Secondary School, 

by using ITC (in particular social networks and GeoGebra), analyzing historical texts and 

using different maths approach. The class was subdivided into three Academies, where 

members were connected between them by using a social network. In these modern 

Academies, students also researched some information about ancient Italian Scientific 

Academies, evidencing the social connections between them, by using historical research 

methods in an intuitive way. Rarely, teacher scaffolding has been necessary.   

 Our research starts from these questions: 

 May a “social” comparison between students improve their motivation in studying 

Mathematics? 

 May an activity based on an historical, students self-managed, research intrigue 

and arouse interest in Mathematics, and especially in Geometry? 

 May the use of an informal language encourage the students to discuss about 

Maths? 

2 Italian Scientific Academies: main characteristics 

In order to better simulate Italian Academies, main characteristics have to be outlined. 

Italian Academies of sixteenth and seventeenth centuries were a knowledge dissemination 

model, which was emulated in all the Europe.  

Some common features may be found in all the Academies: an effective name, a logo, a 

motto, generally a noble or a “celebrity” who favored its growth, interdisciplinary 

discussions and freedom of thought. 

Testa (2012), by analyzing these main characteristics, suggested that “Academies were 

the first intellectual networks of early modern Europe”. 

Their membership included women as well as men, and representatives of all social 

classes. In addition to their intellectual pursuits, the Academies had a more playful aspect, 

including the delivery of orations based on paradoxes, the performance of games, or the 

invention of amusing names for the Academy. 
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Members of Academies frequently published, for many different reasons, under their 

Academy nicknames, which often reflected the Academy name. 

For 1525-1700 years, Academies became more specialized: some literary, artistic and 

scientific Academies were born in different Italian towns. 

A study on academies in Bologna, Florence and Naples (Irace and Panzarelli Fratoni, 

2011) analyses most relevant topics in the Academies: 7,7% is about science and maths. 

Nevertheless, Scientific Academies were often in contrast with the Universities. This 

contributed to the University crisis. New topics and new methodologies were developed 

inside the Academies, which were absent in the University learning, in particular, an 

increasing freedom of thought characterized the Academic studies.  

Mathematics discussions were mainly focused on Geometry, taking into account the 

“new branches” (calculus and projective Geometry) and “the old one” (synthetic 

geometry). 

3 Educational Path “Academy 2.0” 

An interdisciplinary educational path has been planned rounding about re-discovering 

of “hidden” geometry theorems and problems, which are missing in maths 

schoolbooks, but are largely diffused on the web.   

Arts, Latin, English, History and Literature have been involved in addition to 

Maths, to effectively organize and realize this learning unit. 

The present path has been experimented in a second class of scientific high school 

(about thirty students). 

We simulated two different types of Academies: 

a) Virtual Academy, in which members communicate between them only by using 

social networks; 

b) Blended Academy, with both virtual and live meetings.   

For each Academy we chose: a logo, a motto, some communication and sharing rules 

and a specific dress, for the blended Academies, too, as in the old Academies. 

Students used their nicknames to login to social networks, in these modern Academies. 

4 Methodologies and Information Communication Technologies 

Integration between Flipped Classroom (Bergmann and Sams, 2012) and Blended 

Learning methodologies, with a blended-on line and in-class format approach (Novak et 

al. 1999) in a Student-Centered Active Learning Environment has been used. 

We didn't choose a devoted platform, but we preferred social networks (WhatsApp) for 

a free learning materials exchange and for an effective communication between members. 

Main advantage of the chosen social network is that it is possible to create closed groups, 

doing their research “secret”. Moreover, all the students daily use it.  

An interactive and dynamical geometry software, GeoGebra, has been used, to verify 

main theorems. Students used their smart-phones and/or tablets, as in Bring Your Own 

Device (BYOD) practices, whereas a LIM and a PC have been used in the classroom, too. 

In order to verify geometry theorems, Information and Communication Technology (ICT) 

laboratory has been often used.  

 

563



5 Experimental Activities 

The educational path has been subdivided in three phases: 

1) Learning activities in virtual Academies 

2) Live meeting in Blended Academies 

3) Final discussion and products realization. 

5.1 Phases 1: Virtual Academies 

The experimentation started by creating three virtual Academies (each one with about 

ten students as members), named as their specific research theme: 

- Cevian Triangles; 

- Pedal Triangles; 

- Orthic Triangles. 

Whats App groups were the “virtual places”, where students met and had their initial 

learning activities. The “ImageGroup” was the Logo, chosen in agreement with all the 

members (which were all administrators, so nobody was the leader).  Teacher was also 

added to each Academy group, but only as a moderator. 

The “virtual members” posted on the groups their web researches, video, images, idea, 

suggestions and comments.  

Communication was asynchronous, students feel free to have their research in each 

place and time, so these e-learning activities were effective, and students were enthusiast. 

Virtual debates were very useful to “have a trace” about free discussions.   

An introductive message was posted in each Academy/group by the teacher, suggesting 

main topic, as an example: 

“27/10/17, 18:14 Hi guys, now you are Pedal Academy members. Search on the web 

and post here all you can find about pedal triangles, both historical and geometric 

aspects”. 

Informal language has been used by the teacher, too. No indications about websites to 

be used have been furnished by the teacher. 

Dialogues posted by students prove the effectiveness of e-learning activity, because 

peer to peer education gave the opportunity to work in the zone of proximal development 

(Vigotsky, 1978). 

Just as an example, let's analyze a brief virtual dialogue, between students and teacher, 

in the Pedal Academy Group: 

27/10/17, 18:28 Mirko: I found and interesting link 

 http://web.mclink.it/MC2113/geometria/java/Tpedali.html 

28/10/17, 19:02 Paolo: I found definition of pedal triangle: in Geometry a pedal 

triangle of a point with respect a triangle is identified by the point projections on the 

triangle sides. 

[...] 

05/11/17, 19:29 - Teacher: Question: May I choose all the points I want? 

05/11/17, 19:42 Andrea: Yes you can, orthocenter, incenter and circumcenter, too 

05/11/17, 19:43 Gabriele: No, you can't choose all the points, they have to be inside the 

triangle. 

05/11/17, 19:47 Mirko: I agree with Gabriele, just for an example, I think that the 

circumcenter of an obtuse triangle is out of the triangle, so I think it isn't OK. 

Andrea: used an emoticon image to say “I LIKE” 
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05/11/17, 20:05 Teacher: Have you tried to represent it with some special points? 

Andrea posted 3 Geogebra files (as you can see in the Topics section) 

05/11/17, 20:12 Teacher: You have just studied circumference, look if there is a 

connection between pedal triangle and circumference. 

05/11/17, 20:14 Gabriele: Prof, I'm trying... I draw the pedal triangle of the orthocenter 

(D), by Geogebra, I draw a circumference passing by D and a vertex C, CD is a 

diameter... 

05/11/17, 20:20 Andrea: Gabriele, I put the Pedal of the Incenter, CD is always the 

diameter... 

05/11/17, 21:05 Giampietro: Diameter is perpendicular to the cord, it is obvious 

Teacher: Wonderful 

05/11/17, 21:50 Paolo: I'm searching for historical origin of pedal word, but I didn't 

find anything...who does invent this word? 

 

By analyzing all the web debates, we may answer to some research questions; in 

particular, it is evident that: 

 students discuss about Mathematics between them, without any fear to make a 

mistake; 

 students use an informal language, also including “emoticon” to approve or 

disapprove, as in a friendly chat; 

 in this free scheme framework, students have the opportunity to do 

mathematical and historical research and rediscover some results, which are not 

present in their schoolbooks, but are strictly connected to standard geometric 

topics; 

 students are very interested in the topics, so they continue to study Maths also 

late in the evening.  

 in the research/discovery phase, GeoGebra has a relevant role, as a flexible 

instrument to immediately verify some student’s hypothesis and some theorems 

they found on the web. 

Moreover, for each group, teacher suggested an extra topic: to find some information 

about a specific Scientific Academy. For this historical purpose, students feel enthusiastic 

and posted their link late in the evening, too.  

Nevertheless, we noted that, in this research phase, a great students’ astonishment was 

when they discovered that on the web all the historical texts concerning the studied 

theorems and numerous news concerning the Academies to be discovered could be 

consulted. 

5.2 Phase 2: From Virtual to Blended Academies 

After the “discovery phase”, students had some problems to virtually organize a coherent 

sub-unit about their own results: it was difficult, in a virtual discussion, to individuate 

main elements and synthesize them. 

For this reason, all the students agree to change the “virtual Academies” in “blended” 

ones: members met at school, discussed about their topics and each Academy summarized 

its results in a poster, (see for example Fig.5.1 for Cevian Poster). No specific difficulties 

have been evidenced in the student's work. 
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Figure 5.1: Posters realized by “Cevian, Pedal and Orthic Triangles Academies” 

As you can see in Fig. 5.1, both historical and maths results have been organized in the 

posters, together with the GeoGebra verification's theorems. Some theorems proofs have 

been also posted, as the students learned, directly on the web.   

5.3 Discussions and Final Product 

In a final meeting, students belonging to each Academy, also wearing a specific uniform 

(with red, blue and white shirt, respectively for Cevian, Pedal and Orthic Academies), 

described their “research results” to all the “community”.  

Literature, Physics and Mathematics teachers also were present at this meeting. They 

discussed about the realized posters and showed some geometric results by using 

GeoGebra. Some of them, in particular Cevian Group, discussed about historical 

documents they analyzed, in Latin language, from the book “De lineis rectis se invicem 

secantibus, statica constructio (1678)”, directly consulted on the web.  

All the students were surprised about some common features in the analyzed topics, 

which will be outlined in the Topic paragraph. 

At the end of this experience, students were invited to realize a multimedia product 

(video), summarizing their results and their own point of view about this adventure. The 

realized video (about 10 minutes long, that you can find on YouTube in the Italian 

version) was effective, too. They also included in it some comments, which are similar to 

“slogan”, i.e.: 

– “From the past to the future: we worked as Academy members”  

– “Our Academies 2.0: comparison, dialogues and research”  

– “Learning all together is special!”  
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6 Topics 

Analyzed topics were geometry theorems about triangles, discovered after 1500, which are 

not classified, not well dated, not always organized, not present in maths school books, but 

they are very useful, interesting and easy to be studied at High School and directly 

connected with curricula.    

We focused on three sub-units (corresponding to the three virtual Academies). Just 

some results, which have been individuated by the students, are shown here. 

6.1 Cevian Triangles 

A Cevian is any line segment in a triangle with one endpoint on a vertex of the triangle 

and any other endpoint on the opposite side.  

Given a point G, interior of a triangle ABC, the Cevian triangle A'B'C’ is defined as the 

triangle composed of the endpoints of the cevians, being G the Cevian Point (see Fig.6.1). 

 

Figure 6.1: A'B'C': Cevian triangle of the main ABC triangle, G = Cevian Point. 

The condition for three general Cevians from the three vertices of a triangle to concur is 

known as Ceva's theorem:  

In a triangle ABC, three lines AQ, BR and CP intersect at a single point G (i.e. they are 

concurrent) if and only if:  

 

 

 

As laboratorial activities, students verified it by using GeoGebra (See Fig. 6.2), in the 

ICT laboratory. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Test of “Ceva's theorem” by using GeoGebra 
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The use of Ceva's theorem is an effective way to introduce remarkable points 

(barycenter, incenter and orthocenter points), in a nontraditional way: medians, angle-

bisectors and heights are cevians, all concurrent in a specific point, as we show here: 

Theorem 1 (Existence of Barycenter) - Medians are cevian, concurrent in a point 

named Barycenter. 

 

 

Figure 6.3: Medians concur in the Barycenter 

Proof:  

Medians connect vertices with the midpoints of the opposite sides.  

Therefore,  

                            
 Each of the ratios is 1 and so is their product.  

 

Theorem 2 (Existence of Incenter) - Angle bisectors are cevian, concurrent in a point 

named Incenter. 

 

Figure 6.4: Angle bisectors concur in the Incenter 

Proof: 

For angle bisectors theorem,   

                                          . 

Multiplying the three yields 1.  

 

Theorem 3 (Existence of Orthocenter) - Heights are cevian, concurrent in a point 

named Orthocenter. 
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Figure 6.5: Heights concur in the Orthocenter 

Proof: 

Indeed, right-angled triangles     and     are similar.  

Therefore    
  

  
 
  

  
 

  

Analogously,    
  

  
 
  

  
 

  

and    
  

  
 
  

  
 

  

Indeed:                                                         

                 

6.2 Pedal Triangles 

A pedal triangle is obtained by projecting a point onto the sides of a triangle. 

More specifically, let's consider a triangle ABC, and a point P which is not one of the 

vertices A, B, C. Let's drop perpendiculars from P to the three sides of the triangle (these 

may need to be produced, i.e., extended) and label L, M, N the intersections of the lines 

from P with the sides BC, AC, AB. The pedal triangle is the LMN one (see Fig. 6.6) 

 
Figure 6.6: LMN: Pedal Triangle of main triangle ABC 
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Several properties can be proved about pedal triangles, all starting from a “main 

property”: 

Main Pedal Property: “Given an ABC triangle and an A1B1C1 pedal triangle respect to 

P point, then A, C1, P and B1 belong to a same circumference, with AP as a diameter” 

(Fig.6.7). 

 

Figure 6.7: Pedal Triangles Main property: A, C1, P and B1 belong to a same 

circumference, being AP the diameter 

6.3 Orthic Triangles 

Given a triangle A, B, C, the triangle HAHBHC, whose vertices are endpoints of 

the altitudes from each of the vertices of ABC is the orthic triangle. Orthic triangle is both 

the pedal and the cevian triangle of a specific point, the orthocenter.  

An important property of “orthic triangle” is the following one: 

 

Theorem 1. If     is the orthic triangle of    , then     heights are     angle 

bisectors, i.e.     Orthocenter is the Orthic triangle (   ) Incenter. 

 

Students also verified this theorem in the ITC laboratory, by using GeoGebra, as shown 

in Fig. 6.8. 

  

 

Figure 6.8: Test of the property “ABC orthocenter is the Orthic Triangle incenter” 

During 1700s, because of calculus inception, main discussions were about minimum 

and maximum problems. 
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A known minimum problem about these topics was introduced by Giovanni Fagnano 

(Giulio's son) in 1775: 

“For a given acute triangle determine the inscribed triangle of minimal perimeter”. The 

solution is “the orthic triangle”. 

Fagnano' solution used the “calculus”, whereas L. Fej´er and While H. A. Schwarz 

gave a proof by using synthetic geometry (axial symmetries), in an independently way. 

Let's notice that Theorem1 does not immediately follow from Fagnano's Problem, since 

Theorem 1 is valid both if main triangle is an acute-angled and an obtuse-angled triangle, 

whereas the Fagnano's problem is true only in the acute-angled triangle case.  

It is possible to extend these triangle results to “orthic quadrilaterals” (Mammana et al., 

2010) and to billiard physics, too (E. Gutkin, 1997). 

7 Extended Topics: Scientific Academies 

In each Academy, students were invited to find some information about a Scientific Italian 

Academy. In particular, their researches were focused on Academia Secreta, Academia 

degli Infiammati and Accademia dei Lincei.  Some news about these Academies are here 

summarized, as organized by the students in a final booklet. 

The first Scientific Academies in the world were: Academia Secreta, probably in 

Salerno, and Accademia degli Infiammati in Padua, both founded in 1540. 

Academia Secreta was founded by Girolamo Ruscelli; scientific interests were mainly 

about chemistry, alchemy and medicine. Few news can be found about this Academy 

(Ruscelli et al., 1984), the only reference book being “Secreti Nuovi di Maravigliosa 

Virtù”, written by Ruscelli, under the nickname “Reverendo Alexis Piemontese”, 

containing all the “recipes” about experiments they practiced in the Academy. The 

Proemio to “Secreti Nuovi” contains a description of Academy members and place where 

they met can be found, with no specific references. 

Accademia degli Infiammati was founded by Leone Orsini, Frejus’ bishop, Ugolino 

Martelli and Daniele Barbaro (6 June 1540). 

Its motto was “Arso il mortale, al ciel n'andrà l'eterno”, referring about Hercules in the 

fire on the Oeta mountain, as also shown in the Academy logo (Fig.7.1). 

 

 

Figure 7.1: Accademia degli Infiammati, Logo 

Some members of this Academy were: Giovanni Corner, Galeazzo 

Gonzaga, Alessandro Piccolomini, Sperone Speroni, Bembo, Lodovico Dolce, Torquato 

Tasso. 
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Aim of Accademia degli Infiammati was writing about phylosofical (including 

scientifical) and literary topics, both in prose and verse, by using the vernacular: «vera et 

natural idea» di scrivere «compiutamente», in prosa e versi in volgare, su 

argomenti filosofici e letterari. 

An important, both scientifical and literary, contribution was due to “Sperone Speroni”, 

in its “I Discorsi del modo di studiare, La difesa del volgare”. Speroni outlined the 

importance of Mathematics (mainly Geometry) to be happy:  

“Solamente le discipline matematiche (come la geometria) abbiana una utilità, perché 

servono come exercitio. La matematica allora, insieme alla logica, è fondamentale per il 

raggiungimento della felicità costituita dall’unione di sapienza e eloquenza: sono due 

quasi prohemii, o previe dispositioni alla felicità de’ mortali”  

In 1603, the first European Scientific Academy was founded by Federico Cesi, 

Accademia dei Lincei. 

Some members were: Giambattista Della Porta, Galileo Galilei,  Francesco Stelluti, 

Anastasio De Filiis, Johannes van Heeck. .  

Generally, Academies were ephemeral, often without programs and specific 

organizations. Nevertheless, Accademia dei Lincei had a specific program and admission 

rules, but it didn't survive when its prince, Cesi, died (1630). Nowadays, a renovated 

“Accademia dei Lincei” is going on, with specific scientific interests, this year under 

direction of a famous physician, Giorgio Parisi.  

Scientific contributions of this Academy were mainly in “Astronomy”, thanks to 

Galileo Galilei. 

8 Conclusions 

An interdisciplinary learning unit has been planned and experimented in a second class of 

a secondary school, which turns around “synthetic geometry theorems, absent in the 

Italian maths schoolbooks”. This unit has been realized by simulating sixteenth-

seventeenth century Scientific Italian Academies. About 800 Academies were founded in 

Italy in 1525-1700 years, being a worldwide, very important phenomenon that introduced 

a new way to acquire and disseminate knowledge.  

Simulating an Academy also gave a considerable boost to the “Maths social use”, 

which is very important to increase motivation to study scientific matters, and in particular 

the Mathematics. 

Flipped lessons and Blended Learning were effective methodologies to better organize 

and share research results. 

Students feel enthusiastic about this new learning way and their feelings were also 

evidenced in all their dialogues and in a final video they realized to summarize all the 

activities about this learning unit.  
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ABSTRACT 

The main goal of our research study is to gain an understanding of mathematics and history teachers' beliefs 

and considerations towards the integration of history of mathematics, to investigate the potential for 

interaction and collaboration between them and what characterizes such a collaboration while they 

participate in a course of history of mathematics and in conducting and transferring a joint learning unit in 

class. To achieve our aims, a course on the history of Islamic mathematics based on Abū’l-Wafāʾ Buzj'ani 

book "On the Geometric Constructions Necessary for the Artisan" was designed for a group of history and 

mathematics teachers in the Arab sector of northern Israel. The research presented in this paper comes out of 

a project which is ongoing; therefore, only theoretical and methodological aspects of it will be discussed.  

 
Keywords: History teachers, mathematics teachers, beliefs and considerations, Abū’l-Wafāʾ  Buzj'ani 

 

1 Introduction 

The integration of history of mathematics into mathematics education has been a 

persistent interest in mathematics education. The importance of history of mathematics in 

schools' curriculum has been pointed out in documents of many professional councils. The 

HPM (History and Pedagogy of Mathematics) itself, of course, was founded on the basis 

of feasibility and potential of integrating history of mathematics into mathematics teaching 

and learning. This paper, which describes a current ongoing project with teachers, makes 

the further assumption that since history of mathematics is both mathematics and history, 

it is relevant both to mathematics teachers and history teachers.  Indeed, we see teaching 

history of mathematics as a join effort on the part of these two communities.  Before we 

get to this point, however, we shall consider some of the general issues against which our 

teaching project is set.   

1.1 Justifications for Integrating History of Mathematics in Mathematics Education 

For some researchers, history of mathematics should be taught and introduced into the 

curriculum hand in hand with mathematics since the history of a subject is an integral part 

of the subject (Sui & Tzanakis, 2004; Heiede, 1992), and, studying history of mathematics 

in conjunction with mathematics is a matter of general mathematical culture (Schubring, 

2011). 

In the last three decades, some scholars attempted to gather and list explicit reasons for 

integrating history of mathematics in mathematics' lessons. Fauvel (1991) listed some 

twenty reasons for integrating history of mathematics, and later, Tzanakis et al. (2000) 
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adduced 17 arguments for integrating history of mathematics into classroom. 

Fried (2001) observed that arguments in favor of integrating HOM in mathematics 

education generally fall into five categories: 1) Humanizing subject matter; 2) Adding 

variety to teaching; 3) Showing alternative approaches to scientific ideas; 4) Analyzing 

students’ understandings and misunderstandings; and 5) Deepening a sense of the nature 

of the discipline. Elsewhere, Fried (2014) categorized these justifications into three 

groups: 1) The Cultural theme; 2) The Curricular theme; 3) The Motivational theme. 

For the project, the group of justifications most relevant are those under the cultural 

theme "recognizing the enterprise of mathematical inquiry as part of students’ cultural 

heritage […] it is both a reflection on general culture as including mathematics and also on 

mathematics as being cultural" (Fried, 2014, P.680).  These are also those must connected 

to history as such. Pursuing such a justification, on the other hand, is not always easy—not 

only from a practical point of view but from a theoretical point of view as well. 

1.2 Difficulties in Integrating History of Mathematics: A Challenge for Teachers   

Fried (2001) claimed that beyond the practical issues such as lack of finding time for 

fitting historical material into an already crowded curriculum or inaccessibility to correct 

and appropriate resources, the integration of history of mathematics hides a theoretic 

difficulty reflecting the tension between anachronism and relevance, and, between useful 

rational reconstruction and faithful historical analysis. He points out a dilemma whereby 

teachers must choose between taking a genuine approach to history – in which case, they 

end up spending time on things that are not part of the mathematics curricula—and 

trivializing history or taking an anachronistic (Whig) approach in order to use history as a 

tool for learning relevant mathematics. 

The main difficulty is that while one wants to see historical topics in the classroom 

or an historical approach in teaching, the commitment to teach the modern 

mathematics and modern mathematical techniques necessary in the pure and applied 

sciences forces one either to trivialize history or to distort it. In particular, this 

commitment forces one to adopt a “Whiggish” approach to the history of 

mathematics (Fried, 2001, p. 391) 

The argument was that since teachers need to teach contemporary mathematics and its 

applications—for the power of contemporary mathematics is the predominant justification 

for its emphasis in school education— efforts to integrate the history of mathematics leads 

to a history that guided and measured by its relevance to the modern era. Thus, the teacher 

is compelled to adopt an unhistorical anachronistic history (Fried, 2001). The mathematics 

teacher’s inner commitment to modern mathematics actually acts against history of 

mathematics into mathematical education, because the teacher has to filter out from 

history of mathematics the relevant and useful material, this the teacher is pushed to adopt 

a “whiggish” approach to history (Fried, 2001), that is, where the teacher measures what is 

important and what was the meaning of this thing in the past through the viewpoint of the 

present (Kragh, 1987). The term “Whig history” of course was a notion introduced into 

historiography by the British historian Herbert Butterfield (1931/1951), and to describe 

history in which the present is the measure of the past so that what is considered 

significant in history is precisely what leads to something deemed significant today, and, 

Butterfield’s point was that that kind of history is not history at all.     
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1.3 Really a Matter of Two Communities 

The difficulty described by Fried (2001) was conceived in terms of a hypothetical 

mathematics teacher who wants both to teach mathematics within the framework of a 

typical mathematics curriculum and also introduce history of mathematics into the lessons. 

In this way, he brought out a dilemma which the entire community of mathematics 

teachers interested in history must confront.  In our opinion, this dilemma arises because 

the question is actually posed to one community only, namely, mathematics teachers. In 

fact, it can be thought of as referring to two communities: 

- Mathematicians or mathematics teachers 

- Historians or history teachers 

The difficulty of the first community, that of the mathematics teachers, is been already 

stated. But, what about the history teachers? History teachers might do better than 

mathematics teachers in avoiding the trivialization of history if they took up the history of 

mathematics in their classrooms; on the other hand, history teachers cannot be expected to 

understand the spirit of mathematical thinking and may need to be convinced that history 

of mathematics is as relevant to history as it is to mathematics. So both communities have 

something to contribute and their difficulties to confront. They may not each by 

themselves be able reconcile the conflicts producing those difficulties.  However, they 

may be able to do this working together.  Therefore, we think of introducing the history of 

mathematics in mathematics teaching as a fundamentally multi-disciplinary effort that 

requires enlarging the community which deals with it. For since history of mathematics 

belongs both to history and to mathematics, it takes in both the communities of history 

teachers and mathematics teachers. Bringing together history teachers and mathematics 

teachers in the context of history of mathematics—even the specific context which we 

have chosen, namely, the work of Abu'l Wafa— we should point out has been attempted 

before by Marc Moyon and his colleagues (Moyon, 2013).  However, our work takes up 

the problem in light of the theoretical issues described above. 

2 Aims of the Study 

Our study brings history teachers and mathematics teachers together in order to determine, 

first, the presuppositions of history and mathematics teachers, respectively, regarding the 

teaching of history of mathematics. We wish to see whether the presuppositions which are 

implicit in the disciplinary commitments of each community can be seen in the actual 

work of these teachers as they consider an appropriate historical topic.  At a somewhat 

more basic level, before we ask mathematics or history teachers to integrate history of 

mathematics in mathematics education, we may need to stop for a moment and ask 

ourselves: what they think about this integration, who should teach history of 

mathematics, what kind of knowledge (along the lines of Shulman, 1986) mathematics 

teachers need to know about history, and what history teachers need to know about 

mathematics, and what they know about the nature of the two disciplines? Answering 

these questions is one aim of the study. 

The second aim is to determine whether history teachers and mathematics teachers are 

genuinely able to work together to produce a classroom unit on the history of mathematics 

and what are the characteristics of this collaboration.  This in effect asks the question 

whether the two communities truly can settle together the difficulties that cannot be settled 
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each alone. 

We should point out here at the outset that the study is ongoing and we still do not have 

all of the results.  Hence, this paper will focus mostly on theoretical and methodological 

issues.  

3 Approach 

Given the aims stated above, we need to investigate the following research questions.  

3.1 Research Questions 

1 What are the considerations, presuppositions, and beliefs of teachers for mathematics 

and history regarding the integration of history of mathematics into the classroom? and, 

is there any significant difference in these considerations and beliefs, in either 

population or both, according to years of experience, gender, education, grade level and 

school level (elementary, middle school, high school and teacher teachers)? 

2 How and to what extent might a course in the history of mathematics impacts the 

considerations, and beliefs of the two teacher populations regarding mathematics, 

history, and the history of mathematics? and what are the characteristics of the learning 

experience (cognitive, interpersonal and mental emotions aspects) of the mathematics 

and history teachers during their joint participation in a course in the history of 

mathematics? 

3 How feasible is an interdisciplinary collaboration between mathematics and history      

teachers? To the extent that it is feasible, what are the characteristics of this 

collaboration, and how it is reflected in the construction and transfer of a joint learning a 

unit in history of mathematics? 

3.2 Participants and Research Tools 

The participants in the first stage (Question1) in this research are approximately 350 in-

service mathematics and history teachers from elementary, middle and high Arab 

schools in Israel. A questionnaire will be given to the teachers. 

 In order to answer the second question, we will examine how a course which is based 

on the history of Islamic mathematics impacts the consideration and beliefs of 

mathematics and history teachers, and how they act during participating in a common 

course and what are the characteristics of learning and thinking process. The researcher of 

this study is also the instructor of the course and the participants are 20 teachers (10 

mathematics teachers and 10 history teachers) from four schools (two elementary schools, 

one middle school, one high school) will participate in a course-based on history of 

Islamic mathematics.  

The course has been designed to engage both communities at once. The specific 

historical material is based on texts published by the Islamic mathematician and 

astronomer, Abū’l-Wafāʾ Buzj'ani, who lived in the 10th century (940–998 CE) "Kitāb fī 

mā yaḥtaj ilayh al-ṣāniʿ min al-aʿmāl al-handasiyya" (Book on what is necessary from 

Geometric Construction for the Artisan ). For this project we will use Istanbul manuscript 

[in Arabic] which was copied in the first half of the 15th century and Abū’l-Wafāʾ Buzj'ani 

book edited by Salih (1979).  As mentioned above, this was also the text used by Marc 
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Moyon in his work, and, Moyon has discussed its importance in more than one paper (see 

Moyon, 2011, 2013). We were unaware of Moyon's work in this connection until recently 

and considered Abū’l-Wafāʾ as a central text independently: this only underlines the 

striking and suggestive character of that text. 

In the third stage, about 10 mathematics and history teachers will work actively 

together from a pedagogical standpoint. The participants will be divided into pairs (five 

couples, each couple consist one mathematics teacher and one history teacher who took 

the course of Islamic Mathematics).  Each pair will be asked to teach a short lesson along 

the lines of the material in the course, but not necessarily concerning Abū’l-Wafāʾ 

specifically. We chose this approach since we would like ultimately for the mathematics 

teachers and history teachers to work together in their own schools: this activity then 

allows them to experience this kind of cooperative effort and allows us to see the 

difficulties that may be involved. Accordingly, during the lesson, we will make 

observations and keep a log that will document events, interpretations, significant 

utterances, as well as personal thoughts and feelings. Our intention is also to incorporate 

video recording in the observations according to visual ethnography principles.  

Abū’l-Wafāʾs treatise is a collection of 171 problems of geometry, divided into 11 

chapters; it includes 150 problems of plane geometry and the rest on spheres and 

polyhedrons. The introduction in the book gives 13 chapters; two chapters are missing 

“On the division of scalene figures” and “On tangent circles”. 

Chap. I. Introduction 

Chap. II. Basic constructions 

Chap. III. Construction of polygons 

Chap. IV. Inscription of polygons in the circle 

Chap. V. Circumscription of the circle around polygons 

Chap. VI. Inscription of the circle in polygons 

Chap. VII. Inscription of polygons with each  

Chap. VIII. Division of triangles 

Chap. IX. Division of quadrilaterals 

Chap. X. Division and composition of squares 

Chap. XI. On dividing spheres 

Abū’l-Wafāʾ Buzjani tells us in the introduction of his book, that he attended meetings 

between geometers and artisans in Baghdad, such meetings were a widespread 

phenomenon in the Islamic world. This book provides insights into how mathematicians 

and artisans collaborated in the Islamic culture. 

 I was present at some meetings in which a group of geometers and artisans 

participated. They were asked about the construction of a square from three squares. 

A geometer easily constructed a line such that the square of it is equal to the three 

squares, but none of the artisans was satisfied with what he had done. The artisan 

wants to divide those squares into pieces from which one square can be assembled, 

as we have described for two squares and five squares. 

(Abū’l-Wafāʾ in Alpay, 2000,   p. 174) 
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In his book, Abū’l-Wafāʾ understood the needs and problems of the artisans and was 

motivated by such meetings and by his efforts to advance Islamic art (Alpay, 2000), he 

displayed knowledge of pure geometry, familiarity with practical applications and skill in 

 teaching theoretical subjects to practical-minded people. 

3.3 Why this Book?  

This particular work was chosen for three main reasons: 

i) It contains significant mathematical content 

Many of the examples in the book were original and some were borrowed from ancient 

Greek writings of Euclid, Archimedes, Theodosius of Berga, and Pappus. Abu’l-Waf¯a’ 

gave instructions on certain geometric constructions of two or three-dimensional 

ornamental patterns and also he gave advice on the application of geometry to 

architectural construction by using cut and paste methods as a didactical tool in teaching 

geometry to artisans (Alpay, 2000).  Most of the constructions given in the book, however, 

are meant to be carried with compass and straightedge. 

The range of problems is very wide, from the simplest planar constructions (the 

division of a segment into equal parts) to non-trivial problems concerning polyhedrons 

inscribed in a given sphere 

ii) The mathematics had a clear social and cultural context,  

Since the mathematics involved had clear, social, and cultural aspects, it touches upon 

Islamic history in addition to Islamic mathematics. Evidence to the second reason, we can 

see with the relationship between Islamic tradition/ religious and the Islamic sciences. The 

Prophetic tradition” May God protect us from useless knowledge” may shed a light on the 

treatment of the Islamic scholars with sciences. In this spirit, the philosopher and 

theologian Abu Hamid Al-Ghazali wrote: 

The problems importance of physics (he was referring to aristotelian natural 

philosophy) are of no importance for us in our religious affairs or our livelihood, 

therefore, we must leave them alone[…] Man has created only to know, but the 

knowledge man has been created to  seek is that which brings him closer to his 

creator[…]this means, not only that religious knowledge is higher in rank and more 

worthy of pursuit than all other forms of knowledge, but also that all other forms of 

knowledge must be subordinated to it  

(Al-Ghazali in Sabra, 1987, p. 239). 
 

iii) The treatise concerns the work of ordinary people, the artisans, and is 

therefore, directed towards a greater set of societal concerns. 

In this work by Abū’l-Wafāʾ, there are problems concerning the division of a figure into 

parts that satisfy certain conditions, and problems on the transformation of squares (for 

example, the construction of a square whose area is equal to the sum of the areas of three 

given squares). In proposing his original and elegant constructions, Abū’l-Wafāʾ 

simultaneously proved the inaccuracy of some methods used by “artisans.” 
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4 Significance of the study 

Since the project described above is ongoing, we still do not have definite conclusions to 

report.  In lieu of that, we cite three points that we think may be significant outcomes of 

the study when it is completed.   

i. The integration of history of mathematics, according to many studies, significantly 

contributes to students. However, this subject is insufficiently integrated in 

schools. Assuming the teachers have central role in such integration, the current 

work might shed some light on the consideration of the teachers that lead to this 

situation and how those considerations may differ with respect to whether a teacher 

is a mathematics teacher or a history teacher (who indeed may never have 

considered history of mathematics as history at all!).   

ii. Understanding what teachers should know about their profession when integrating 

the disciplines of mathematics and history, and what didactic skills are needed for 

them in order to generate an intellectual experience for their students.  The 

research, in this regard, may open a new aspect of pedagogical content knowledge.  

Again whether that aspect of pedagogical content knowledge can take on a unified 

form across the disciplines of mathematics and history. 

iii. Uniqueness of the study – to date, a study that examines the considerations 

mathematics teachers in comparison to those of history teachers regarding the 

integration of history of mathematics into classroom, in particular and the different 

practical and theoretical assumptions, and their openness to the interdisciplinary 

approach, in general, except a few isolated cases, such as the studies of Moyon, has 

not been done in intensive way.  
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Appendix 

Constructing a square from three equal squares 

 

فأما المهندس فإنه إ ذا سئل عن عمل مربع من مربعات قلت أو كثرت فإنه يحدس الخط الذي هو على تلك المربعات ولا  
 .كانتيبالي بتقطيع المربعات كيفما  

وذلك أنه إذا سئل عن عمل مربع من ثلاث مربعات فإنه يوصل قطر أحد المربعات ويقيم على احد طرفي القطر خطا يكون 
 عمودا عليه مساويا لضلع المربع المؤلف من ثلاث مربعات

 مثال ذلك
فيكون أ جـ  أخرجنا قطر ا جـ,  فإذا أردنا أن نعمل مربعا واحدا مساويا لثلاث مربعات كل واحد منها مساو لمربع أ ب جـ د

ثم أقمنا على نقطة أ من خط أ جـ عمود أ ه مساويا لخط ا جـ ووصلنا ه جـ فيكون خط ه  ضلع  المربع المركب من مربعين
فإذا حصل عند المهندس هذا الخط لم يبال )  جـ ضلع المربع المساوي لثلاث مربعات كل واحد منها مساو لمربع أ ب جـ د

 (وقال أنه متى عمل على خط ه جـ مربعا كان مساويا للمربعات الثلاثة, كان تقطيع المربعات   بعد ذلك كيف
 

If we want to construct a square from three equal squares ABGD;EWZH; TIKL, we bisect two of the squares 

at their diagonals, by means of lines AG, EH, and we transport [them] to the sides of the [third] square. Then 

we join the right angles of the triangles by lines BZ, ZW, WD, DB: On either side [of the straight line], a 

small triangle has now been produced from the sides of the [two big] triangles. That [empty position of the 

triangle] is equal to the triangle which has been cut off from the big triangle. Thus triangle BGM is equal to 

triangle MZH, since angle G is half a right angle, angle H is half a right angle, the two opposite angles of the 

triangles at M are equal, and side BG is equal to side ZH. Therefore, the remaining sides of the triangles 

[BGM, MZH], and the triangles are equal. Thus, if we take triangle BGM and put it in the position of triangle 

MZH,18 line BZ is the side of the square constructed from three squares. This is a correct method, easier 

than what was constructed [by the artisans], and the proof of it has been established. This is the figure for it 

(translated by Alpay. O, in Alpay, 2000, p. 183) 
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ABSTRACT 

This paper proposes to reflect about contemporary issues on the place accorded to probability and statistics 

in the French mathematical curriculum, from an examination of the issues raised one century earlier by 

mathematicians like Emile Borel. For this purpose, we present and comment a series of selected quotes 

taken from two interesting papers, published by Borel in 1906 and 1908 in the Revue du Mois, a journal he 

had just founded with his wife. The first paper concerns the practical value of probability calculation, while 

the second bears on issues of its psychological and social acceptability. We show that the two papers are 

structured around the same kind of opposition between the mathematician’s view on probability theory and 

its value, and the point of view of laymen opposing the latter’s pretention to reduce decision making or 

social facts to calculation. We explain how Borel defines an original compromise between these two views, 

leading to a definition of the limits and strength of the application of probability to reality. We furthermore 

show that Borel’s argumentation should be understood against the political and epistemological doctrines of 

his contemporaries. For this we comment on two papers published in the Revue du Mois of Alfred Croiset on 

the teaching of secular ethics, and Célestin Bouglé on the political doctrine of solidarism. Beyond showing 

the similarities between their argumentation and Borel’s, we propose to explain this through the editorial 

background behind the publication of Croiset’s paper. We conclude with some possible perspectives on 

present-day teaching concerns, that could be drawn from this historical interpretation: the first touches on 

the ambiguities of the probabilistic vocabulary; the second on the search for problems combining math 

teaching with the education to critical thinking; the last bears on the possibility of making interdisciplinary 

bridges between the political history and the rise of probability as a subject of public concern. 

1 Mathematics, probability, citizenship: contemporary concerns and 

old issues 

1.1 A contemporary dispute about probability and statistics in the French 

curricula... 

One of the most significant changes in the French mathematical curriculum for secondary 

schools in the past two decades is the introduction of a new approach to statistics and 

probability. The latter combines a frequentist conception of probability and an 

experimental methodology to problems involving random processes, with the use of 

traditional models based on epistemic probabilities (Dutarte, 2011).  

This change has been controversial from its very beginning, because it diminished the 

place of other important subjects in the mathematical curriculum, like geometry and 

geometrical thinking. This represented, therefore, a significant change in the underlying 

philosophy of mathematics: less emphasis on geometrical demonstration and calculus, 

more on model-making and experience in relation to the call to introduce and study of 

"real-life" problems. Among these problems, those calling for a critical reflection on the 

role of statistics and probability in society were given a significant role1.  

                                                           
1 See, for example, the following resources produced by the IREM of Paris Nord (Dutarte et al., 2007). 
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1.2 ... reminding old issues 

What is striking in retrospect is that this mixture of epistemological and political debate on 

the very nature of mathematical thinking on the one side, with a reflection on the 

importance of statistics and probability for the modern notion of citizenship, on the other, 

is hardly a new one. Already at the beginning of the 20th century eminent mathematicians 

such as Henri Poincaré, Vito Volterra and Emile Borel had called the attention of 

mathematicians and of the educated elite, on the significant changes implied by the role of 

probability in science, industry and insurance or daily life in general (Durand & Mazliak, 

2011).  

Emile Borel and his later followers like Maurice Fréchet (1924), were especially 

influential in disseminating these ideas and pushing the idea that these questions should 

imply a reform of mathematics teaching, by the systematic inclusion of statistics and 

probability as a key subject (Courtebras, 2006, p. 94; 114). For them, it was not just an 

idea of augmenting the curricula with new subjects, but also reflecting on the value of 

mathematical knowledge as compared to scientific knowledge in general. 

1.3 The principle of this paper: making out some of the reasons for Borel’s 

interest on probability, through a series of quotes 

The reasons why Borel, in particular, paid attention to the role of probability in 

contemporary science, industry and society around the years 1905-6 have been well 

studied in recent works (Durand & Mazliak, 2011; Mazliak, 2015; Mazliak & Sage, 

2014). These studies show, in particular, that this interest is inseparable from Borel’s 

efforts, in association with his wife Camille Marbo, to enlarge his intellectual 

relations and, by the same token, to promote his first political career through the 

foundation of a new journal, the Revue du Mois. In particular, two articles published 

by Borel in his own Revue (1906, 1908) are highly revealing of what were his key 

ideas and intentions concerning what he called the practical value of probability 

theory, on the one hand; and the ground reasons why probability should be made a 

subject of public interest and culture, and ultimately the subject of an institutionalized 

teaching, on the other. 

In a recent study on the contents and form of argumentation of these articles (Bernard, 

forthcoming), I found out that they had to be understood (among other contexts) against 

the background of contemporary debates about the foundation and teaching of secular 

ethics. This subject was in 1905 of great topical importance, due to the passing of the so-

called law of separation of Church and State in France. This means, then, that part of the 

reasons for Borel’s interest on probability theory, were related to political and 

philosophical reasons. 

While there is no point at summarizing here the details of this complex story, implying 

many of Borel’s contemporaries in this crucial period both his career and of French 

political history, I found interesting to render the flavour and style of these debates 

through an ordered series of quotes taken either from Borel’s two papers mentioned 

above, or from other articles or conferences bearing on questions of secular ethics that 

were either published in Borel’s Revue in the same period (1906-1908). 

Among the reasons for this choice, is the simple fact that the articles mentioned here 

are beautifully written and thought-provoking, due to the special attention that the 

contributors to the Revue paid to remaining accessible to their readers (Ehrhardt & 

Gispert, 2018). Moreover, most of them are inaccessible in English, for even the major 
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book of Borel on Chance (1914) has received no translation. Finally, some of these quotes 

contain useful reflections that could inspire useful thought for teaching mathematics in a 

meaningful way2. 

2 Borel’s two papers on the practical value and acceptability of 

probability calculation 

The two papers in question (1906, 1908) were of high importance to Borel: this is revealed 

by the synoptic presentation that Borel made of their contents when he published in 1914 

his first “grand public” synthesis on issues of probability. Introducing the third part of his 

book, he explains the following: 

Q1: “We strove, in the first part of this work, to expose how one has succeeded in 

submitting the laws of chance to calculation. Then, in the second part, we have 

quickly explained the main practical and scientific applications of the methods thus 

created. We must now ask ourselves what the practical, scientific and philosophical 

value of these applications is; should one consider that their value is diminished by 

whatever mysterious connotation attached to the word “chance”, or should one 

consider that the comprehensive study of laws of chance will best tell us something 

about the value of any human knowledge? 

To deal with these essential questions, it seems necessary to me to reconsider the 

problem of chance ab ovo, so to speak, regarding the previous chapters as a mere 

introduction aimed at providing precise examples for the forthcoming reflections. In 

this spirit, we shall first examine (…) the value of probability in practical life and 

then look for how the individualist sensitivity is often an obstacle for the acceptation 

by many people of conclusions that nevertheless impose themselves to their reason. 

We will end up by brief indications on the role that the theory of chance could play 

in ethics based on solidarity and in the evaluation of the social value of individuals.” 

(Borel 1914, 213-4) 

This introduction is directly followed by the quasi word for word reproduction of the 

two articles in question. We shall point out some key characteristic of the argument with 

selective quotes. 

2.1 The practical value of probability (1906): a dialectical discussion, leading 

to an original position on probability theory 

Borel’s 1906 paper begins with a dialectical confrontation, on which his whole 

argumentation is based. This is illustrated by the introduction: 

Q2 “Probability calculus is the study of laws of chance. 

One has already remarked that this definition does explain a contradiction by 

another contradiction. If one does not understand how one can speak about 

calculation in association with probability, one will even less understand that it can 

be question of laws in relation to chance. Is not chance precisely what remains 

outside any rule or law? And does not everyday experience teach us to be wary of 

laws, to which one pretends to submit fortuitous events? Does it not happen 

                                                           
2 For more details on my choice of quotes and its rationale, I forward the reader to my paper and the other 

studies mentioned above. 
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frequently bizarre coincidences, strange accidents that are apparently contrary to any 

probability? 

‘Well, such events do happen actually, would say the mathematician, but less 

frequently than it appears, and their frequency is itself governed by the laws that 

their occurrence seems to contradict. One can furthermore provide excellent 

financial proofs for the rightness of probability calculation: a well-managed 

insurance company does always make profits; and no roulette game company has 

ever ruined its manager.’ 

‘But concerning the latter example you therefore hold for impossible, would 

answer the opponent, that the roulette company might be ruined? It might 

nevertheless be enough for me to be the only player and to play constantly the 

number that will appear. It might be very unlikely that I would have such flair, but 

this is obviously conceivable. What, then, of your principles?’” (Borel 1906, 424) 

The originality of Borel’s argument lies in the fact that he takes this debate in earnest, 

insofar as it points out a ground dilemma on the very notion of probability. The first part 

of his paper takes up and legitimates to some extent the position of the „contradictor“; the 

second defends the rights of the mathematician to declare impossible in practice, certain 

events of very small probability3. We shall here only give an idea of the epistemological 

discussion contained in the first part. It is first introduced by small problems of the 

following kind: 

Q3. “Peter exactly possesses one million [francs]; one proposes him to flip a coin 

for it, against one million (fair game) or even in exchange for one million and fifty 

francs (theoretically advantageous game). Unless very particular circumstances, it is 

clear that the interest of Pierre is to refuse. 

Jacques is isolated, with no contacts, in a remote country; he is fairly rich and 

should receive tomorrow a large sum of money; but he has a major interest in taking 

a boat that leaves within an hour and he has only 300 francs with him, although the 

boat crossing, to pay paid in advance, costs 400 francs. One proposes to toss a coin 

for his 300 frances, in exchange of 200 (theoretically disadvantgeous game); his 

interest is obviously to accept.” (Borel 1906, 426) 

These and other examples of the same kind, lead Borel to argue that expressions like 

“mathematical expectation” (espérance mathématique) are essentially misleading, because 

the calculation in itself does not express what one should really expect from a game. The 

calculation might be exact; it still has no practical value, because decision making has 

other incentives than a mere numerical result, like one’s character or economic condition: 

Q4. “[one should] renounce to speak about what one calls mathematical 

expectation, or at least to understand this expression has only designating a quantity 

that it is often advantageous to introduce in probability calculations. But it should 

not be taken at face value; one gives to Peter a ticket in a lottery in which the unique 

prize is 100 000 francs within one million tickets; the mathematical expectancy is ... 

10 cents. But, if he pessimistic and starving, he will prefer by far to be given two 

                                                           
3 This second part of the argument leads to arguments akin to Borel’s famous evaluation of improbable 

events by the estimation of the probability that „typewriting monkeys” would reproduce the books of the 

French national library within one year. 
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pennies4 to buy his bread; whereas if he is imaginative, he will be for one day as 

happy as if one had given him the 100 000 francs. By evaluating his mathematical 

expectation, one has perhaps made an exact calculation, but with no practical value.” 

(Borel 1906, 427) 

Borel develops further this idea with other, slightly more sophisticated examples 

ultimately leading to the idea that probability calculation yields no certitude, but has only 

what he calls a relative value. It only serves to simplify a complex problem into simpler 

data, and nothing more; it does not provide infallible criteria for decision, but only 

constitutes one compenent of it. This is what he summarizes throught the following, 

interesting sentence: 

Q5. “The practical value of probability calculation thus appears to us as relative; 

the practical problem to be solved is simplified in its terms, but not modified in its 

essence: it keeps being a problem of probability.” (Borel 1906, 430) 

By this Borel does apparently not mean a problem in which mathematical probabilities 

should be calculated, but a problem of decision making through the pondering of various 

factors which do not depend only on calculation. 

Then Borel generalizes these thoughts on any kind of application of mathematical 

calculation to practical decision and raises one of his main points, about the very 

possibility of discussing numbers:  

Q6 “The intervention of calculation in the decision of practical life gives often 

way to two of the following, extreme judgments; for some people, it is absurd to mix 

up calculation to any decision which implies elements that cannot be expressed in 

figures; for others, figures have a magical power that make infallible anyone who 

used them according to the rules. 

These two opposite tendencies actually correspond in fact to the same state of mind; 

this is only because figures do appear to them to have an absolute value eliminating any 

kind of discussion, that certain minds fear about their invention and prefer to do without 

their help rather than subjecting themselves to their yoke.” (Borel 1906, 431) 

Beyond any matter of psychology, Borel immediately points out that the origin of this 

illusion is related to the „magic of calculation“ itself, meaning that:  

Q7. “... one can only do calculation on precise figures; at least, it is quite long 

and difficult to look for the diverse solution of a problem, that correspond to the 

diverse values of imprecise data, and one shrinks from this task. One is then led to 

adopt determinate values for each element of the calculation, even though this 

element is not known accurately.  

On these precise data, one can effectuate precise calculations that lead to precise 

results. And the longer the calculation is, the more the result might be inexact and 

the more, nevertheless, we have time to forget that the data were imprecise and to let 

onself trust in the exactitude inspired by correctly done arithmetical operations.  

The same illusion frequently occurs in statistics; one reads every year in the 

journals that the total production of wheat in France is evaluated, for example, to 

115 200 000 quintals
5
. This figure was obtained by the addition of many particular 

                                                           
4 That is, ten cents in Borel’s time (deux sous). 
5 A quintal is a hundred kilograms. 
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indications, each one of which was inexact; the mass, though, inspires a certain trust 

and one is ready to make economical deductions from it. 

Let us be wary then, about trusting too much in figures; this would be the best 

way to avoid the contrary excess, which is to deprive ourselves of their help. (...) 

probability calculation then appears as justified as any other calculation; its practical 

value is just the same.” (Borel 1906, 431-2) 

As mentioned above, the end of Borel’s paper insist on the fact that, in practice again, 

very tiny probabilities should be taken as equivalent of strict impossibilities. The ground 

argument is very similar: if we had to refuse this in daily life, or even in scientific 

conclusions, then life would become impossible because any event, however improbable, 

would have to be taken in consideration. 

We thus see the very special mixture of epistemological thought on the value of 

mathematical knowledge at large, and psychological considerations about its use for 

practical decision. All this is the seed of a more general reflection on why (probability) 

calculation is acceptable or not to public understanding. Let us now see how these 

arguments are retrieved and developed in Borel’s 1908 paper, in the direction of 

discussing the social acceptance of probability calculation. 

2.2 Borel’s defense of probability calculation and “social mathematics”, 

against “individualist sensibility” (1908) 

Borel’s 1908 paper begins with a very similar argument than the previous one, in the 

sense that a dialectical opposition is built between the „golden chain“ of those famous 

mathematicians and philosophers who, from Pascal to Poincaré and Bertrand, have 

developed the theory of probability; and what Borel designates as the ‚sensibility‘ of 

people who, though they are ready to accept the conclusions of theories of probability 

on the authority of such luminaries, are, nevertheless, reluctant to do so:  

Q8. “… [for] this is not their reason, but their sensibility that is shocked by the 

conclusions drawn from probability calculation; or at least, from the manner they 

understand and interpret it. (…) 

While trying to understand in depth the reasons why probability calculation is 

antipathetic to many minds, I hope to demonstrate that this antipathy mostly relies 

on misunderstanding; it would be desirable that such misunderstanding would be 

dispelled; for the vulgarisation of the conclusions, if not of the methods, of this 

branch of science, would have a great social utility.” (Borel 1908, 642) 

The notion of “individualist sensibility”, on which Borel relies here, is directly taken 

from the contemporary writer and philosopher George Palante, for which the 

antinomy of individuals vs society was a key notion of his worldview (Depenne, 

2015). Borel quotes an excerpt of a spiritual article published the same year by 

Palante in the Mercure de France (1908), the quote containing an obvious charge 

against the kind of political opinion and party to which Borel adhered: 

Q9. “Pascal said: ‘the more spirit one has, the more one finds how many original 

people there are. Laymen do not see any difference between men’. The social and 

gregarious sensibility (sensibilité) delights itself with the banality of traits; it likes 

that one is ‘like everyone else’. The Christian, humanitarian, solidarist and 

democratic sensibility would like to erase the differences between egos. Amiel sees 

in it, with some justice, the sign of a rough intellectuality.” (Borel 1908, 642, 
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quoting Palante) 

The allusion to the so-called solidarist sensibility, as opposed to the individualist one 

that Palante advocated, goes to a political doctrine of the same name, developed in Borel’s 

time (Hayward, 1961) and to which he adhered very soon, as we shall see later. Borel’s 

point consists in generalizing Palante’s remark, which originally applies only to elite 

minds, to anyone. We all care, says Borel, for our individuality and prefer to think 

ourselves different from the others – a tendency which is directly opposed to the notion 

that we might enter anonymously into a statistical account. But Borel immediately adds 

that this is not the same point of explanation, opposing statistics to probability: 

Q10. “Probability calculation does not confound itself indeed with statistics, to 

which the aforesaid can also be applied; it does not contend itself to count past 

events, but also pretends, to some extent, to forecast future events: in this, it is a 

science. This pretention hurts from the outset the psychological feeling of human 

liberty (the metaphysical value of which is not at stakes here); one asserts that, if 

there is no exceptional event like war, earthquake etc., there will be for sure more 

than 1000 marriages in France during the next week. Does it not depend on the 

fiancés to deny the prediction, by postponing the celebration of their union by one 

week? The objection does not sustain examination, but it is often implicitly admitted 

without examination.” (Borel 1908, 644) 

The point made here is very similar that the one which constituted the point of 

departure of the 1906 paper. The following discussion, althought based on different and 

more dramatic examples than those taken in the previous paper (since they bear on the 

classical discussion of life duration and on the advantage of inoculation campaigns) 

concludes with a similar point that two years before, about the relative value of probability 

theory. Having explained indeed, that in certain cases augmenting the global life 

expectation at the expense of two many losses, although mathematically advantageous, 

would be unacceptable for common sense, he adds: 

Q11. “... but common sense, no more than calculation, does ensure against 

misfortune; and this will always be little comfort for any individual to think that the 

probability of misfortune was small, if he is the one who suffers from it. Anyone 

starving does pay little attention to the rise of average fortune: one should not look 

into statistics or calculation any argument to comfort those who suffer from social 

inequalities; but this observation does not diminish in anything the proper value of 

statistics nor the calculation by which one interprets them. 

This is only, indeed, from a particular point of view that the statistician or the 

mathematician study social phenomena; this study has a limited scope, but it does 

constitute an exact science, when one does not pretend to extend it beyond its 

natural limits. One should look in it neither for moral grounds nor for immediate 

reasons for action: but only, as in physical sciences, for one way to know accurately 

past events and to forecast with some approximation future events. When one 

predicts that more than 100 000 Parisians will take the „metro“ tomorrow, no one 

among them is obliged to choose such means of transportation; one only asserts a 

fact that is confirmed by experience.” (Borel 1908, 648) 

Borel concludes this part of the argument by recalling the 1906 comparative arguments 

on the estimation of improbable events, however frightening they might be, when their 
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probability is much smaller than that of risks we take on a daily basis. Lacking the 

capability of making such comparisons is ironically qualified by Borel as „head in the 

sand policy“ (politique de l’autruche): 

Q12 “Ignorance might be convenient to those who practice this head-in-the-sand 

policy; it is never desirable for those who prefer to see clearly and do not let 

themselves be influenced by the more accurate knowledge of a possible danger, 

when its probability is much smaller and the unknown dangers to which the most 

fearful man does expose himself every day. One has nothing to fear from 

calculation, when one is decided not to align one’s conduct on its indications, 

without first estimating their proper value. To think that individual independence is 

augmented by ignorance is a peculiar illusion.” (Borel 1908, 649) 

Borel does not stop his argument at that, but come back at the very end to Palante’s 

passionate defense of radical individualism, but an equally passionate defense of the 

notion of solidarity, to which mathematics contribute, insofar as it can be educated: 

Q13. “Is there therefore no ground to the opposition we pointed out between 

probability calculation and individualism? There is, on the contrary, a very real one 

insofar as individualism is antisocial and probability calculation is the basis of what 

one may call social mathematics. Its study reminds us indeed that we are living 

within society and that the social phenomena have real existence and their proper 

interest. It reminds us that, while men are different from each other in many aspects, 

they are nevertheless similar in that they are all exposed to accidents, disease, death; 

and in that they various biological aspects (…) are distributed among regular laws 

about certain means; and in that, finally, one can establish laws that are checked by 

factual observation and in the statement of which they are considered constitutive 

elements of the whole to which the law is applied. (…). Such accounts are eminently 

proper to limit the excesses of the individualist mentality. Such or such a disease 

causes, on average, a certain number of victims; hail and floods make, on average, a 

certain amount of damage; one does not know why some are affected and others are 

spared, but society, as a whole, suffers from a more or less constant damage. The 

study of such facts can only contribute to develop the notion of solidarity, to recall 

to everyone that he should not consider himself as independent of the milieu in 

which he lives and that he should participate in repairing the casual damages that 

affected his neighbor and could have affected himself. Thus, the study of probability 

calculation does have a great educational value; one should hope that it would be 

within reach of all of those who want to take part in governing men and things.” 

(Borel 1908, 649-650) 

This passionate defense of Condorcet’s ideals is highly revealing of Borel’s own 

political ideals, which were largely shared by the Republicain and Radical-Socialist milieu 

to which he belonged. This now leads us to expose some contextual elements. 

3 The political and philosophical background of Borel’s arguments 

We here give some elements of background that might help to understand better how 

Borel’s political and epistemological position, both as an author and as the chief editor of 

the Revue du Mois, might help to understand his argumentation and his final goal, which 
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was to promote the knowledge and teaching of probability calculus. 

3.1 Alfred Croiset on the teaching of secular ethics (1906): the role of the 

State in education 

The second paper published in the first issue of the Revue du Mois, after Vito 

Volterra’s translation of his inaugural lecture on the role of mathematics in biological 

and social sciences, is written by Alfred Croiset and touches on issues related to the 

teaching of secular ethics (morale laïque). 

Alfed Croiset was an important figure in the Republican and Academic intelligentsia by 

Borel’s time. Croiset was an eminent philologist and by then the Dean of the faculty of 

humanities in Sorbonne. He was also at the head of the “ethics division” (section morale) 

of the Ecole des Hautes Etudes Sociales founded in 1900 by Dick May (Prochasson, 

1985). In this function, he organised with much talent several series of conferences, many 

of them having to do with the kind of “ethics” adapted to the scientific age. The 

conference, of which Croiset’s paper in the Revue du Mois is a transcription, precisely 

introduces to one of these series of conferences. The subject was a great topical actuality 

in 1905, since it bore on the teaching of secular ethics. The latter had been instituted some 

20 years before in the public school by one of the most famous laws passed under the third 

Republic (Loeffel, 2010).  

Croiset, more precisely, summarizes the basis of the problem posed to teachers by this 

(by then) relatively new school subject. Delivered in the framework of a religiously 

neutral State, it has lost the dogmatic ground that was naturally attached to confessional 

ethics. Recalling then the contemporary tendency to provide a scientific ground to modern 

ethics, he opposes the following, which is a reflect of the kind of ‘scientific uneasiness” 

expressed by contemporaries like H. Poincaré:  

Q14. “For [teachers] have often heard that the most distinguished scholars that 

science was not an immutable and definitive work, that it was forever provisory in 

some sense, and it changed with all the rest. So then, in this flow of everything, what 

of the absolute character of duty, which seems to be the indispensable imperative of 

any ethics?” (Croiset 1906, 22) 

This is contrasted with the urgency attached to action, thus defining the key problem he 

addresses to his audience: 

Q15. “All these facts make it therefore particularly difficult, today, the task of 

organizing a secular teaching of ethics. But it also makes it more urgent as ever: for 

we must live, and since life is action, we need reasons to act. Reality does not wait 

for us to get out of our ignorance or doubts.” (ibid.) 

Croiset’s next turn is to oppose any idea that the ethics in question could be qualified as 

“scientific”, in the sense proposed by his contemporaries Durkheim and Levy-Bruhl, to 

whom he explicitly refers. The point is that the secular State cannot have any agenda of 

promoting a dogmatic ethical doctrine, even a positivist one. The problem, then, as 

defined by Croiset in full coherence with the doctrine of the Republican state ideology of 

that time, is to define the role of Secular State (l’Etat laïque) in the teaching or ethics: 

Q16. “Can [the State] teach any ethics? To the name of what principles? And can 

it do this while keeping his proper field, without impeding on that of individual 

consciousness, without exposing itself to the reproach of tyranny, and without 
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meanwhile depriving its doctrine of any virtue and strength? Such is the problem on 

which I call your attention” (Croiset 1906, 24) 

Croiset’s essential answer to this question is interesting and revealing of the underlying 

state ideology above mentioned. Having ensured that the secular State is perfectly capable 

of giving individual an ideal and a rule of conduct, he adds in grandiose terms: 

Q17. “This end is the development of social life, which is for us the highest form 

of human life, for it constitutes the necessary framework of any individual life; it is, 

at the same time, the result of all past progresses and the condition for the future 

progresses of humanity. The State … is the real, concrete instrument of collective 

life, without which there is no civilization. (Croiset 1906, 25, our emphasis) 

Living out the details of Croiset’s own theory justifying this idea, based on his 

historical understanding of the grounding of common ethics on the sedimented past, let us 

turn to the underlying political agenda. 

3.2 The political background: the solidarism of Bourgeois, Croiset, Bouglé.  

For this, let us turn to another cycle of conference organised three years earlier by 

Croiset together with Leon Bourgeois, an interesting and important political figure of 

the third Republic (Croiset & Bourgeois, 1902). Bourgeois had synthetised in a 

coherent doctrine, soon called solidarism, a social and political doctrine which 

defined, for proponents, a kind of mid term between individualism (attached to 

economic liberalism) and socialism (attached to Marxism). This influential doctrine 

soon became the „official doctrine“ of the Third Republic and the ground for 

important reform defining a wellfare state „à la Française“ (Hayward, 1961). 

Croiset, in his interesting and nuanced introduction, recalls the reason why people of 

his generation felt attracted to the notion of solidarity:  

Q18. “If individuals are, so to speak, the cells of society, the word by which 

biologist express the interdependence of cells, is the one that should from now 

designate the interdependence of individuals. (…) Our modern generation, so thirsty 

of positive and objective science, needed such a word that would express the 

scientific character of moral law. The term “solidarity”, borrowed from biology, 

marvellously echoed this obscure and deep need.” (Croiset & Bourgeois 1902, x) 

He then explains that the solidarist spirit that thus emerged from the progressive shift 

from a specialized term to a political one conveyed… 

Q19 “… a kind of scientific character that pleases the spirit of our time: we love 

this regularity of natural and social laws, that exclude the whim of individual wills 

and the incertitude of feelings” (ibid xii) 

Croiset finally counterbalances these ideal views with the claims for respecting the 

rights of individuality:  

Q20. “One should avoid going too far along this way. The best things have their 

dangers. During our talks, one has come out in favor of individualism understood in 

the most elevated sense, against the absorption of individuals in the whole. (…) 

All intelligent solidarist people are perfectly convinced that the love of humans 

for each other, as well as the complete development of individuals in social 

harmony, are indispensable elements of true solidarity.” (ibid. xii-xiii) 
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We thus retrieve key ideas later developed in the 1905 conference published by Borel 

in 1906, that we commented above. These ideas are developed in another article published 

in April 1906 by Célestin Bouglé on the scientific grounds of solidarism (Bouglé, 1906). 

Bouglé was one of the first members of the early team of scholars who, around Durkheim, 

launched the Année Sociologique, which was the banner of the newly founded sociology 

(Vogt, 1979). Bouglé was also a militant scholar strongly advocating solidarism (Bouglé, 

1907). In a much more sophisticated manner than Croiset, because of the highly learned 

references to contemporary thinkers he adds to the discussion, Bouglé develops the same 

ideas, grounded in the same paradox: necessity of grounding the solidarist ethics on a 

scientific and positivist ground, impossibility to do so without risking violating the right of 

individual freedom and consciousness. 

Through an epistemological reflection on what exactly should be understood under the 

name “scientific attitude”, Bouglé demonstrates that there is in fact no contradiction 

between the latter and the thirst for justice, fraternity, or social compensation. Having 

adopted this kind of compromise, he then argues that solidarism still retires something of 

its proximity to modern science, both on the levels of the means of action, as of its final 

ends. The key idea is that, although science cannot pretend to create ethical feeling (like 

that of justice, that pre-exist any social experience), it can still modify them. For this 

purpose, ethical education plays a crucial role: 

Q21. “To shape the consciousness of the young in our schools, we actually apply 

the method advocated by solidarism: we fill them with science. By the history of 

inventions and institutions, we give them the feeling of what human progress is 

about and what it owes to universal cooperation. We thus inspire them the desire to 

fulfill their duties, to pay their share, to do their part (…) They are disposed to more 

altruistic effort through the very fact that they conceive themselves, as Condorcet 

would say, as ‘cooperating in eternal work’. The expansion of intelligence, obtained 

through the knowledge of facts, thus results in a dilation of the heart.” (Bouglé 1906, 

450-451) 

3.3 The editorial background 

As mentioned above, the various papers discussed above, by Borel, Croiset and Bouglé, 

were all published in the Revue du Mois, edited by Emile and Marguerite Borel. More than 

that, their contents - with the special emphasis on science in practical life and society - 

were in line with the declared purpose of the Revue, which was announced in the 

following way:  

Q22. “The number and the importance of problems that can be treated adopting 

scientific methods grows every day. It seemed possible to us to imagine a journal 

which focused on these methods, not as a specialist publication but rather by aiming 

at the general development of ideas, and the exposition and critical appraisal of the 

advances in Knowledge and the resultant spread of ideas. 

The Revue du Mois attempts to be this journal. It claims, above all, to be a 

journal containing free discussion, allowing the free unhampered expression of 

opinions based on science. The titles of the articles that follow this statement testify 

to the breadth of its scope; the names of the authors are an assurance of the 

seriousness with which its remit shall be fulfilled.” (prospectus translated in Durand 

and Mazliak, 2011, 314) 
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The issue of how science and scientific method could help develop general ideas and 

opinions was thus very much at the centre of the Revue’s ambition. The notion of science 

was understood in a very wide and varied way going far beyond the tradition fields of 

mathematics of experimental science: it included indeed the nascent “social sciences” like 

sociology, psychology, economy or human geography. 

The study of Borel’s editorial correspondence around the publication of Croiset’s paper 

shows that he intended it to become the point of departure of a debate on the teaching of 

secular ethics. He thus solicited two former friends of him, the physicist Bernard Brunhes 

and his brother Jean, a geographer, to find a Christian response to Croiset’s paper. The 

Brunhes were indeed known to belong to the modernist movement, also related to “social 

Christianism”. We cannot enter here into any detail on the detail of this exchange of 

letters; it is enough to say, that Borel was not only interested to have a Christian response, 

which in fact he never obtained because “modernist Christians” soon met with serious 

problems through the Pope’s condemnation of their opinions (through the encyclical 

Pascendi dominici gregis issued in 1907).  

But Borel was visibly convinced by the exchange to seek for another article than 

Croiset of a more elevated kind, of the level of Durkheim of Levy-Bruhl, and this was 

probably the reason why he ultimately asked Bouglé to contribute to the subject. Second, 

and more important, the correspondence also shows that he felt incited to contribute 

himself to the debate in his own way, and this might be one explanation for the particular 

tone and structure of his two papers of 1906 and 1908. 

3.4 The epistemolocial and didactic background: Borel’s ideas on 

mathematics and their teaching  

Another element of explanation for Borel’s special positions on the value of probability 

calculation and of its teaching, surfaces through the papers analysed and quoted above. 

For we saw that he considered the reflection on probability and on the laws of chance, as 

part of a more general reflection of wider scope, on the value and applicability of 

mathematical knowledge in general. This appears, within his argument, through the 

comparison between the problems raised by the interpretation of probability calculation 

for real life, with the problems raised by any train of mathematical calculation based on 

approximate knowledge.  

But this point was hardly secondary to Borel, as is shown through his very first public 

intervention on question of mathematics education, through his 1904 conference held in 

“Musée Pédagogique” on the role of practical exercises in the teaching of mathematics 

(Gispert, 2002). In it, Borel defended a kind of approach to teaching making a 

compromise between theory and practice. The end of the conference is worth quoting, 

because it shows again, that Borel had very early in mind, that this proposal had 

potentially both an epistemological and political signification:  

Q23. “This new orientation towards the teaching of mathematics in our lycées 

and collèges, of which we just outlined, would exert the most beneficial influence on 

the philosophical ideas of the educated classes, these ideas governing in reality the 

evolution of the country. (…) 

A mathematical education, both theoretical and practical, as the one we tried to 

conceive, can exert the most beneficial influence on the training of the mind. We can 

thus hope to shape men having faith in reason and knowing that one should not try 
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to escape when facing a correct reasoning: one has just to accept it. They will have 

understood, on multiple examples, the determinism attached to natural phenomena 

and will be ready to understand the notion of physical law. But, on the other hand, 

they will be wary about any ungrounded reasoning (raisonnement en l’air) with no 

basis in reality, referring to badly defined words and to calculations effectuated on 

abstract numbers, the concrete signification of which is not made clear. They will 

seek to see the tangible object beyond the symbol.” (Borel 1904, quoted in Gispert 

2002) 

4 Conclusions 

Having thus immersed ourselves into this literature aimed at the educated public in Borel’s 

time, we can then come back to the contemporary issues raised in the first place and ask 

what is and might be the interest of these reflections for nowadays teaching. 

We propose three kinds of answers that are inspired by the work done in the research 

group, of which the present paper is an outcome. 

4.1 Questionning the value of probability concepts for common 

understanding 

We have seen how Borel’s paper are structured around the idea of taking in earnest an 

imaginary debate between competent mathematicians and „contradictors“, that is, laymen 

having their own intuitions, beliefs and reasoning on the day-to-day events and decisions, 

for which probability calculation pretends to provide help and insight. Transposed to the 

teacher and student situation, we retrieve a problem that is well known to middle school 

mathematics teachers, namely the conflict between the meaning of mathematical concepts 

such as „chance“, „probability“, „events“, „certain“ or „impossible“ events, „expectation“, 

and so on. This problem of making sense of the mathematical concepts, through a 

dialogue with the pupils own conceptions and understanding of the underlying situation, is 

much at the center of the French formal curriculum in probability. 

What we find here, therefore, is an argument that gives room and legitimacy to the 

conflict between mathematical calculation, concepts, and models, on the one hand and, on 

the other, the matters of day-to-day life and decision making, the complexity of which 

cannot be reduced to the straightforward and passive interpretation of results. Many 

teachers are not at ease with these limits and with the questions of the complex relation of 

calculation with the reality it only helps to interpret. Getting into these arguments amounts 

to retrieving the historial fact that the application of probability theory to reality has been a 

matter of dispute for a long time, and, in fact, remains so. 

4.2 Looking for “thought provoking” problems 

As we have seen, part of the basic argumentative apparatus in Borel is made of small 

problems, that do not pose very deep difficulties in terms of calculation, but calls for 

reflecting on the results and their value. These problems were not Borel’s invention 

but the result of an already long tradition, well represented by the seminal treatise on 

probability of Joseph Bertrand (Bertrand, 1888). This treatise, which became in 

Poincaré and Borel’s time a basic reference, is entirely made of problems, instead of 

axioms or formal definitions as in Kolmogorov or other authors that took inspiration 
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from him. Moreover, Bertrand treatise is preceded by a long preface that introduces 

the reader to the epistemological problems raised by the application of probability to 

real and especially social events (Bru, 2006). 

There is much emphasis, today, on the need for problems that conciliate the teaching of 

mathematics to the education to citizenship and especially to critical thinking. While many 

such problems are available, it is important to be conscious they are not new or the natural 

outcome of the contemporary concerns for the “overflow” of data around us. The 

historical tradition of probability writing constantly refers to famous dilemmas, like the 

problem of inoculation that constituted a famous controversy between Bernoulli and 

d’Alembert in the 18
th

 century. Keeping alive this culture of controversy and problems, is 

certainly an important challenge. 

4.3 Situating probabilistic thought in its political context 

Finally, what Borel’s papers reveal, when understood against their political and 

philosophical background, is precisely the fact that their complete understanding 

depends on the latter. In France, the events surrounding the birth of the third Republic, 

the eductional laws that were passed under this regime, and in particular the 1905 law 

of separation of Church and State to which Croiset directly refers, are of huge 

importance and part of a living tradition: thus, issues like those of secularism and the 

attached notion of confessional neutrality, are key concepts of our political culture. 

What is less known6 is the fact that the doctrine of the French state politics was inspired 

by such doctrines like solidarism, although it is at the ground basis of the idea of “social 

state”. There is much room, therefore, for interdisciplinary activities and training, showing 

how probabilistic thought is rooted in this political culture: the emphasis on the debate 

between the individual and society, in inseparable from the rise of probability and 

statistics, as a subject of public concern. 
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ABSTRACT 
The lack passion some students have for mathematics is known. Understanding that the basis for further 

mathematical skill development is determined in the primary schools, we chose a project involving 9 to 14 

year olds from the Reggello school (Florence, Italy). The project is part of a multi-year course titled “The 

Pleasure of the Beautiful” with the idea of appreciating the beauty of mathematics and its relationship with 

other disciplines (art, history, geology, …). In this project we chose to talk about symmetry as a key reading 

idea to understand art and architectural works, considering it is one of the central ideas of mathematics of the 

twentieth century. The opportunity was offered by the presence in our landscape of the Sammezzano Castle, 

a beautiful Moorish style building, built in 1605 by the Ximenes D'Aragona family and restored by 

Ferdinando Panciatici between 1853 and 1889 according to Orientalist fashion, then in vogue in Florence. 

The castle is rich in geometric decorations and tiles with reference to the Alhambra mosaics. 

 

1 Introduction 
 

At the beginning of school year, I used to get my first-class pupils to write a composition 

“Maths and Me” asking them to express openly their opinions. Here are some of the things 

they said: Elisa (first class) “I don’t like maths at all, when I was in primary school, I was 

one of the best pupils, the same in the first class of middle school. In the second class I 

began to have difficulties understanding the teacher’s explanations.....I would find myself 

shaking every time the teacher gave back tests”. Gabriele (first Class) “Maths and me – 

like a cat and dog”. Giulia “Now I’m in the secondary shool, and I think that I must live 

another five years with maths, I feel really unhappy. One thing is for sure. When I finish 

school I will never have anything more to do with maths”. 

In the light of such comments, our task was not easy, how could we change the 

opinions of our students about maths and let them appreciate the beauty (the actual 

beauty) of a subject which people consider arid and lacking in poetry? For this reason we 

worked on a project, lasting four years, which involved some classes of Primary and 

Secondary school. This project is called “Il piacere del bello” (The pleasure of beauty). 

Why have we titled this project “The pleasure of beauty”? Perhaps because we live in 

Tuscany, where the Renaissance and the Medici have left testimonies of incomparable 

beauty, as the architect Renzo Piano wrote to the inauguration of Columbias University 

Art School. Beauty is not only that of consolidated art, it is emotion, research, knowledge, 

discovery; it is also political gesture, it gives strength to desires and is one of the human 

emotions capable of competing with those more dangerous: money, power and conquest.  

The mathematician’s patterns, like the patterns of poet or painter must be beautiful – 

the ideas like the colors or the words, must fit together in a harmonious way. Beauty is the 

first test, wrote G. H. Hardy in his book A Mathematician’s Apology, 1940. It is impossible 

to be a mathematician without being a poet in soul. (Sofia Kovalevskaya, Recollection of 
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my chilhood, 1885). Mathematics is perceived as a new relationship between the lightness 

of the ideas and the heaviness of the world. (Italo Calvino, American lessons, 1985). In 

our opinion, one reason (not the only one), for studying mathematics is to educate the eye 

and the ear of mind to be able to see it or to feel this beauty. So, why mathematics appears 

beautiful this reason is necessary, although it is not measured, in case it is dampened. 

Creative thinking needs time, space, serenity, curiosity and enthusiasm: it must be able to 

conduct researches without restrictions, excessive fears or anxiety. 

 

2 Interdisciplinarty of the project 
 

The continuity between different orders of school and interdisciplinarity is the key to unify 

the different disciplines. “The supremacy of a fragmented knowledge, according to the 

discipline, must be replaced with knowledge capable of grasping mutual relations and 

mutual influnces between parts and a whole complex world” (Edgar Morin, Manifesto 

pour changer l’education, 2004). 

Our project with the recovery of manual dexterity, carried out through the laboratories, 

the involvement of the students, who themselves become teachers to the other students 

and promoted initiatives towards adults with the realization of the works carried out with 

the involvement of the territory and of the family, make students the protagonists of its 

own knowledge. With the laboratories, learning recuperates its formative value, we 

recover the place where we search, we experiment, we give meaning to the students to 

work in harmony with their curiosity. 

 

3 Italian school structure 
 

Education in Italy is compulsory from 6 - 16, and is divided into five stages:  

Pre-School (scuola dell’infanzia / not compulsory / 3-5 years), Primary School (scuola 

primaria / 6-10 years), Lower Junior High School (scuola secondaria / 11-13 years), High 

School (scuola superiore / 13-16 years), University (università).  

Italy has a both public and private education system. In Italy a state-born school system 

has existed since 1859, when the Legge Casati (Casati Act) was published. 

Our school is for students from age 3 to 13 years. It includes three stages: Pre-School: 

301 students, Primary School: 532 students; Lower Junior High School: 315 students 

 

4 Methods and teaching strategies 
 

The 8 key competences of European Union are: Communication in the mother tongue; 

Communication in foreign languages; Maths competence and basic competences in 

Science and Technology; Digital competence; Learning to learn; Social and civic 

competences; Cultural awareness and expression; Sense of initiative and entrepreneurship. 

In our school we have five labs: music, ceramic, physical education, science and maths. 

 

5 The territory of the project 
 

Our territory is located in Italy, in the central part of the peninsula. The area is about one 

hundred kilometers from the Tirrenian sea. We lie in the shelter of the Appenines 

mountains. This mountain chain passes through the entire peninsula like a spinal column. 

We are in Tuscany, near Florence, in a district named Upper Valdarno because of the 
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location in the upper part of the Arno river valley. 

In our valley the Arno river flows through its central part. The river goes then to 

Florence and on to the sea. Sammezzano Castle is located in this valley. On the east side 

we have the ridge (about one thousand and six hundred meters above the sea level); on the 

west side we can see the Chianti mountains (about nine hundred meters above the sea 

level). The lower part of the valley is about one hundred meters above the sea level. Here 

the valley is like a trough. This hilly area has a very peculiar aspect. It is very interesting 

for many aspects: first of all the geological one, but also naturalistic and environmental 

ones. The name of this area is “Balze park”. “Balze” is the name of particular rock 

outcrops that stretches for many kilometers across Upper Valdarno. A possible translation 

could be cliffs.  

 

6 History of the Sammezzano castle and Ferdinando Panciatichi 

Ximenes d’Aragona 
 

The castle of Sammezzano got its current appearance thanks to the work of one man: 

Ferdinando Panciatichi Ximenes d'Aragona (Florence, 1813 - Sammezzano, 1897) who 

renovated and expanded the pre-existing building during the period between 1843 and 

1889. The history of the place however is significantly older: it is possible to trace it back 

to the Roman period, as well as to the subsequent centuries. In the History of Florence 

written by the great historian Davidsohn, it is reported that in 780 Charlemagne may have 

passed by the place on his way back from Rome, where he went to have his son baptized 

by the Pope. Ferdinando was owner and builder at the same time; although he had no 

university degree, he had the abilities of an engineer, an architect and a geologist. This 

allowed him to design, plan and finance the castle by using local products and employing 

mostly native manpower. The cultural wave of “orientalism” spread around Europe at the 

beginning of the nineteenth century and Florence was one of the main centers. Influenced 

by this movement, Ferdinando started to modify the existing Sammezzano structure and 

realized new halls. 

As an expert and passionate botanist Ferdinando planned a vast area surrounding the 

castle of approximately 65 hectares, the so-called historical park. Around the ancient 

“Ragnaia”, which was characterized by a great forest of evergreen oaks, he recreated the 

habitat for numerous rare and exotic plants. His intent was to prepare step-by-step visitors 

and guests to the magnificence of the “Moorish” style of the castle. 

In the late 90’s, after several events, the property passed into the ownership of a group 

of English and Italian societies. The society plan was to perform an important renovation 

and re-open Sammezzano for tourism. However, no actions have been realized and the 

castle remained unused until today. 

 

7 Geology lab. Upper Valdarno geological evolution 
 

The Castle location in the “Balze area” was the occasion for an interdisciplinary work 

comprising not only mathematics, art and history, but also geology. The students have 

discovered the geological history of the area using books, internet, magazines, the direct 

knowledge of the places where they live, and the observations of rock outcrops. For 

example, the students have drawn a section of their territory, starting from the bottom of 

the valley to the top of the mountain. They noted the presence of clay, silt, sand, gravel, 
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pebbles and huge blocks of rock: deposits usually carried by the rivers. They understood 

these materials had been eroded, transported and deposited by torrents. Then they noticed 

that the clasts’ size increases from the valley to the mountain. They answered: “This is 

because we are closer to the place where the rocks have been eroded.” They noted that the 

Valdarno consists of a kind of erosion plateau, so they confirmed what they had already 

heard in their childhood: in this area there was an ancient lake. This lake was filled with 

debris coming from mountain erosion. Then the materials that filled the lake were in turn 

eroded and gave rise to the Balze.  

Through research on the Internet they also found more detailed explanations that we 

can observe in some slides taken from a work of the University of Florence, Department 

of Earth Sciences, in which we see the evolution of the area. The students then carried out 

research on the fossil record. In fact, the bodies of many vertebrate mammals, that then 

became fossilized, were deposited in this lake during Pliocene and Pleistocene 

(Paleontological Museum of Florence and Montevarchi). The suggestion of the “Balze” 

has most probably inspired Leonardo in the landscape of the Gioconda painting. 

According to some scholars, this is not true. However, we have proof that Leonardo 

studied the Valdarno area from his writings. For example, in the Hammer Code, in which 

the scholar talks about the Valdarno and the Pratomagno. 

 

8 The project in the primary school 
 

The Hand touches, the Brain says (Rita Levi Montalcini, Nobel Prise in Medicine, 1986). 

The 4th class of the primary school in Cascia (near Reggello) composed of 16 9 year-

old pupils, took part in the project. The central idea of our work is GEOMETRY that we 

have developed in various disciplines such as art, environmental education and history of 

our territory. The themes have been developed through manipulation and the construction 

with the use of hands. The manipulative aspects are in fact very important, in this phase of 

growth. Nowadays the children are “overwhelmed” by technology which, although 

important, has taken away from their childhood and much of their practical experience in 

play, movement, manual realization and the practical creativity that should distinguish this 

phase of age. 

So our work has been based on reproduction of some geometric shapes of the Castle of 

Sammezzano and the Alahambra, using the square and the ruler, and on the construction of 

a mandala through the goniometer. The word “Mandala” means “Circle”, and it is from 

this geometric shape that we created an infinite number of symmetrical and harmonious 

forms. Drawing, coloring and building a Mandala is also a satisfying and extremely 

relaxing activity, as well as being very effective to acquire the knowledge of angle and 

geometric shapes. 

The steps of our program are: visit to castle of Sammezzano, the geometric 

transformations, reproduction of Sammezzano tiles, creation of our tiles using goniometer, 

ruler and especially our imagination. Finally the older pupils taught Mandala’s 

constructions to the younger ones. 

 

9 The project in the secondary school 
In the secondary school the same topics are gradually studied in more detail by developing 

the use of a more symbolic language, more specific to mathematics, but continuing to 

develop practical skills still using ruler, paper, pen, protractor, compass, glossy paper, 
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mirrors, multimedia board and computer. Here we have a more systematic and analytical 

analysis of the same topics concerning the symmetries faced by primary school pupils. 

However, we tried to leave space for students’ imagination and creativity without forcing 

them into too tight schemes. In this way the students have worked for a long time amusing 

themeselves.  

We used the traditional blackboard and also the electronic dashboard. We created some 

examples from the notebooks concerning the rotations using the glossy paper. We treated 

the translations analytically using Cartesian coordinates, without forgetting the symmetries 

of the Castle of Sammezzano! 

The students worked with mirrors in axial symmetry, succeeding in doing it thanks to 

their manual skills, to understand these geometric transformations in more depth. The 

application of symmetries and tiles was made by the guys using also the free Geogebra 

software. 

The work concerns the tiles of the plane using transformations of central symmetry. 

The students have tried with triangles, quadrilaterals (convex and concave) and have 

always managed to fill the plan, deducing that it is possible because the sum of the internal 

angles is 360 degrees for the quadrilaterals and 180 degrees for the triangles. Then by 

joining the figures you can form a central angle without empty spaces, while they could 

not do it with the regular pentagon (internal angles 108°). With the regular pentagons is 

not possible to tile, empty spaces remain. We have an anecdote about a 8 year old primary 

school child: during a lesson on tiles, a teacher gave various geometric figures to the 

pupils (triangles, quadrilaterals, regular hexagons, regular pentagons). All the pupils 

succeeded except one: he had received the pentagon so he began to cry.  

Here we have another example of the lesson on tiles given in the secondary school. 

This time the students worked in the three-dimensional space. During a lesson the students 

tried to make a dome using hexagons. They started by observing that with the regular 

hexagons it is possible to tile the plane. The materials used were: toothpicks, straws, 

cardboard, scissors and glue. They realized they couldn't get a dome using only the 

hexagons, that very well tiled the floor instead (they believed that they could apply the 

same laws to tile either three-dimensional space or the plan) ... the solution was at hand in 

front of everyone ... the football! Just adding the regular pentagon (maybe you could 

comfort the child who cried because he could not tessellate the plan with the pentagons!). 

This experience was very useful also in the study of solids, in particular for the 

properties of the solid angles.  

The students have applied the concepts learned from the symmetries and tiles to natural 

sciences that are an integral part of the scientific teaching in the secondary school.  

They discovered the microscopic organisms (radiolarian, diatoms) that make up the 

marine plankton that have a siliceous skeleton that appears under the microscope in 

wonderful shapes. As the Aulonia exagona, which used hexagons and some pentagons to 

produce its skeleton in space. Then they again found symmetries in 3D space in the 

mineral world. They did various researches on this topic and some videos as well.  

Again large-scale axial symmetries in the mid-ocean ridges, in the oceanic expansion, 

in particular the very interesting symmetry between normal and inverse magnetic 

polarization bands with respect to the medioceanic ridge, brought by scientists as a proof 

of the plate tectonic theory. 

Also the music teacher with some students put the attention on the symmetry in music, 
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in particular very interesting the experience of the German Chladni who put into practice 

the saying of Pythagoras “Geometry is solidified music”. Sand on a smooth metal plate 

that forms symmetrical and different interference figures according to the frequency of the 

sound. 

The students participated in a ceramic workshop, with a reproduction of a bas-relief of 

the Castle of Sammezzano. 

Finally we organized a trek in the Balze’s area in collaboration with the local 

environmental association and the involvement of the family. 

At the end we realized the conference and the exposition of the students’ works to 

which the families, the town council, members of the committee, and local associations 

were invited. The students directly exhibited their works in front of a crowded audience in 

the town council auditorium. 

 

 

 

Some phases of a lab about the translations. 
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Ceramic lab 

 

 

Some phases of the construction of a dome 
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Trekking in the “Balze park” 
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ABSTRACT 

This paper aims to motivate and exemplify the use of theatre to exhibit the human drama behind 

mathematics-making, by communicating a sympathetic understanding of mathematicians in their historical 

context. (In this way, the ESU8 talk served also as an introduction and motivation for a workshop 

incorporating a play about Niels Abel.) Historical processes of profound transformation in human numerical 

cognition are illustrated by John Wallis, speaking in the late 17th century on negative numbers, and by Carl 

Friedrich Gauss and Augustin-Louis Cauchy in dialogue in the 1830s on the re-naming of ‘impossible 

numbers’ as ‘complex numbers’. Such theatrical devices can help teachers respond to the conceptual 

difficulties faced by learners. By evoking the intellectual adventure through which notions like ‘irrational’, 

‘fictional’, ‘false’, ‘real’, ‘imaginary’, and ‘impossible’, were negotiated, refined, named and re-named, 

learners may be encouraged to see negatives and complex numbers as wonderful products of a human quest.  

1 Introduction 

When I first started teaching analysis, beginning with extensions of number systems, I had 

little idea of the great historical transitions negotiated by the early pioneers in developing 

and naming the number systems: natural numbers, fractions, negatives, integers, rationals, 

irrationals, complex numbers. But it soon became clear to me that similar 

enormousintellectual gulfs have to be crossed in mathematics education today.Our 

students may repress their anxiety and perplexity, and appear to swallow without painour 

over-hurried treatment and purely logical development.But we can get a feel for their 

inevitable struggle by exploring the parallel historical struggle in the evolution of those 

intriguing names: false, fictional, negative, impossible, imaginary, complex.Appreciating 

this human intellectual adventure is critical for both history and pedagogy. In this paper I 

aim to show how the devices of theatre can help to bring alive the colourful story behind 

the concepts–to show, as vividly as possible, how definitions emerged from passionate 

debate, concepts were forged and re-forged, names were proposed and argued over and 

changed –nothing was instantly conceived or distilled ready-made from the intellectual 

air. Introducing concepts in this way, learners may be drawn into the excitement of the 

human adventure, and coaxed into welcoming ideas that otherwise appear alien and 

threatening. This may occur at all levels of education, from primary to tertiary, but the 

play featured in this talk is especially relevant to the introduction of complex numbers, 

which may happen informally in secondary (high) schools or colleges (particularly when 

quadratic equations are encountered), or more formally at university level. The first 

monologue in the play (by John Wallis) may even be used effectively in primary school 

when negative numbers are introduced, with suitable explanation or editing of Wallis’ 

seventeenth century English expressions. 

In my talk at ESU8, three other participants kindly agreed to help the audience get 

inside the heads of three historical characters who were instrumental in negotiating the 

concept and fixing the name, complex numbers. In the final full acceptance of 
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‘impossible’ numbers, and their more respectful re-naming as ‘complex numbers’, the 

authority of Carl Friedrich Gauss (1777–1855) was central. In contrast, the long drawn-out 

resistance of Augustin-Louis Cauchy (1789–1857) shows that skill in formal manipulation 

and willingness to make fruitful application are only partial stages on the journey towards 

embracing mathematical objects in and for themselves. But it was John Wallis (1616–

1703), much earlier, who first pointed the way towards representing numbers as relations, 

grounding his relations in concrete geometrical ideas.The establishment of the negative 

number system was achieved historically (and is approached today in the classroom) by 

blending the ideas of geometrical number line and algebraic rules. Similarly, the final step 

in the establishment of the complex number system, for the pioneers and for numerical 

cognition of students today, is achieving a fully blended conceptualization of the complex 

plane and the algebra of complex numbers. This blending is accompanied by a 

transformation in perception of numbers, from representing objects to representing 

relations. 

Many mathematicians, from Bombelli to Euler, made great use of the so-called 

impossible or ‘phantom’ numbers without believing fully in them, and even Cauchy 

struggled, well into the 19th century, to accept them as numbers.The dawning of 

geometrical representation was crucial, but it came slowly. Opinions differed widely, 

especially across the English Channel, and communications were bad. But one 

mathematician, based in Brunswick, Germany, was universally respected. Gauss decided 

in 1831 to go public with his strong conviction that the so-called impossible numbers were 

as meaningful as the real numbers. Much earlier hehad made great use of imaginaries in 

his first proof of the fundamental theorem of algebra. It was in his first paper of 1799, and 

in correspondence with Bessel in 1811, that he indicated his conviction that these things 

might be more than just strangely useful phantoms. Finally,two decades later he produced 

a new and respectful name that would stick, insisting that bad names had been a curse, and 

asserting that geometry was the handle by which to grasp these things. 

It was John Wallis, back in the 17th century, who first proposed a geometrical picture 

of the square root of minus one as a unit perpendicular to a number line. In his Algebra, 

Wallis first makes great play with the analogy of the negatives – they can be seen as 

translations backwards along the accepted positive number line. 

2   John Wallis introduces negative quantities 

[ENTER Wallis with stick/cylindrical ruler] 

WALLIS:
1
 It is impossible (everyone agrees) that any quantity can be negativesince it 

is not possible that any magnitude (or geometric length) can be less than nothing, or any 

number fewer than none.Yet [...] that supposition (of negative quantities) is not either 

unuseful or absurd, when rightly understood. And though, as to the bare algebraic 

notation, it imports a quantity less than nothing, yet, when it comes to a physical 

application, it denotes as real a quantity as if the sign were ‘plus’ [gestures + in the air 

with his stick], but to be interpreted in a contrary sense. 

 

As for instance: supposing a man to have advanced or moved forward (from A to B) 5 

yards [begins pacing]; and then to retreat (from B to C) 2 yards. Suppose it be asked, how 

                                                            
1
 Based closely on (Wallis, 1685), including his language and spelling for historical flavour. 
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much he had advanced (upon the whole march) when at C, or how many yards he is now 

forwarder than he was at A. I find (by subducting 2 from 5) that he is advanced 3 yards. 

(Because plus 5 minus 2 equals plus 3). 

 

But if, having advanced 5 yards to B[returns to B], he thence retreat 8 yards to D[he 

paces them out and stands at D]; and if it be then asked, how much he is advanced when 

at D, or how much forwarder than when he was at A: I say minus 3 yards! (Because plus 5 

minus 8 equals minus 3). That is to say, he is advanced 3 yards less than nothing! 

[throughout the rest of his speech, he points with his stick while talking]  

Which, in propriety of speech, cannot be (since there cannot be less than nothing). And 

therefore as to the line AB forward, the case is impossible.But if (contrary to the 

supposition) the line from A be continued backwards, we shall find D, 3 yards behind A 

(which was presumed to be before it). 

And thus to say, ‘he is advanced minus 3 yards’, is but what we should say (in ordinary 

form of speech): ‘he is retreated 3 yards’, or ‘he wants 3 yards of being so forward as he 

was at A’. 

[EXIT] 

3   From negatives to imaginaries to ‘complex numbers’ 

It is clear how new and strange Wallis feels the concept of negative quantity might be for 

his readers. Today we introduce young children to‘directed numbers’. Perhaps we can 

learn from Wallis’ concrete, kinetic style here, in giving one of the first intimations of the 

doubly infinite number line. He goes on to extend this careful justification of negatives to 

an analogous representation for imaginaries, as located off the line, in a plane. His aim, as 

he put it, is ‘to explicate what we commonly call the Imaginary Roots of Quadratick 

Equations’. 

It took a century longer for mathematicians to begin to accept the full planar 

geometrical representation of what were still called ‘imaginary quantities’.This is not 

surprising, for even the one dimensional representationof positive and negative numbers 

was not yet an integral part of mathematicians’ cognitive scaffolding, as Wallis’ 

painstaking exposition shows. And he could go no further, for the fully developed 

Cartesian plane was not part of his world.Then, a century later, a stream of others, notably 

Wessel, Argand, Buée, and Warren, independently saw how to match imaginariesusefully 

with points in the Cartesian plane, which was then available to them as a cognitive 

resource. The name ‘imaginary’ survives today, in referring to the ‘real’ and ‘imaginary’ 

parts of a complex number.  Other apparently disrespectful names survive also: negative, 

irrational! It has been suggested that these names might discourage learners, who could 

infer that such concepts are fearsome and inaccessible; some have even campaigned to 

change ‘complex numbers’ to‘composite numbers’, or ‘compound numbers’; we would 

then call imaginary numbers ‘perpendicular numbers’, and real numbers ‘limit numbers’. 

However, the rudenames can be usedto great pedagogical advantage by introducing the 

historical adventure and drama of the making of mathematics. 

In the 1830s, Carl Gauss finally grew impatient with the ambivalence and caution of 

the mathematical community, and announced a new name for the ‘imaginary’ creatures, 

making a strong claim for their objective existence. In the next section he engages in 
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dialogue with Cauchy, instigator of the theories of complex integration and complex 

functions,but one who nevertheless took most of his life to accept that the indispensable 

tools he was using could have realexistence as numbers. The dialogue is the author’s 

invention, but is based on primary sources.
2
 

4   Cauchy and Gauss in dialogue 

[Cauchy and Gauss walk on in conversation, stopping mid-stage] 

CAUCHY: Herr Gauss, I hear you are seriously proposing to give equal rights to 

impossible numbers! 

GAUSS: Liberté, égalité, fraternité, eh, Monsieur Cauchy? I would expect the French to 

be the first to agree with me!–not you, of course – I believe you are no Révolutionnaire! 

CAUCHY: My father lost his job after the Revolution, and our family was forced to leave 

Paris when I was a child. But I hope I have been a mathematical revolutionary. 

GAUSS: Oh wirklich, you have inspired new directions, and a fine rigour in the analysis. 

But I have not seen much from you lately? 

CAUCHY: Cursed kings and wretched revolutionaries – all bent on disrupting or 

exploiting the creativity of liberal men of science! I have, since the July Revolution, once 

again been forced into exile from home and from my wife and daughters –  

GAUSS: And, I suppose, lost your position and income. That is regrettable. Where have 

you been?  

CAUCHY: It has not been easy …Fribourg, then Turin,and now Prague, where I am tutor 

to the Duke of Bordeaux, an exceedingly dull boy who will never learn any science. 

What’s more, he insults me incessantly – 

GAUSS: Insults you? A teacher is to be respected!  

CAUCHY: Ah, I committed the folly of telling him that as an engineer I once repaired the 

sewers in Paris, and he delights in spreading the lie that M. Cauchy began his career in the 

sewers!  

GAUSS: Himmel! I would not tolerate such behaviour from a pupil. Can you not return to 

Paris where you can be once more at the heart of science, and work in peace?  

CAUCHY:  Non – they would demand that I swear an oath of allegiance to regain my 

position. At least I now have my family with me in Prague. One day we will return … 

GAUSS: And you will get back to inventing revolutionary mathematics!  

CAUCHY: Ah, mon ami, for that I long! But let’s sit down and discuss your own 

revolutionary mathematics – you can tell me why you seek to elevatecertain mathematical 

symbols beyond their station. I am told you even propose a new name for them! 

[during the narrator’s speech they take seats at a café table, each partially facing the 

audience; the following dialogue may have optional ad-libbed interludes while wine is 

ordered from a waiter] 

NARRATION: So, now our characters have some human background, context and 

                                                            
2
 Mostly based on (Gauss, 1831), with fragments from (Gauss, 1899) and (Gauss, 1811), and fragments from 

(Cauchy 1821, 1847, 1849). 
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personality. Having brought them to life,we can now use them to bring to life the story of 

mathematical ideas – in particular the distressing square root of minus one[slide appears]. 

      

GAUSS: Monsieur, in your illustrious work, you treat these symbols as mere slaves, and 

indeed they serve you well. But I elevate them to the status of full citizens
3
of the world of 

number. My paper offers a brief exposition of the principal elements of a new theory of 

these so-called imaginäre Mengen, imaginary quantities. I call them die komplexen 

Zahlen! 

CAUCHY: Des nombres complexes! You give the impossible square roots of negatives 

the name of complex numbers–and have you thus conjured them into reality? [shrugs and 

shakes his head in disbelief] 

GAUSS: Mein Freund, you are famous for working freely with [quotes with mocking 

gesture] ‘impossible numbers’ …definite integrals taken between imaginary limits, and a 

marvellous new type of calculus analogous to the infinitesimal calculus. Why deny them 

equal rights with real numbers? 

CAUCHY: Bien sûr, naturellement, I make great use of these symbols, as did our master 

Euler, but I hold that an imaginary equation is only a symbolic representation of two 

equations between real quantities. The roots of negative numbers remain impossible! 

[shakes his head and pulls a face] I confess that I harbour a horror of the square root of 

minus one, even while I write the symbol all over my manuscripts! 

GAUSS: Ach so, like Euler, you saythe square root of a negative number is an impossible 

quantity by nature, existing merely in the imagination! It is fortunate nothing prevented 

him from making use of it in calculation! But between his wonders and yours we should 

by now have all our painful doubts removed! 

CAUCHY: [shaking his head] Non! I am still tempted to completely repudiate that 

horrible symbol, abandoning it without regret, because I do not know what this alleged 

symbolism signifies nor what meaning to give to it. I only knowhow to make use of it. 

GAUSS: Wissen Sie, Monsieur Cauchy, the early algebraists likewise fretted over the 

symbol ‘minus’, and called the negative roots of equations false roots. And these roots are 

indeed false when the problem to which they relate has been stated in such a way that the 

quantity sought allows of no opposite.  

CAUCHY: Oui! The old objection that there cannot be less than nothing – for how can 

there be less than no objects? But now we have many applications in mechanics where 

quantities like extension and time have opposite directions. 

GAUSS: Ganz so! The acceptance of extensions of numberdepends on the variety of 

applications being forced upon us. Let us go back in time, and straight to the heart of the 

matter. M. Cauchy, tell me…in general arithmetic we admit fractions, although there are 

so many countable things where a fraction has no meaning. Not so? 

CAUCHY: Oui, oui! And you will now hasten to point out that, just so, we ought not to 

deny to negative numbers the same rights, simply because innumerable things allow no 

opposite.  

                                                            
3 Bürgerrecht, in (Gauss 1831, p. 171). 
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GAUSS: As you say – Précisément, Monsieur! The reality of negative numbers is 

sufficiently justified since in innumerable other cases they find an adequate substratum.  

CAUCHY: But for impossible numbers there is no adequate foundation, or substratum, as 

you call it. 

GAUSS: If imaginary quantities are to be retained in analysis – which, the versatile M. 

Cauchy will surely agree, seems better than to abolish them, they must be established on a 

sufficiently solid foundation. I have long believed it is necessary that they be considered 

as equally possible with real quantities.
4
 

CAUCHY: Equally possible! Equally real? Non, non, impossible!  

GAUSS: On which account I should prefer to include both real and imaginary quantities 

under the common designation ‘possible quantities’. My recent paper gives a vindication 

of these names, and a fruitful exposition of the whole matter.
5
 

CAUCHY: Some entities are quantities, some are numbers, some are, whatever you say, 

merely symbols – tools we invent in order to reach real conclusions about real possible 

quantities. 

GAUSS: Monsieur, is your work really just an empty play
6
 upon symbols, representing 

impossibilities? Consider the rich contribution which this ‘play’ has made to the treasure 

of the relations of real quantities? How can you deny them an adequate foundation? 

CAUCHY: My way of treating these equations as purely formal and symbolic spares me 

the torture of finding out what is represented by that symbol, for which you German 

geometers simply substitute the letter i, and think thus to remove the pain.
7
 

GAUSS:  Mein Freund, I have admired your work for many years, and wondered why you 

never publicly worried (as the British have a habit of doing) over the question of just what 

you are talking about.  

CAUCHY: These symbols do not have the same sort of existence as real numbers! 

GAUSS: I have long considered this highly important part of mathematics from a different 

point of view, where imaginary quantities can be fully naturalized rather than merely 

tolerated, and have an objective existence. 

CAUCHY: Objective existence! Nonsense!  

GAUSS: That’s what some of the die-hard English still say of the negatives, and they are 

being more consistent than you, my friend! Tell me once more, what convinces you that 

negative numbers exist as objective entities? 

CAUCHY: Positive and negative numbers find clear application when the thing being 

counted – geometrical extension, or time, or velocity – has an opposite, which, when 

conceived of as united with it, has the effect of destroying it.  

GAUSS: Exactly, and this can happen only where the things enumerated are not 

substances (objects thinkable in themselves), but relations between any two objects. 

                                                            
4 Based on (Gauss, 1899). 
5 His intention to do this was signalled 32 years earlier in his 1899 paper. 
6  This is ‘inhaltleeres  Zeichenspiel’, in (Gauss, 1831, p. 175). 
7 Based on (Cauchy, 1847), quoted in (Andersen, 1999). 
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CAUCHY: Are you proposing to define impossible numbers as relations too?  

GAUSS: For relations of a single series, plus one and minus one are sufficient to indicate 

the order of the transition, but for a series of series, i.e., a two-dimensional manifold, an 

additional pair of units denoting opposition is required, namely plus i and minus i. 

CAUCHY: This is not intuitive – though you may certainly name the vertical unit 

anything you like. 

GAUSS: These relations can be made intuitive only by a representation in space –  

CAUCHY: A real number may be identified intuitively with a geometrical quantity, but 

they are surely not the same thing in themselves!  

GAUSS: Just as one can think of the entire domain of all real magnitudes as an infinite 

straight line, so one can make the entire domain of all magnitudes, real and imaginary, 

meaningful as an infinite plane.
8
 

CAUCHY: The directions of positive and negative unity are clearly opposite, but how do 

we justify assigning their square roots a real direction?  

GAUSS: The directions of plus one and plus i may, in principle, be arbitrarily assigned. 

But if you consider that, numerically, the square root of minus oneis a mean proportional 

between plus one and minus one [slide appears] 

        
 

gives  
 

   
  

   

   
 

And geometrically [gestures with his arms throughout this speech, as another slide 

appears] the rotation of the direction positive unity through a right angle to the vertical 

unit plus i is a mean proportional between the directions positive and negative unity. Then 

it becomes entirely natural to let plus i correspond to the square root of minus one. 

 

CAUCHY: And you claim that an intuitive signification of your symbol i has now been 

fully justified? 

GAUSS: Indeed, M. Cauchy, the arithmetic of the complex numbers is provided with der 

anschaulichsten Versinnlichung,
9
and nothing more is necessary to bring this quantity into 

the domain of objects of arithmetic. 

                                                            
8 From his letter to Bessel (Gauss, 1811). 
9 Concrete sensory representation. From (Gauss, 1831),  in Werke, vol. II, 174-175  
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CAUCHY: Hmm … so you are claiming thatplanar direction, with rotation as the new 

relation, can give objectivity to the mysterious impossibles … 

GAUSS: If people have considered this subject from a false point of view and thereby 

found a mysterious obscurity, this is largely due to an unsuitable nomenclature. If plus 

one, minus one and the square root of minus one had not been called positive, negative, 

and imaginary (or impossible) unity, but perhaps direct, inverse, and lateral unity, such 

obscurity could hardly have been suggested. 

CAUCHY: It’s not all in a name, surely, Herr Gauss! There are serious metaphysical 

objections to overcome!  

GAUSS: Nein– by this geometrical device, the effect of the arithmetical operations on the 

complex quantities becomes capable of sensible representation, such that there is nothing 

left to be desired. In this way the true metaphysics of the imaginary quantities is placed in 

a bright new light.  

CAUCHY: Hmm … it is not impossible that I may come to grant some sort of existence to 

these quantités imaginaires – pardon, Herr Gauss, I should say, die komplexen Zahlen, 

complex numbers!  [laughs] I perhaps owe them some dignity for I have made such 

profitable use of them! 

GAUSS: I predict that the architect of the new calculus will, after mature reflection, adopt 

not only the geometric representation of so-called impossible numbers, but also begin to 

call them by my far more respectful name.And I prophesy that your new calculus will 

oneday be called ‘complex function theory’. Come M. Cauchy, let us proceed to my house 

and discuss more mathematics over some good Bier und Wurst…  

[BOTH RISE] 

CAUCHY: Complex numbers! Complex function theory! Fine names, Herr Gauss!  But 

our fears of alien concepts die hard – it reminds me of these scandalous ‘non-Euclidean 

geometries’ that some of our colleagues are whispering about – 

GAUSS: Ah, ja, now there’s an interesting conversation we might have… 

[EXIT DEEP IN CONVERSATION] 

5   Conclusion 

And so we end with a hint of the wider context in which strange new algebras and 

incredible new geometries were breaking through the official boundaries of mathematical 

authenticity. The battle to grasp the true nature of abstract mathematics raged throughout 

the nineteenth century.  Cauchy himself, as late as 1847, would refer to the torture of 

finding out what is represented by the symbol for square root of minus one. 

[CAUCHY appears again, about 15 years older, shrugging and looking irritated]  

CAUCHY: We completely repudiate the symbol, abandoning it without regret because we 

do not know what this alleged symbolism signifies nor what meaning to give to it.
10

 

[EXIT] 

Shortly afterwards, still driven by his lifelong crusade for rigour, he describes in more 

nuanced form his embracing of a geometrical representation. He admits that he has arrived 

                                                            
10 From (Cauchy, 1847). 
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at this new position after ‘mature reflections’. He will have owed much to the influence of 

Gauss, whom we heard deriding Cauchy’s earlier style as an empty play upon symbols. 

CAUCHY: In my Analyse Algebrique, back in 1821, 1 was content to show that the theory 

of imaginary expressions and equations could be rendered rigorous by considering these 

expressions and equations symbolic. But after new and mature reflections the better side 

to take seems to be to abandon entirely the use of the sign[for]     and to replace the 

theory of imaginary expressions by the theory of quantities which I shall call geometric. 

Of course I shall have to define very carefully the term ‘geometric quantity’ and further 

define the different functions of these quantities, especially their sums, their products and 

their integral powers, by choosing such definitions as agree with those admitted when we 

are  dealing with algebraic quantities alone.
11

[EXIT] 

Thus, at last the primary architect of complex analysis comes around to a geometric 

grounding of the complex numbers he has been using so fruitfully for over thirty years! 

Today, we keep both the symbolic and the geometric in fruitful union, much as Gauss 

did.Curiously, Gauss did express some doubts, both privately and publicly, in 1834 and 

1849, about whether the geometric representation could really capture the true essence of 

complex numbers.In 1834 he wrote in a letter: 

[cameo appearance of GAUSS]  

GAUSS: I admit that this Darstellung – this geometrical representation, is not really der 

Wesen–the essence – of their being, which is to be grasped by higher faculties in a more 

general way. But it may be the only completely pure and convincing example of their 

application.
12

 

[EXIT] 

 

Our aim in this paper has been to illustrate, by example, how the devices of theatre, 

based on extracts from primary sources, can bring out the excitement, the struggle, the 

sheer achievement, of historical advances in mathematics. Concepts we expect students to 

swallow unquestioningly are seen to have been fiercely contested by the great 

mathematicians who gave them birth in a community dialogue. Re-constructing and re-

living with the pioneers such debates may help us understand what conditioned prejudices 

at the time, and what fuelled the journey to new thought paradigms. Use of theatre can 

bring vividly to life both the people and events behind the abstract concepts of the 

mathematics curriculum. Such an activity may be mounted with very little preparation, 

and few theatrical props, as indeed this dialogue was at ESU8 in Oslo. From my own 

experience introducing complex numbers at university level, motivating concepts in this 

way, using historical characters in dialogue, is well worth the time taken, as the receptivity 

of learners is enhanced. 

I pose the concluding challenge: Can similar plays add value at various levels of 

mathematical instruction, for simpler ideas or even more complex ideas?  How can we 

make use of theatre to ease the pain and enhance the joy in learners’ conceptual 

development? 

                                                            
11 Based on (Cauchy, 1849). 
12 From (Gauss, 1834). 
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ABSTRACT 

In the presentation I will discuss the notion of space as it is used in paintings. I will start 

with the Renaissance painters Lorenzetti, Masaccio, Ucello, Leonardo, and Duerer, 

continue with Mannerists Tintoretto, Parmigianino and El Greco, followed by Baroque 

painters Velazquez, Rembrandt, and Pozzo, then Turner, the Impressionists like Monet 

and Renoir, post-Impressionist Seurat and Cezanne and will end with Cubists Picasso and 

Braque and Abstract painters Malevich and Kandinsky. 

In analyzing the paintings I will concentrate on the construction of the spatial illusion, 

the point of view from which the painting is constructed, the way in which a contact with 

the spectator is introduced and the particular geometric tricks (as the splitting of the 

horizon in Mona Lisa, the use of a mirror by Velazquez, or deformations by El Greco) 

used by the painters. It seems that very similar changes as can be seen in painting 

occurred, on a more abstract level, also in geometry. Thus showing and discussing the 

particular changes in the history of painting, where they are clearly visually detectable, 

may contribute to the understanding of these changes in the development of geometry, 

where the abstract setting sometimes hides the nature of the epistemic shift. 

Thus I will discuss the connection between the space used in the Renaissance paintings 

and projective geometry. In geometry the projection happens between a 3D object and its 

2D image and thus is comprehensible in a realistic manner. In projective geometry the 3D 

object is replaced by its 2D picture and thus the projection is between two images, which 

is more difficult to comprehend. Similarly I will discuss the relation between 

Impressionism and the Erlanger Program of Felix Klein. In Impressionism the distinction 

between the neutral visual basis and the structure that we introduce into it can be directly 

perceived. In Klein the neutral basis is the projective plane and the structure introduced 

into it is the metric structure of the particular geometrical system. But in a deep sense they 

do the same thing - detach the neutral visual basis from the structure. And again it seems 

that this detachment can be more easily understood in the context of the Impressionist 

paintings that in the abstract setting of the Erlanger Program. And a similar relation is 

between Cubism and combinatorial topology. The aim of combinatorial topology, just like 

of Cubism is to learn to represent objects independently of the surrounding space. Cubists 

do it by cutting the objects into cubes and rearranging these. Combinatorial topology uses 

instead decomposition into simplexes, but the basis aim and the basic idea is similar. Thus 

again the basic idea of liberating geometric objects of their dependence from visual space 

is common to painting and geometry and painting is technically more accessible. 

I use this material in my courses on the history of geometry to illustrate the sometimes 

rather abstract geometrical theories as non-Euclidean geometry or combinatorial topology. 

It is important to realize that the very notion of space did not originate in the geometry of 
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Euclid, but was introduced into geometry from treatises on painting, written by artists like 

Alberti or Duerer. I have the experience that painting makes it possible to discuss the 

fundamental ideas of geometry in a non-technical way, what improves comprehension and 

helps also to remember these deep ideas. Thus one may say that the end goal is a 

conceptual understanding of geometrical abstraction and building connections between 

different geometrical theories as projective geometry, algebraic topology and non-

Euclidean geometry. 
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ABSTRACT 

Chapter 8 of the Jiuzhang suanshu 九章算術 (1st century CE, Nine Chapters on 

Mathematical Art, from here on abbreviated as the Jiuzhang) is called fangcheng 方程,
1
in 

which there are17problems with solutions as well as their solving formulas and 

algorithms. Liu Hui 劉徽 (263 CE) made commentary to the texts upon which the 

subsequent scholars could base to better understand Jiuzhang. After Liu Hui, many 

Chinese mathematicians also made in-depth researches on Jiuzhang. This study is, 

however, devoted to the Shushu jiuzhang 數書九章 (Mathematical Treatise in Nine 

Sections) written by Qin Jiushao 秦九韶in Southern Song Dynasty 南宋. We would try to 

explain how Qin Jiushao came up with a different viewpoint from Liu Hui in terms of the 

methodology of fangcheng shu 方程術 and zhengfu shu 正負術. 

Qin Jiushao 秦九韶 (1202 ~ 1261) lived in Puzhou 普州 in Southern Song Dynasty.
2
 

During Qin’s life, Southern Song Dynasty was menaced by north country Mongol. The 

threat from the Mongols continued until the Mongols conquered the regime of the 

Southern Song Dynasty and established a new dynasty, Yuan Dynasty 元朝. Qin was in 

this turbulent era to do research and publish his book Shushu jiuzhang. The text, 

consisting of 18 juan 卷 (volumes),
3
 is a mathematical treatise which could be compared, 

in form and content, to Jiuzhang at the time. In fact, there are several subjects with which 

the author deals can be divided into nine chapters: indeterminate analysis (Vol.1, 2), 

astronomy (Vol.3, 4), surveying (Vol. 5, 6), telemetry (Vol. 7, 8), taxes and levies of 

service (Vol. 9, 10), storage volumes (Vol. 11, 12), fortifications and buildings (Vol. 13, 

14), military affairs (Vol. 15, 16), and commercial affairs (Vol. 17, 18). This paper 

explores basically the solving of simultaneous linear equations that is applied to the 

Volume17. 

When solving simultaneous linear equations, authors of the Jiuzhang provides the 

methods of fangchengshu and zhengfu shu which can be regarded to be an algorithm. It is 

interesting to note that the presentations of the methods of the Shushu jiuzhang is different 

from that of Jiuzhang. And it seems that the difference escapes historians’ attention.  

Therefore, this paper will be devoted to the explanation of the following questions:  

(1) What happened to the order of the steps of the procedure in Qin’s text? 

(2) In contrast to the original version of Jiuzhang why did Qin Jiushao give a method 

with different order of procedure? 

(3) Was this different order beneficial to the readers in Qin’s contemporaries and the 

                                                           
1
 Fangcheng means simultaneous linear equation. 

2
 Puzhou is located in the province of Sichuan 四川in China today. 

3
 There are two volumes in each chapter in Shushu jiuzhang. 
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time that followed?  
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ABSTRACT 

The European reformation had considerable effects in England. Competing political and 

religious views led to regicide, civil wars, parliamentary rule, and the final restoration of 

monarchy in 1660.Against this background, the founding technologies of early industrial 

life emerged, and economic, cultural and academic activities flourished. 

This paper continues the themes pursued in earlier papers (Rogers, 2012, 2016, 2017) 

that considered the significance of mathematics in the English social and economic 

context of early modern science and describes a series of events that prepared the ground 

for the industrial revolution of the later eighteenth century. 

Francis Bacon (1561-1626) was aware that investigating nature could be aided by 

scientific endeavour founded on new developments in astronomy and mathematics. His 

Novum Organon of 1620 was critical in the development of experimental scientific 

method employing the ‘mechanical arts’ as a model for the reform of natural philosophy 

introducing new ontology and epistemology, thus bringing the natural philosopher and the 

craftsman together. William Harvey’s circulation of the blood (1628) was an early 

example of applied mechanical philosophy. 

The resulting advances in technology were attributable to the accumulation of small, 

empirical, collaborative and democratic improvements in emergent manufacturing 

industries, where improving the means of production enhanced technical advances in 

instrument making, supporting Copernican astronomy, navigation, surveying, architecture, 

economics, and the prosecution of war (Rogers, 2016).  

The idea that the universe was not fixed and immutable grew, that man was able to 

discover something of God’s creation, and that this was a legitimate pursuit aided by new 

kinds of scientific endeavour and founded on the new developments in astronomy and 

mathematics. Given this context, the Royal Society was founded in 1660 as a “Colledge 

for the Promoting of Physico-Mathematicall Experimentall Learning” by men such as 

Wren, Boyle, Wilkins, Moray and Brounkner. 

Hooke’s, (1665) “operative knowledge”, characterized a relationship with the 

development of practical mathematics by recognizing theory and practice as a continuum 

providing potential for new methods, enquiries, and social structures that legitimized tools 

that ‘enhanced our senses’ (like the newly improved telescope and microscope)and 

established new facts. By experimenting with objects, and publicizing results, 

communities developed professional habits, thus establishing a reflexive relationship 

between object and operator (Gunter,1624), (Moxon, 1677). 
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The failure of traditional institutions to adapt to the expansion of activities in 

commerce, also prompted new social and political theories: Thomas Hobbes, Leviathan 

(1651) on the “Matter, Forme and Power of a Common Wealth” and John Locke, with 

Some Thoughts Concerning Education (1693), offered radical ideas developed by Samuel 

Hartlib (1600-1662)and William Petty (1690) who advocated teaching ‘useful 

knowledge’. By combining Baconian and Puritan ideas they put forward educational 

projects including practical ‘experimental’ subjects to introduce a better, easier, way of 

teaching, emphasizing that reason requires knowledge, where reasoning skills are 

necessary for success in any society. 

In many educational systems, the history of science and technology is often taught 

separately as episodic events, or not at all. The relationship between the political and 

social changes, the development of instruments for measuring and observing the natural 

world, the consequent increase of scientific knowledge, and the underlying role of 

mathematics may appear only in the most spectacular results, attributed to one person, 

where the achievements of many individuals who may have enabled the final result with 

their ‘incremental’ improvements have been neglected. 

Many young people are unaware of the role of mathematics in the social and scientific 

developments of today, and turn away from mathematics due to unimaginative curricula 

and the rote learning and parroting of algorithms. The problem raised on a European scale 

is ongoing, (Brown, et.al. 2008) (European Commission 2007) and (Kjelsden and 

Blomholj 2012) have shown how new approaches can benefit students’ mathematics 

education and provide opportunities where historical elements can be used to support 

students’ learning of mathematical concepts, theories, and techniques. 

Given a vision of a social-economic context, where mathematics is seen developing in 

a dual role as generator and also a consequence of cultural, economic and scientific 

development, we have a considerable range of material here in a context which is less 

overly technical, to exploit in developing school and college curricula that appeal to a 

wider audience as well as providing insights into the role of mathematics in society.  
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ABSTRACT 

The use of original texts from History of Mathematics is a way to introduce the sources on which mathematical 

knowledge is based into the classroom. Choosing historical texts carefully can help students to develop their 

mathematical reasoning skills and to realize the humanistic aspects of mathematical knowledge through the 

understanding of the formation process of mathematical thinking. In this paper we present two problems drawn 

from four mathematical treatises from the 15th and 16th centuries. For the first one, we present three similar 

wordings drawn from the Arithmetica (1484) by Pietro Borghi, the Coss (1525) by Christoff Rudolff, and the 

Libro Primero (1552) by Marco Aurel, which concern the hiring of a worker. The second one is a situation that 

was posed by one student to another in the last book of the Arithmetica practica y speculative (1562) by Juan 

Pérez de Moya. Our aim is to analyse some aspects of the development of algebraic thinking through the 

mathematical activity of problem solving, implemented in the classroom. The analysis of the different 

mathematical procedures for solving these historical situations can encourage students to devise their own 

methods when faced with an unknown problematic situation. 

1 Introduction  

The history of mathematics shows how mathematics has frequently been used to solve 

problems concerning human activity, as well as for helping to understand the world that 

surrounds us. The use of original texts from the history of mathematics is a way to introduce 

in the classroom the sources on which mathematical knowledge is based.
2
 

In this paper we present two historical problems drawn from four mathematical treatises 

from the 15th and 16th centuries. We have chosen three versions of the first one, drawn from 

the Arithmetica (1484) by Pietro Borghi, the Coss (1525) by Christoff Rudolff, and the Libro 

Primero (1552) by Marco Aurel, which deal with the question of hiring a worker. The second 

one involves a situation that was posed by one student to another in the last book of the 

Arithmetica practica y speculative (1562) by Juan Pérez de Moya. This book is written as a 

dialogue between students, which allows the author to present different points of view about 

the usefulness of mathematics and the reasons for the importance of acquiring such 

knowledge. 

Our aim is to analyse some aspects of the development of algebraic thinking through the 

mathematical activity of solving historical problems, implemented in the classroom (Radford, 

2006; Filloy et al., 2008; Broker & Windsor, 2010). The analysis of the different 

mathematical procedures for solving these historical situations can encourage students to 

devise their own methods when faced with an unknown problematic situation. 

                                                 
1 This research is included in the project HAR2016-75871-R. 
2 All this knowledge will undoubtedly enrich the mathematical background and training of teachers. Historians 

of mathematics have pursued various research lines at an international level that investigate how to use 

knowledge of the history of mathematics effectively in the classroom in order to improve the teaching and 

learning of mathematics. For more, see, Barbin, 2000, pp.63-66; Jahnke, 1996; Fauvel & Maanen, 2000; 

Demattè, 2006; Massa Esteve et al., 2011.  
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2 History of Mathematics in the Construction of Mathematic 

Knowledge of Students 

The knowledge of the history of mathematics can assist in the enrichment of the construction 

of students’ mathematic knowledge in two ways. First, the use of the history of mathematics 

in the mathematics classroom can provide students with a conception of mathematics as a 

useful, dynamic, human, interdisciplinary and heuristic science (see Massa-Esteve, 2003; 

Romero Vallhonesta et al., 2015) and second, the use of the history of mathematics in the 

mathematics classroom can provide students with a further relevant feature of mathematics 

– that it can be understood as a cultural activity (Furinghetti, 1997; Katz, 1997b). History 

reveals that societies develop as a result of the scientific activity undertaken by successive 

generations, and that mathematics is a fundamental part of this process. Mathematics can 

be presented as an intellectual activity for solving problems in each period. Furthermore, 

the history of mathematics as an implicit and explicit didactic resource can provide tools to 

enable students to understand mathematical concepts better.
3
 

First of all, history can be employed explicitly in the content of compulsory research 

work undertaken by students in Catalonia in their second year of Baccalaureate (17-year-

olds). History situates students in a more general context, since problems are addressed 

within a global framework of mathematics and within the overall field of science. These 

research projects not only show the historical evolution of an idea or a concept, but also 

involve mathematical research enabling students to become familiar with mathematical 

reasoning from other periods and cultures, as well as in other contexts.
4
 The mathematical 

work that can be undertaken in each of these research fields is highly diverse and range from 

very simple problems to more complicated proofs.  

Secondly, the holding of workshops, centenaries and conferences provides further types 

of activities in which history can be used explicitly to achieve a more comprehensive 

learning experience for students. For instance, the workshop devoted to the study of the 

life and work of René Descartes (1596-1650), held in 1996 at the INS Carles Riba (a high 

school in Barcelona), afforded students additional education from a mathematical, 

philosophical, physical and historical perspective. 

Finally, the explicit use of significant original sources in the classroom is an activity that 

can provide students with more valuable means for a better understanding of mathematical 

concepts, that is the case presented below (Massa-Esteve, 2012; Romero-Vallhonesta & 

Massa-Esteve, 2015).
5
 

                                                 
3The history of mathematics as an implicit resource can be employed by teachers in the design phase by 

choosing contexts, by preparing activities (problems and auxiliary sources) and also by drawing up the teaching 

syllabus for a concept or an idea. 
4 The list of titles of research works dealing with the history of mathematics proposed by mathematics teachers is 

quite extensive, but as examples we may quote the following: Pythagoras and Music; The Golden Mean; On 

Fermat’s Theorem; Pascal’s Arithmetic Triangle as a Tool for Resolution; Perspective and its History in the 

Work of Leonardo da Vinci, Luca Pacioli and Albert Dürer; Women and Science; On Incommensurability: A 

Mathematical and Philosophical Problem, etc. 
5 Historical texts can be used throughout the different steps in the teaching and learning process; to introduce a 

mathematical concept; to explore it more deeply; to explain the differences between two contexts; to motivate 

study of a particular type of problem or to clarify a process of reasoning 
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3 Catalonian Curriculum 2015. Problem Solving and the History of 

Mathematics 

The history of mathematics has enjoyed an official place in the Catalonian curriculum of 

mathematics for secondary schools (ESO) since 2007. In the academic year 2007-2008, the 

Catalan Government Department of Education introduced some compulsory elements of 

the history of science into the curriculum for secondary education. Specifically, the new 

mathematics curriculum for secondary schools in Catalonia, published in June 2007, 

contains notions of the historical genesis of relevant mathematical subjects within the 

syllabus.
6
 

In Decree 187/2015, of August 25
th

, on the regulation of Catalonian compulsory 

secondary education, the basic skills in the different areas that students must achieve at 

this stage are established. These skills are associated with the standards of each area. 

Therefore, since the last curriculum decree in 2015, the history of mathematics forms part of 

the contents of the mathematical concepts to be taught. 

Also in the last curriculum, problem-solving has played an important role as one of the 

main methods for teaching and learning mathematics, which goes beyond finding simple 

solutions or just knowing the basic facts and formulas (Bednarz, Kieran, & Lee, 1996). The 

best known strategies for solving problems can be found in the work of Pólya (1957), which 

include, for example, trying special values or cases, working backwards, guessing and 

checking. By learning how to tackle problem-solving, students acquire confidence in a 

variety of situations that can help them to use mathematical approaches to solving real-life 

problems. Problem-solving is a complex mathematical activity, which contributes to the 

development of algebraic thinking.  

The problem-solving standard of mathematics consists of four basic skills: 

1. Translate a problem into mathematical language or to a mathematical 

representation using variables, symbols, diagrams or appropriate models. 

2. Use concepts, tools and mathematical strategies for solving problems. 

3. Maintain a research attitude towards a problem by testing different strategies. 

4. Generate questions of a mathematical nature and raise issues. 

In the explanation given in the decree on the problem-solving standard, it is stated that 

a problem is a proposal to confront an unknown situation that is posed through a set of 

data within a context, and which initially has no obvious solution and requires reflection, 

decision-making and strategies. The decree also emphasizes the need to distinguish a 

problem from an exercise. 

From this explanation, it can be inferred that while for some students a proposal may 

represent a problem because they do not know the algorithm by which it could be solved 

almost immediately, for others it is the simple application of a technique. 

                                                 
6 The list of these historical contexts includes: The origins of the numeration system; the introduction of zero 

and the systems of positional numeration; geometry in ancient civilizations (Egypt, Babylonia); initial 

approaches to the number π (Egypt, China and Greece); Pythagoras’ theorem in Euclid’s Elements and in 

China; the origins of symbolic algebra (Arab world, Renaissance); the relationship between geometry and 

algebra and the introduction of Cartesian coordinates; the geometric resolution of equations (Greece, India, 

Arab World); the use of geometry to measure the distance Earth - Sun and Earth - Moon (Greece).  
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4 Setting the scene 

We outline a brief historical journey through the development of algebraic equations for 

setting the scene (Katz, 1997a; Bashmakova & Smirnova, 2000; Massa-Esteve, 2005). 

While it is possible to deduce an algorithm for solving equations of second degree from 

Babylonian tablets (1800 BC), Arabian mathematicians were those who took the decisive 

step in the development of algebra. The mathematician, astronomer and member of the 

House of Wisdom in Baghdad, Mohamed Ben-Musa al-Khwarizmi (850 AD), is regarded 

as the creator of the rules of algebra fully rhetorical. In his work Hisâb al-jabrwal-

muqqabala (813 and 830), he classified equalities (now called equations) up to the second 

degree according to six different types, as well as explaining rhetorically the method for 

solving them. It was Leonardo de Pisa, son of Bonacci (1180-1250), better known as 

Fibonacci, who disseminated, also rhetorically, all this knowledge in the West. Many of 

the problems addressed in the algebra of the Arabs are to be found in Fibonacci’swork 

Liber abaci (1202), as well as methods for calculating with Indian numerals. The 

sketchiest period in the development of algebraic equations corresponds to the 13th and 

14th centuries, when commercial mathematics flourished with the Mercantile Arithmetic, 

works that are still being explored and analyzed. The knowledge of these mercantile 

arithmetic and Arab algebra were collected in a work by Luca Pacioli (1447-1517) entitled 

Summa de Arithmetica, Geometria, Proportioni & Proportionalità (1494), which was 

widely known at that time and very influent in Spanish algebra’s authors quoted in the 

practical activity.
7
  

4.1 Practical activity in the classroom 

What we now propose are two historical problems from 16
th

 century’s sources, period that 

began the development of resolution of algebraic equations rhetorically. Several versions 

exist of the first problem, which consists of a problem that can be solved immediately by 

solving simultaneous equations.  

From this problem we present three versions to students; the first by Pietro Borghi, the 

second by Christoff Rudolff and the third by Marco Aurel. After solving the problems, we 

discussed with the students the solutions given by the authors themselves, and also 

explained the characteristics of the mathematics of that time. In this paper we focus on the 

resolution of the problems. 

The first version, from the text by Borghi (Figure 4.1), that contains the wording of the 

problem and some considerations about the resolution, and the resolution itself (Figure 

4.2): 

 

                                                 
7
 Later, Girolamo Cardano (1501-1576) and Rafael Bombelli (1526-1573), among other algebraists of the 

Cinquecento, also contributed to the solution of cubic and quartic equations with syncopated algebra through 

their respective works Artis Magnae sive de Regulis Algebraicis (1545) and Algebra (1572), respectively.  
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Figure 4.1: [Borghi, 1484, 111v] 

The resolution by Borghi In current notation 

 

20 (days not worked) + 28 (days worked)= 48 

Let us suppose that in every 48 days, the worker 

works for 20 days and doesnot work for 28. 

Therefore, the profit for the worker will be: 28·20 

– 20·28 = 0. 

This would be the solution if the contract was for 

48 days, but it was for 40 days. 

Solving this rule of three: 48 → 28 we obtain   

                    40→ x 

 

Figure 4.2: Theresolution of theproblemabouthiring a worker, by Borghi 

We have adapted the situation to a modern context to make it more familiar to the 

students
8
 but maintaining the same quantities:  

A girl is looking for a part time job to help in houses doing odd jobs (installing wall 

sockets, hanging pictures, painting and decorating, etc.) and a woman hires her for 

40 days. The woman knows that the girl is not very reliable and the conditions she 

imposes on the girl are the following: for every day worked, she will receive 20 

euros, but if she doesn’t show up, she has to pay 28 euros to the owner. After 40 

days, the woman doesn’t owe anything to the girl. How many days has the girl 

worked? 

The other problem is taken from a book on arithmetic in which various questions are 

formulated in the form of a dialogue. The first part consists of a dialogue between two 

students: Sophornio and Antimacho. Sophronio argues for the importance of knowing 

arithmetic by posing some questions to Antimacho, who at the beginning is doubtful about 

                                                 
8 Una noia busca feina per fer petits arranjaments a les cases (posar endolls, penjar quadres, pintar alguntros 

de paret deteriorat…) i una senyora n’hi dóna perquè hi vagi una estona els matins durant 40 dies. La 

senyoras’ assabenta que la noia no ésgaire formal i li proposa pagar-li 20 euros per cada dia treballat i, si 

algundia no va a treballar, haurà de donar 28 euros a la senyora. Passats els 40 dies, la senyora no li deu res a 

la noia. Quants dies va treballar i quants dies no va treballar? 
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this importance, but who in the end has to agree with Sophronio. What we are concerned 

with here relates to proportionality,which is one of the key concepts of mathematics at all 

stages of education. 

 

Figure 4.3: [Pérez de Moya, 1562, 701] 

The problem as posed to the students (not adapted in this case, but translated into 

Catalan
9
from the original 16th century Spanish, with little changes in the two final 

questions) is as follows: 

A soldier went to the market to buy asparagus from a farmer and asked about the 

price of a bunch of asparagus that could be tied with a string measuring the span of 

his palm? It was agreed that the soldier would pay half a farthing to the farmer. 

After a few days, the soldier returned to the same farmer and told him that he 

wanted to buy a bunch of asparagus that could be tied with a string measuring 2 

spans of his palm. For this he offered to pay the farmer double, 1 farthing.  

Is it fair for the soldier to pay the farmer 1 farthing?  

Is this correct? If you think that this is not right, how much should be paid and 

why?
10

 

In this case, the solution is given as a rhetorical reasoning. The question is posed by 

Sophronio to Antimacho. Antimacho believes that there is no doubt that the soldier has to 

pay one farthing for the asparagus tied by a string measuring 1 handspan. Sophronio asks 

him to take one string and another of double its length and to check himself the quantity of 

asparagus that can be bound by in each string, in order to see that the quantity of 

asparagus in the second string will be four times the quantity in the first. Therefore, the 

                                                 
9 Un soldat va anar al mercat i va anar a comprar a un pagès que venia espàrrecs i li va dir: quant em 

demaneu pels espàrrecs que puc encerclar amb aquesta corda que té una longitud d’1pam? Van acordar que 

el soldat pagaria mig ral al pagès. Al cap d’uns dies, el soldatva tornar a anar al mateix pagès i li va recordar 

que feia uns dies li havia cobrat mig ral pels espàrrecs que es podien encerclar en una corda d’1 pam i que 

ara en voliamés: totsels que es podienencerclaramb una corda de 2 pams, que és el doble de l’altra. Per tant, 

posa-m’hi els espàrrecs que hi caben, i jo et pago el doble, 1 ral. 

Ésjust el que li volia pagar el soldat? Justifica-ho. 

Si creus que no ésjust, digues quant li hauria de pagar i justifica-ho. 
10 We have changed the last question from the original text, in order to be more understandable for the 

students. 
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amount of money that should be paid to the farmer is 2 farthings. 

These problems were put to 28 3
rd

-grade students of ESO
11

 and to 29 1
st
-grade students 

of ESO
12

 at the Eugeni Xammar Secondary School 
13

 in l'Ametlladel Vallès. In secondary 

schools in Catalonia, students start their secondary education at age twelve and they can 

continue until they are eighteen, although compulsory education finishes in 4
th

 of ESO 

when students are sixteen. The 3
rd

-grade students had already been taught how to solve 

simultaneous equations, while the 1
st
-grade students had not.  

In the presentation of the activity to students, they were told the following: 

1. This activity is part of a research project. 

2. It is important that you note down any possible ideas, strategies or reflections 

about the resolution of the problems, even if you have doubts about the accuracy. 

The students were given this advice because, as they were not used to solving problems 

in which they were not required to apply known techniques, we wished to avoid the risk 

that many of them might not attempt to solve the problems for fear of an incorrect answer. 

In the case of the 3
rd

-grade ESO students, the only correct answers were given by 

students who solved the problem by using simultaneous equations. None of the students 

who tried to resolve the problem using a more imaginative procedure managed to arrive at 

the solution, as shown in the following table: 

Resolution of the first problem by 3
rd

-grade ESO students 

Using simultaneous equations Without using equations Unanswered 

correct incorrect correct incorrect  

4 7 4 0 13 

The following image shows a typical correct resolution by a 3
rd

-grade ESO student: 

 

Figure 4.4: Resolution by a 3rd-grade ESO student. 

                                                 
1114-year-old students. 
1212-year-old students. 
13 We express our gratitude to the mathematics teaching stafffor their collaboration and effort in 

implementing this activity.  
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The types of solutions given by the 1
st
-grade students were more varied. Most of them 

attempted to find the solution by looking for common multiples of 20 and 28, with the 

condition that the numbers by which we have to multiply 20 and 28, added together, gave 

40. In this case, the way to solve the problem is more interesting. In the case of the 3
rd

-

grade students who solved the problem by solving simultaneous equations, on arriving at 

the solution they took it for granted that it was correct. However, some of the 1
st
-grade 

students thought that a non-integer solution did not make sense, and since they were 

unable to find two entire quantities according to the conditions of the wording, they said 

that the problem had no solution. In these cases, if the procedure adopted was correct, we 

considered the resolution to be correct.  

Resolution of the first problem by 1
st
-grade ESO students 

 Resolve the 

problem correctly 

 Use a good method 

but do not arrive at 

the solution 

 Try to solve the 

problem with an 

unclear method and 

do not arrive at any 

conclusion 

Unanswered 

8 (6 of whom say 

that the problem 

has no solution) 

10 5 6 

In this regard, we present two interesting resolutions. In the first one, the student says 

that the circled numbers in the table represent the days on which neither the woman nor 

the girl are indebted to each other. The sum of these days should be 40, but in none of the 

cases is this the result. Therefore, the problem has no solution. However, the student 

probably found it strange that the problem has no solution, and adds: if we read the 

question carefully, it is stated that the woman does not owe the girl anything, but nothing 

is said about the possible debt owed by the girl to the woman. We could assume that the 

girl has not worked at all, and in this case, she would have to pay 1120 euros to the 

woman, who does not owe the girl anything. 

In fact, as the student remarks about the statement of the problem, nothing is said about 

the debt that the girl owes to the woman, but according to the solution provided by Borghi, 

we see that the author supposes that the girl owes the woman nothing. 
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Figure 4.5: Resolution by a 1st-grade ESO student. 

In the second case, the student considers that the ratio between the days worked and 

those not worked must be 7/5, which is the ratio between 28 and 20. For the balance to be 

0, then for every set of 12 days the girl would work on 7 days and on 5 days she would fail 

to show up. As the number of days worked cannot be a decimal (as the student supposes), 

the total number of days should be a multiple of 12 (7+5). The multiple of 12 nearest to 40 

is 36 (12·3). Therefore, the girl goes to work on 7·3=21 days and fails to show up on 

5·3=15 days, which leaves 4 days unaccounted for. On considering what may have 

happened on these days, she believes that since the two parties reached no agreement on 

what might happen if the girl went to work but did not do anything, then neither would the 

woman pay the girl nor would the girl owe anything to the woman. 
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Figure 4.6: The resolution of a 1st-grade ESO student. 

It is interesting to remark that only the students who solved the problem using their 

own procedures gave any consideration to the authenticity of the solution. None of those 

who solved the problem by using simultaneous equations add any comments to the result. 

Resolution of the second problem by 3
rd

-grade ESO students 

State that it is not fair, but fails 

to justify or do it incorrectly 

State that it is fair Unanswered 

9 16 3 

None of the students gave the correct solution to the question and none of them used 

formulas for the perimeter of a circumference and the area of the circle. 

In the case of the 1
st
-grade ESO students: 

Resolution of the second problem by 1
st
-grade ESO students 

Give a good 

solution 

State that it is not 

fair, but fail to 

justify or do it 

incorrectly 

State that it is fair Unanswered 

1 2 9 17 

For the second problem, we present the only correct answer: 

In this case, since the student probably did not know the formulas for the area of a 

circle and the perimeter of a circumference, he drew a square with each side measuring 1 
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cm (the area of thissquare being easier to calculate than that of a circle) and another square 

with each side measuring 2 cm. He realizes that the area of the second is four times the 

area of the first and concludes that it is not fair to pay 1 farthing to the farmer. 

 

Figure 4.7: Solution by a 1st-grade ESO student. 

We might ask ourselves why there were many students who tried to solve the first 

problem by guessing and checking, whilethe only imaginative solution for the second 

problem is that shown in Figure 4.7. One of the reasons could be that in the first case it is 

easy to guess and check using pen and paper, while in the second case it would be more 

practical to use objects like pieces of thread, and pencils for the asparagus,and the students 

are less familiar with this method. 

5 Practical activity for pre-service teachers 

The problems in the case under study were also posed to pre-service teachers, who were 

divided in six groups of five or six. They were asked to think about how they might solve 

these problems without using equations and also to explain in detail the four steps of the 

Pólya’s approach to problem-solving: 

 Understanding the problem 

 Devising a plan 

 Carrying out the plan 

 Looking back 

In the case of the lazy worker, for the first step, all the groups recommended 

identification of the main facts in the wording of the problem and then trying to solve it 

with some specific values in order to determine what the outcome would be. 

Five of the six groups drew a table, two of whom regarded it as part of devising a plan 

and three of whom considered it as part of carrying the plan out. For this problem, they all 

thought that a table was a good device for visualizing all the possibilities. 

None of the pre-service teachers thought about a non-integer quantity as a solution. On 

arriving at the conclusion that there was no solution, they proposed a re-reading of the 

statement of the problem and realized that no reference was made about the debt owed by 

the girl to the woman, and then put forward different solutions. Except for minor 

differences, their reasoning is similar to that followed by the student whose resolution is 

shown in Figure 4.5.  

One of the groups analyzed the problem in a way similar to that in the work of the 

student shown in Figure 4.6; that is, by considering sets of 12 days and concluding that 

there is no solution. This group also re-read the wording and remarked that nothing is 
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statedabout the debt owed by the girl to the woman and said that is not possible to obtain 

the right result, but only an approximation. 

In the case of the problem of the asparagus, all the groups came to the conclusion that 

the problem for the students would be that they would fail to take into account that the 

proportionality between areas and perimeters is not the same.  

One of the groups proposed a drawing with GeoGebra (Figure 5.1), for the conception 

of the plan, as follows: 

 
Figure 5.1: Devising a plan by pre-service teachers. 

 

They believed that even though the relationship between the areas of these two circles 

might not be clear to the students, it seemed obvious that the area of the biggest circle was 

greater than double the area of the smaller one. 

Another group proposed that students use their hand-spans or use threads or similar 

objects in order to experiment. 

The solution given by one student, as shown above in Figure 4.7, was also taken into 

account by one of the groups (Figure 5.2) with the following representation: 

 

Figure 5.2: Solution by pre-service teachers. 

This clearly shows that the soldier’s proposal is not fair for the farmer. 

All the groups found the proposal interesting, since it admits different levels of 

resolution and also enables teachers to follow the reasoning of the students.They also 

agreed that it should be considered when equations and some algorithms are introduced. 
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6 Concluding Remarks  

The activities based on the analysis of historical texts using original sources as a point of 

departure contribute to improving students' overall education and provides them with 

additional knowledge of the social and scientific context of the periods involved.  

These activities can be designed to allow for different levels of development and, in some 

cases, the distribution of tasks among students according to their skills. 

We presented to students four texts written in Italian, German and Spanish, three of them 

about a lazy worker and the other related to proportionality. In the case of the problem of the 

lazy worker, which is a typical problem to be solved by simultaneous equations, we have 

seen different approaches, the most interesting of which were carried out by students who 

had not been taught about simultaneous equations. These students proved to be more 

creative, because they were unfamiliar with the standard method of resolution. 

When students are told how to solve simultaneous equations and are then required to 

apply the method to solving a problem, the situation that initially arises could constitute a 

difficulty for them, since they may find it hard to translate the situation into mathematical 

language. However, for some students this translation may occur to them almost 

immediately, and the situation is not considered a problem following the explanation in 

the curriculum.  

Early introduction of the simultaneous equations may restrict students in their exploration 

of methods that might otherwise be employed. In the problem of the asparagus, the student 

who gave the best solution was unaware of the relationship of the proportion between the 

lengths and the areas. He did not remember the formula for calculating the area of the circle 

and drew two squares, one of which was double the perimeter that the other one. He 

calculated the areas of these squares and deduced that the relationship between the areas of 

the circles, on which the number of asparagus depends, should be the same. 

When teachers pose problems to students, it is important that they take into account the 

different backgrounds of the pupils and adapt their approach accordingly, depending on the 

outcomes desired. 

Reading ancient texts enables students to acquire an understanding of mathematics, not as 

a final product but as a science that has developed on the basis of trying to answer the 

questions that humanity has been asking about the world throughout history. 

Finally, we would like to stress the importance of using different approaches to the 

curriculum, for a better understanding of some concepts. In this paper, by looking at the 

solutions of students, using historical problems, we are aware of the difficulties that some of 

them have, and the strategies of others to cope with non-standard situations. 
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ABSTRACT 

Nowadays measuring time is considered almost instinctively a subject trivially known and well established 

in our everyday life. However it has been interesting, scientifically fascinating and mathematically nontrivial 

throughout the ages, constituting a “meeting point” of disciplines epistemologically very remote from each 

other, based on quite different motivations and having different objectives.  It is an exceptionally rich 

subject that could be beneficial and stimulating in the context of mathematics education at various 

instructional levels, in a variety of situations, and be approached from many different perspectives. This 

paper aims at providing evidence to support this point in the context of an appropriate HPM framework, by 

means of some characteristic examples, which - either explicitly or implicitly - are related to the calendar as 

we know it today or has been developed historically. 

1 Introduction  

1.1 The context  

Unlike space, time can be conceived and delimited only if represented in terms of 

symbols, which themselves require and/or are susceptible to different interpretations. As a 

result, understanding time (more than understanding space) implies the imperative need to 

rationalize its representation in terms of arithmetical or geometrical symbols of a most 

unequivocal meaning. Perhaps this is the generic element underlying the relation between 

the concept of time and its mathematical elaboration (cf. Borst, 1993, pp. 5-6). Therefore, 

as a fundamental formative category of human thought and perception of the world, 

conceiving time is indissolubly connected to its quantification through measurement.  

On the other hand, inherent to the concept of measurement is the act of comparison; 

namely, to compare objects with respect to a certain characteristic they possess in 

common, by agreeing to choose and choosing one among them as a standard of 

comparison; the unit of measurement of this common characteristic. This is true for any 

kind of measurement. In the case of time, this means specifying and using time units that 

are “stable” enough. This, in turn, is realized by focusing on periodic (cyclic) phenomena. 

(Enough) “stability” in this context means the existence of periodic phenomena 

compatible with each other; i.e. their periods’ ratios do not change (appreciably) in the 

course of human life, society’s existence, or generally, during a specified corpus of 

(individual and/or collective) human experience (cf. Fraser, 1987, ch. 2 pp. 58-59). And it 

is a fundamental empirical fact that phenomena do exist for which this condition is 

(approximately) fulfilled. Somewhat loosely, they can be called “clocks”. 

From a historical point of view two points should be particularly stressed: (i) it was first 

perceived and understood that astronomical and physical clocks compatible in the above 

sense do exist. Therefore, they were preferably selected for quantifying (thus, measuring) 

time; (ii) it was gradually (and slowly) realized that their compatibility was only 

approximate; that the more human observations and experimentations were becoming 
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finer, the more rough this approximate compatibility was getting. As we shall argue, this 

development was strongly interrelated with that of the required mathematics. 

1.2 The “three basic clocks”  

It is a fact that since early in history, time measurement has been based on what 

henceforth is called the “three basic clocks” (Borst, 1993, ch. 2, p.9; Whitrow, 1988, 

ch. 2, pp. 14-17; Richards, 1998, ch. 1, pp. 7-8): 

• The day: Earth’s rotation (around its axis) causing the day-night alternation; 

• The month (and the week): Moon’s revolution (around the earth) causing the (four) 

lunar phases.  

• The year: Earth’s revolution (around the sun) causing the succession of the seasons 

and the return of the fixed stars to the same position in the sky; 

For later use and for comparison, the current values of their periods’ ratios are given 

below, using the modern definition of (atomic) second in SI units, the currently accepted 

system of units in physics (International System of Units, n.d.):  

  (atomic) sec   
              

 
 

where ν is the frequency of radiation emitted due to the transition between the two 

hyperfine energy levels of the ground state of the Caesium isotope     
   . In this unit, the 

“day” is by definition 86,400sec 

                                                
        

   
                                                         (1.1) 

whereas, the three basic clocks’ periods are to a reasonably good degree of approximation 

(Richards, 20 3, § 5. .3; for the terms “tropical” and “synodic” see §2.3). 

         
year

   
  

(mean) tropi    year

        
                            ,                       (1.2) 

 

     M  
month

   
  

lunar (mean) s  odi  period

        
                          ,           (1.3) 

 

                                       
    

        
                                                     (1.4) 

We note that (i) the expression of the above periods as decimal fractions of the day and 

sexagesimal fractions of the hour already underlies the complexity of the measurement 

problem
1
; (ii) the second is not a concept as simple as one may think, but is founded on 

the current theory of microphysics, far beyond any “naïve” approach to the measurement 

of the periods of the basic clocks (Auerbach, 1995; Nelson et al, 2001). 

1.3 The social context and the fundamental mathematical constraint  

These “innocent-looking” and taken for granted to be simple notions (day, month, year), 

will be found to be very complicated both conceptually and technically.  

Firstly, their implementation is strongly delimited by the social context: For several 

political, religious and economic reasons social life is requested to be based on “simple” 

temporal cycles; i.e. integral periods of appropriate periodic phenomena. 

Secondly, it is a mathematical fact that there are no simple integer relations among 

the periods of the empirically determined three basic clocks; i.e. their periods’ ratios 

                                                           
1
 E.g. that sun’s annual revolution in the sky is not 12 lunar cycles, or 365 days as originally thought. Due to 

the complexity of these periodic phenomena it took a long time in history to realize that these are not good 

approximations for long time intervals, and to find better approximations of their relative periods. 
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cannot be expressed as rational numbers sufficiently simple to be practical for civil 

purposes in a straightforward manner. Evidently, given any prescribed degree of accuracy 

(determined by social or scientific criteria) and (implicitly) conceiving (real) numbers as a 

continuum, such rational relations may in principle result by choosing sufficiently small 

time units. However, this presupposes an ever increasing accuracy of the corresponding 

measurement processes. 

To summarize, all this indirectly points to the (in principle) importance of specific 

mathematics both conceptually and technically in relation to the measurement of time by 

means of the three basic clocks. Therefore, this paper is organized as follows. Section 2 

gives evidence that measuring time has been a multifaceted, interdisciplinary and 

intercultural issue throughout its historical development, based on mathematical 

knowledge available at the time, possibly stimulating its further development as well. It is 

also argued that aspects of this development can be beneficial for mathematics education. 

In section 3 a general framework for integrating history in mathematics education is 

outlined. Finally, in section 4 this main point is exemplified by five specific examples, at 

the same time commenting on their placement in the general framework of section 3.  

2 Motivation 

2.1 The basic questions  

Two basic questions have been implicit so far:  

(1) Why was/is it important to determine accurate and stable time units?  

(2) How was/is it possible to determine accurate and stable time-keeping in terms of 

such time units?  

In other words: In the context of which domains of human activity and knowledge, 

and in relation to which questions and problems was this important? 

These two interrelated questions are related to mathematical issues, either elementary 

or advanced when judged by current standards. In fact, measuring time is closely related, 

touches upon and addresses interconnected issues in the context of several distinct 

disciplines, leading to questions and problems that finally led to important developments 

both in mathematics and in these disciplines. However, because time (as a quantified 

concept) is so deeply rooted into our (modern) civilization, its accurate measurement 

seems to be an elementary subject, at least conceptually. As a consequence, its emergence 

(hence, the awareness of the time concept itself; see § . ) and the way it has been 

interrelated deeply with many intellectual, practical, political and religious aspects of 

human history is hardly appreciated in general, and in education in particular (for a 

concise overview see Whitrow, 1972a).  

Therefore, in relation to question (1), it is helpful to comment briefly on some of the 

reasons why accurate time-keeping and time units have been important:  

History: Already in antiquity it was realized that it is important to have trustful means 

to reckon historical facts (i.e. some sort of accurate chronology) by carefully considering 

the appearance of each historical fact in relation to others’ (Smyntyna, 2009; Borst, 1993, 

ch. 2); e.g. Herodotus’ and Thucydides’ historical accounts in ancient Greece, Varro’s 

chronology in the Roman republic period starting “from the founding of the City [Rome]” 

(AUC; Ab Urbe Condita), Flavius Josephus’ account of Jewish history (1
st
 century AD), 

Bede’s “Ecclesiastical History of the English People” (8
th

 century AD) etc. 
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Politics:  Early in history it became necessary to have a measure of the duration of the 

term of persons and collective bodies holding public positions (e.g. Athenian Archons, 

Roman Consuls etc), or/and to reckon events by means of regnal periods or eras. This was 

achieved by using regularly occurring or important and exceptional events; e.g. the 

Olympiads in ancient Greece; counting years from the founding of Rome (AUC) in 

ancient Rome; the Diocletian era (or the era of the Martyrs – Anno Diocletiani) used by 

the Alexandria’s early Christian church and starting on the first regnal year of the Roman 

emperor Diocletian (284AD); the AD (Anno Domini) era introduced in the 6
th

 century by 

Dionysius Exiguus replacing the Diocletian era and used in the Christian world since then; 

the Hegira era in the Islamic world and starting with Mohammed’s migration to Mecca 

(622AD); the republican era of the French Revolution (starting on 1792 AD), etc (Hannah, 

2005, chs. 3, 5; Richards, 1998, ch. 6, pp. 104-109; Fraser, 1987, pp. 91-95).  

Economy: For economic reasons, temporal cycles were specified already in antiquity; 

e.g. the division of the month by the Romans into calends, nones and ides
2
, the calends 

indicating both a month’s first day (originally starting with a new moon) and the day on 

which debts should be paid according to the accounting books called kalendaria (Hannah 

2005, ch. 5; Holford-Strevens, 2005, pp. 28-31; Richards, 1998, p. 210; Whitrow, 1988, p. 

68); or, longer temporal cycles like the Roman 15-year indictions - a fiscal period for the 

agricultural or land taxes’ reassessment adopted by the Byzantines, used in medieval 

Europe and kept until late in modern times (Whitrow, 1988, p. 67; Richards, 1998, p. 

101). Moreover, from the late Middle Ages to the industrial revolution, the gradual rise of 

a “money economy” led to the need of measuring and paying for the human work and 

wages, which led to the conception of time’s uniformity, thus requesting its measurement 

in terms of appropriate, well-defined, “unchanging” units (Whitrow, 1988, pp. 108-110)
3
. 

It is interesting that already The Treviso Arithmetic (the earliest known printed arithmetic 

book; 1478) concerning commercial arithmetic for the general public, includes calendrical 

calculations for finding the date of Easter Sunday (Swetz, 1987, pp. 164-168). Though 

looking strange nowadays, these were important for merchants because civil holidays and 

religious feast days (greatly determined by the celebration of Christian Easter; see below) 

put constraints on activities related to trade and human labour (Swetz, 1987, pp. 248-253).     

Theology: Since early Christianity – especially after it was no longer persecuted in the 

roman empire from the early 4
th

 century AD onwards – the variety of habits and rituals 

adopted by different early Christian groups in relation to their worship led to an imperative 

request to establish a uniform religious canon, to be followed by the clergy all over the 

Christendom. Such a canon presupposed the ability of a sufficiently accurate determination 

of the time when each religious activity is done. In this connection developing methods for 

the indisputable determination of the Christian Easter day was of immense importance; a 

theological problem that acted as a catalyst in the development of the western civilization’s 

concept of time, its measurement, and effective methods for doing complicated numerical 

calculations. It is worth noting that “computation” comes from the Latin “Computus”, which 

- since the Computus Paschalis of Cassiodorus’ disciples in the mid 6
th

 century AD - 

signified the calculation method to determine the calendar date of the Christian Easter 
                                                           
2
 In Latin: Kalendae, Nonae, Ides, the modern word calendar coming from the first.   

3
 Except the astronomers in the Hellenistic period, dividing the day into 24 equal hours stems from this, 

contrary to the unequal hours in earlier periods (12 temporal hours for the daylight period, varying with the 

season and geographical latitude; 12 equinoctial hours for the night period; the vague canonical hours of the 

Christian monasticism for religious and other duties (Richards, 1998, p. 44, Whitrow, 1988, pp. 28, 108).  
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(Borst, 1993, pp. 28-29; Swetz, 1987, p. 33). Ever since in the Middle Ages, finding Easter 

Sunday’s date on any given year, and the AD time reckoning (introduced by Cassiodorus’ 

contemporary, Dionysius Exiguus) were interlinked (Borst, 1993, ch. 4; Duncan, 1998, ch. 

5). Along the same lines St Benedict’s Rule by Benedict of Nursia (early 6
th

 century AD) 

contains precepts for his monks on their daily occupations, duties and worship, which 

gradually were spread out beyond the clergy to the entire society. By dividing the day into 

canonical hours, “Benedictine monasticism in the early Middle Ages formed the basis of the 

modern European measurement and discipline of time”
4
 (Borst, 1993, p. 3; see also 

Richards, 1998, ch. 30; Duncan, 1998, ch. 5).  

Geography and Navigation: Although finding the geographic latitude of a place on 

earth is simple (being the inclination of the celestial pole(s) to the place’s horizon), the 

accurate determination of geographic longitude requires a sufficiently accurate 

determination of time in order to be able to compare the geographic longitude of two 

different places by observing the position of the sun (or other celestial bodies) at a given 

moment
5
. This was very important for explorers, especially during the great expeditions in 

the Renaissance. It greatly motivated and stimulated technical methods and their 

theoretical background for developing high accuracy time-keeping devices; especially, 

marine chronometers for  determining the position at sea (because of the unavoidable 

movement of any object on a ship, accurate marine chronometers required much more 

elaborate techniques; Whitrow, 1988, ch. 9; Newton, 2004, chs. 4, 5). 

Similarly, several disciplines are involved in relation to question (2) (how accurate time 

keeping and time units have been determined): 

Astronomy: Through the systematic study of the periodic motion of celestial bodies and 

their periods’ determination as accurately as possible (cf. § .2). 

Physics: Through the study of specific periodic phenomena and the determination of 

the physical laws governing them. These range from mechanical systems of great 

mathematical and historical interest (like Galileo’s simple pendulum, or Huygens cycloidal 

pendulum; §4.5), to modern crystal and atomic clocks based on understanding microscopic 

periodic phenomena (oscillations of atoms and nuclei). 

Technology: Through the construction of devices operating accurately as artificial 

periodic phenomena, mutually compatible in the sense of § . ; from devices based on 

macroscopic phenomena like water clocks, sundials and mechanical clocks (that use 

springs or pendulums and some type of “escapement mechanism”; Appendix B), to 

modern high-precision clocks based on microscopic vibrations of crystals and nuclei like 

those of           
            

  
 
  (Fraser, 1987, ch. 2 pp. 45-75; Whitrow, 1972b, ch. 4). 

This outline of the social and scientific domains in which accurate time measurement 

has been important, at least indirectly suggests that educationally it can also be beneficial. 

2.2 Examples: A short list  

From an educational perspective, the above outline of the social and scientific 

domains in which accurate time measurement has been important, suggests that the 

                                                           
4
 In this context, an hour indicated not a fixed period of time in today’s sense, but less precisely specified 

parts of the day devoted to religious and other duties (Whitrow, 1988, p. 108). It is worth noting that modern 

siesta comes from Benedict’s sexta hora that included a midday break for rest (Borst, 1993, pp. 26-27). 
5
 A 4' time difference corresponds to 1

o 
difference in longitude; about 111km along the equator. Finding the 

geographic longitude in this way is a mathematically nontrivial astronomical problem (Smart, 1971, ch. 

XIII). 
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study of its development in history and in different cultures, constitutes a 

multifaceted, strongly interdisciplinary area touching upon a variety of subjects. Or, 

aspects of it provide insightful examples that in elaborated form could illuminate and 

reveal the crucial role of (nowadays considered classical, elementary, or even trivial) 

mathematics in addressing and tackling problems in several different disciplines and 

shaping man’s ever-changing view of the world. An indicative list of interrelated 

examples and their not always obvious relation to (often deep) mathematical issues is: 

(a) Measuring the compatibility of the three “basic clocks” (§ . ) requires the use of 

rational numbers. Since this involves increasingly more accurate measurements, hence 

successive approximations, this problem relates to fractions and their decimal
6
 expansions. 

(b) Temporal cycles, i.e. regularities among the three “basic clocks”, require looking 

for their common multiples. This may involve deeper mathematics, e.g. congruences in 

Number Theory (§4. ). 

(c) The accurate determination of the periods of the three “basic clocks” and their 

ratios, especially for periods very long compared to the duration of an individual’s life, is 

related to the search for a calendar both physically correct and computationally simple 

enough to be understood and used by the laymen, hence convenient for civil purposes. 

This may involve much of the theory of continued fractions (§4.2). 

(d) Finding the week day on a given date (especially Easter Sunday) involves clever 

tabulation and treatment of data. This is greatly facilitated by data parameterization 

using algebraic representations, symbolism and operations, ranging from elementary 

school algebra manipulations, to more sophisticated algebraic modelizations appropriate 

for algorithms to be used by modern computers (§§4.3, 4.4). 

(e) Specifying and constructing accurate (mechanical) clocks greatly stimulated the 

development of important parts of mathematics. Seen in a modern context, it involves a lot 

of mathematics: from Calculus and differential equations (e.g. Galileo’s simple 

pendulum), to the geometry of plane curves (e.g. Huygens’ cycloidal pendulum); §4.5. 

In all these cases (except (e)), the leitmotiv is the existence and acquaintance with the 

positional number system, automatically taken for granted nowadays, though it is not so 

either historically or didactically!   

2.3 Temporal cycles: A mixture of astronomical facts & social conventions 

Before outlining an HPM framework and considering in its context these examples, it 

helps to present the temporal cycles involved, thus giving hints into why and how 

mathematical issues are also involved. Determining such adequate cycles consists of 

searching for integer common multiples of the basic clocks’ periods, and difficulties result 

because there are no simple rational relations among the tropical year
7
, the lunar synodic 

month (or lunation)
8
 and the civil month (from 28 to 31 days), when measured in days! 

2.3.1 The Metonic cycle 

Geminus’ (Introduction to the Phenomena - Elementa Astronomiae) and Ptolemy 

                                                           
6
 Or using other bases; e.g. sexagesimal expansions were used in medieval astronomical calculations (§4.2). 

7
 The time between two successive passages of the sun from the vernal equinox, which is the intersection 

point of the celestial equator and the ecliptic (sun’s (apparent) annual orbit around the earth) when the sun 

passes from the southern to the northern celestial hemisphere (Smart,  97 , §86).  
8
 The time moon takes to return to the same position relative to the earth-sun line; i.e. lunar phases to be 

repeated (Smart,  97 , §83).  
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(Almageste - Syntaxis Mathematica) mention that earlier astronomers in Athens had 

observed that to a very good approximation lunar phases are repeated on the same date 

every 19 years; i.e. 19 tropical years tY are nearly equal to 235 lunations tM, or 

approximately 6940 days (though doubtful, this is attributed to Meton, 5
th

 century BC; 

Heath, 1991, pp. xvii, 140-142). With tY the value of the Julian year (tY=365.25=365+1/4) 

established as the official duration of the civil year later by Julius Caesar (§4.2) and tM in 

two decimals (tM=29.53=29+1/2+1/33; §1.2), we get 19tY=6939.75 and 235tM=6939.55. 

With [x] the integer part of x, this means 

19-year Metonic (lunar) cycle: [19tY] = [235tM] = 6940
d
  

The tiny discrepancy of about 0
d
.2 per cycle was taken into account later by considering 

longer periods. Callipus of Cyzicus (4
th

 century BC) noticed that a better approximation 

results if one day is omitted every four lunar cycles (4× 9=76 years) because 
    

  
 

    
 

  
     

 

 
 

 

    
 (Heath, 1991, op.cit; Hannah, 2005, pp. 55-58; Richards, 

1998, pp. 33, 96, 198; Whitrow, 1988, pp. 45, 189).  

It is insightful to consider this from a different perspective using continued fractions, a 

historically much later concept closely related to Euclid’s algorithm for the greatest 

common divisor of two integers (Khinchin 1964; Vinogradov  954, §I.4): By (1.2), (1.3) 
  
  

                     

to five decimals. Developing the decimal part as a continued fraction 

        
 

  
 

  
 

  
 

  
 

  
 

   
 

       

 

gives its convergents as decimal and fractional approximations (Table 2.1)  

Convergents of 0.36827  1/2  1/3  3/8  4/11  7/19  123/334  

tY/tM  25/2  37/3  99/8  136/11  235/19  4131/334  

Decimal approximation  12.5  12.333  12.375  12.364  12.3684  12.3682  

   Octaeteris   Metonic cycle   

Table 2.1 

including not only the Metonic cycle, but also the earlier less accurate Octaeteris 

mentioned by Geminus and introduced by Cleostratus of Tenedos c.6
th

 century BC (Heath, 

1991, pp. xvi, 137-138; Hannah, 2005, pp. 35-39; Richards, 1998, pp. 94-95; Whitrow, 

1988, p. 45); an 8-year cycle used by the Greeks to reckon time in terms of Olympiads (50 

lunar months for one Olympiad and 49 for the next). 

2.3.2 The Solar cycle 

Because 365 = 52×7+   1 mod7, in a 365-day year divided into 7-day weeks each date 

on a given year moves forward by 1 weekday from one year to the next. Therefore, if there 

were no leap years, calendars would repeat every 7 years. But because there is one leap 
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year every 4 years and 28 is the least common multiple of 7, 4, this happens every 28 

years; i.e. every 28 years each date of the year falls on the same weekday. This is the Solar 

cycle (valid for the Julian calendar; §4.2) with the convention, that cycles start on a leap 

year with January 1 being a Monday (Richards, 1998, p. 303). 

2.3.3 The Indiction cycle 

As mentioned in §2. , an Indiction (in Latin: Indictio, meaning “declaration”, 

“statement”, “tax”) was a fiscal period for reassessing agricultural or land taxes’, 

originally introduced in Roman Egypt as a 5-year cycle. Constantine the Great extended it 

into a 15-year period for imposing taxes, starting on 313AD. Since 313AD was the first 

year of an indiction, any AD year Y is the year of an indiction cycle given by 

                        Indiction Year of Y  (Y+2) mod15 + 1                                             (2.1) 

3 Measuring Time as a subject of/in Mathematics Education: An HPM 

framework  

In the previous sections enough evidence was given to support that time measurement is a 

multifaceted interdisciplinary subject, whose detailed treatment certainly touches upon 

mathematical issues presupposing a great deal of what is considered to be elementary or 

trivial mathematical knowledge nowadays. Identifying those aspects of this subject that 

could be beneficial in the context of mathematics education is facilitated by considering it 

in the context of an appropriate educational framework. In this section this is done with 

reference to an HPM framework presented in more detail in previous work and which 

refers to six interrelated aspects of integrating historical issues in mathematics education 

(Tzanakis, 2016, §3; Clark et al, 2016, §2.3; Clark et al, 2018, § .3).   

More specifically, this framework is structured along the following questions: In the 

context of mathematics education, which history is suitable, pertinent and relevant? 

Having which role and objective? Serving in which way? By following which approach 

and implementing which methodological scheme(s)?  

Although these questions point to the key issues to be addressed while integrating 

history in mathematics education and provide the spectrum of possible relevant aspects to 

be considered, no unique answer is to be expected in each particular case, because 

approaches may vary in size and scope according to the specific didactical aim, the subject 

matter, the level and orientation of the learners, the available didactical time, and external 

constraints (curriculum regulations, number of learners in a classroom etc). With this in 

mind, these questions are considered in relation to time measurement and possible answers 

are outlined to be further detailed by considering specific examples in section 4.    

3.1 Which history?  

The question of which history is suitable, pertinent, and relevant for didactical 

purposes has been a permanently debated issue among historians and educators with no 

easy answer (Fried, 2001; Clark et al, 2018 § .3. ; Clark et al, 2019 §4.2). Grattan-

Guinness’ proposed distinction of what he calls history and heritage was an important 

step towards clarifying conflicts and tensions among mathematicians’, educators’ and 

historians’ view of mathematical knowledge. In brief, a history perspective focuses on 

what happened in the past and why did it happen (or did not happen), whereas a 
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heritage perspective focuses on what impact (new) knowledge had on later work and 

the ways it was embodied in later contexts. These are equally important perspectives 

for understanding the development of mathematics comprehensively. However, they are 

complementary to each other in the sense that although both are legitimate, they are 

incompatible because muddling them is not permissible since this may lead to a 

distorted view of the past (Grattan-Guinness, 2004a, b; Tzanakis, 20 6, §3. , 

Tzanakis & Thomaidis, 20 2, §12.2).  

In this context, though a history perspective is certainly possible for problems related to 

time measurement (e.g. by elaborating on the mathematics underlying many of the points 

outlined in section 2 placed in the appropriate historical context), adopting a heritage 

perspective seems to be more suitable for didactical purposes; e.g. when exploring the 

development of the calendar or the clock, to stress the fact that modern life is almost 

unthinkable without them and raise the question whether they “were always there?”, 

aiming to help learners get aware of “why and how did we get to the present situation”.      

3.2 With which role and objective?  

(a) The question of which role the history of mathematics can play in mathematics 

education has been discussed and analyzed considerably on the basis of a priori 

theoretical and epistemological arguments and empirical research. Nowadays there is 

consensus that generally, history can play one or more of three mutually 

complementary roles or functions (Barbin, 1997; Furinghetti et al, 2006, pp. 1286-

1287; Jahnke et al, 2000, §9. ; Jankvist, 20 3, §7; Clark et al, 2019 §4.3): 

Replacement: To replace mathematics as usually understood (a corpus of results 

consisting of finished and polished intellectual products), by something richer (not only such 

intellectual products, but also a vivid intellectual activity including the mental processes 

leading to these products).  

Reorientation: To look at what is familiar and taken for granted, from a different 

perspective as something that has not always been existing in its currently established form; 

hence to make it appear less familiar. Thus modifying the conventional perception of 

mathematical knowledge as something “time-independent”, into the deeper awareness that 

mathematics is an evolving human intellectual activity and that mathematical knowledge is 

potentially subject to changes; i.e. historicity is one of its ontological characteristics.  

Cultural: To help appreciating mathematical knowledge as an integral part of human 

intellectual history in the development of society; hence, perceiving mathematics from 

perspectives that lie beyond its currently established boundaries as a discipline.  

Though in principle all three roles may be relevant in the context of problems related to 

time measurement (e.g. by appreciating the significance of using a positional number 

system, which is considered as something instinctively familiar to us today), the cultural 

role can be dominant: Time measurement problems in historical perspective can help to 

appreciate that facts and customs taken for granted nowadays, emerged via mathematics 

(often) simple by modern standards, under the strong influence of factors, problems and 

questions of social, political or religious origin and focus. 

(b) In connection with the objective of integrating the history of mathematics in 

mathematics education, there are five main areas in which this could be beneficial:  

(i) The learning of mathematics; 

(ii) The development of views on the nature of mathematics and mathematical activity; 
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(iii) Teachers’ didactical background and pedagogical repertoire; 

(iv) The affective predisposition towards mathematics;  

(v) The appreciation of mathematics as a cultural-human endeavour. 

Each of them can be analyzed into finer objectives, providing in this way a more detailed 

description of history’s role(s) in the educational process (Tzanakis et al, 2000, §7.2; 

Tzanakis & Thomaidis, 20 2, § 2.3; Clark et al, 20 8 §4.3). 

Implicit to the discussion in section 2 (to become clearer in section 4), is that time 

measurement problems in historical perspective could be beneficial  

- for (iii); by interrelating mathematics with other disciplines, providing interesting, non-

trivial recreational problems, and enriching the teaching of mathematics with historically 

important questions from other domains; 

- and for (v); e.g. by considering the historical background for the emergence of the 

calendar and the mathematics needed and/or developed for this purpose; the non-

mathematical (but socially important theological) problem of finding Easter Sunday; the 

problem of determining geographic longitude; the mathematics underlying the 

construction and operation of accurate clocks and their importance etc.    

3.3 In which way?  

In relation to the way history could serve in mathematics education, Jankvist (2009) 

made an important distinction between history serving (i) as a tool for assisting the 

actual learning and teaching of mathematics; and (ii) as a goal in itself for the 

teaching and learning of the historical development of mathematics (a similar 

distinction was made by Furinghetti, 2004; 2019, §5). These are complementary ways 

to integrate history in mathematics education, in the sense that they may co-exist, 

though not necessarily being of equal weight, depending on the other factors analyzed 

in this section. In case (i) history functions as a motivational, cognitive or affective tool 

to assist and support learning mathematics. In case (ii) history poses questions and 

suggests answers about the development of mathematics, identifies and explores the 

(intrinsic or extrinsic to mathematics) driving forces of this development and its 

cultural and societal aspects. 

In a historical perspective of time measurement problems, history serving as a goal 

is expected to be dominant while considering particular cases related to the two basic 

questions of §2. ; e.g. the questions why it was important and how it was possible to 

construct accurate clocks as a source of stimulation for developing the mathematics 

required for their answer (§4.5). Or, by elaborating on the religious and political 

importance of an accurate calendar and the difficulties encountered without the 

(nowadays) “simple” mathematics; the positional number system and the algorithms 

of arithmetic operations, the algebraic symbolism and its elementary use, basic 

concepts and methods in number theory (like congruences and their properties), etc.        

3.4 Following which approach and implementing which methodological 

scheme?  

(a) Following Tzanakis et al (2000, §7.3) for the classification of the approaches to integrate 

history in mathematics education, there are three broad possibilities that may be combined 

(thus complementing each other), each one putting emphasis on a different issue: (i) 

providing direct historical information, with emphasis on learning history; (ii) implementing 
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a teaching approach (explicitly or implicitly) inspired by history, with emphasis on learning 

mathematics; (iii) focusing on mathematics as a discipline and the cultural and social 

context in which it has been evolving, with emphasis on developing awareness of its 

evolutionary character, epistemological characteristics, relation to other disciplines and the 

influence exerted by factors both intrinsic and extrinsic to it. 

Though for time measurement problems all three approaches are possible (for (ii) 

see e.g. Anderson n.d.), it is more direct to follow a combination of (i) and (iii). For 

example, to discuss the search for an accurate calendar and elaborate on different 

proposals in different historical periods and cultures and their relative advantages or 

disadvantages either mathematical or non-mathematical; e.g. the Julian calendar and 

its amended successors like the Gregorian calendar and its long forgotten but more 

accurate rival proposed by Omar Khayyam several centuries earlier (§4.2). 

(b) The methodological schemes to be employed for integrating history in mathematics 

education, are classified by Jankvist (2009, §6; cf. Clark et al, 20 8, § .3.3) into three broad 

categories: (i) Illumination approaches in which teaching and learning is supplemented by 

historical information of varying size and emphasis; (ii) Module approaches in the form of 

instructional units devoted to history, often based on specific cases; (iii) History-based 

approaches in which history shapes the sequence and the way of presentation, often without 

history appearing explicitly, but rather being integrated into teaching. 

As mentioned at the beginning of this section, implementing any particular approach and 

methodological scheme in a specific case depends on several additional factors. Having this 

in mind and the interdisciplinary and multifaceted character of time measurement problems, 

(i) and (ii) seems better suited to these problems. E.g. indicative examples of a module 

approach could be: (1) The calendar in the western world: Its history and mathematical 

background (§4.4; cf. Anderson, n.d.); (2) The clock, its history and the underlying physico-

mathematical basis (cf. §4.5). Similarly, indicative examples of an illumination approach 

could be: (1) To find the week day of a given date, focusing on presenting various methods 

and their history, or/and emphasizing their modelisation  using the algebra of congruences in 

number theory (§4.3); (2) The astronomers’ Julian date, its historical origin and number-

theoretic basis (§4. ). 

In section 4, the above framework is illustrated by means of specific examples.     

4 Examples 

Below five examples illustrate in more detail what has been presented in sections 1 to 3.  

4.1 The  stro omers’ Ju i   d te: Its origi , G uss & the Chi ese rem i der 

theorem in Number Theory  

4.1.1 The historical issue 

The Julian date (JD) is a time reckoning, measuring in days the time elapsed since 1 

January 4713BC. It was introduced in 1583 by the French classical scholar Joseph 

Justus Scaliger and is still indispensable in Astronomy (Smart,  97 , §90; Richards, 

20 3, § 5. . 0; IAU, 2017, §2.3). Scaliger considered this date as the beginning of a 

very long temporal cycle of 7980 years! These mysterious at first glance numbers 

were not chosen arbitrarily, however. On the contrary, their justification provides an 

example rich in interrelations among number theory, astronomy, the history of 
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Chinese mathematics, and historical-theological considerations. Here we touch upon 

some of them briefly. 

One year after the Gregorian reform of the calendar, Scaliger in his Opus novum de 

emendatione temporum (New treatise on amending time [chronology]), he made elaborate 

calendrical calculations (which he called Computi Annales) and by starting to count 

sufficiently backwards in time, he introduced a new long temporal cycle aiming to 

disentangle chronology from the absoluteness of religious creeds and unreliable records, 

and to avoid the difficulties of reconciling the 3 “clocks”
9
 (Borst, 1993, pp. 104-106). The 

argumentation had theological motivation and was based on placing the year 1AD within 

the three temporal cycles of §2.3: 

(i) Dionysius Exiguus had introduced the AD era in 525AD (§2. ). Knowing that there 

was a new moon on 23/3/323AD, he readily concluded by simple counting that there was 

a new moon on 1/1/325AD as well. He considered this as an important theological 

coincidence, because this was the year of the Council of Nicaea which created the (first 

part of the) Nicene Creed and the Christian Easter celebration canon. Because of this, he 

considered 323AD as the 1
st
 year of a Metonic cycle. But 323  0 mod19, which implies 

that “year zero”, that is  BC
10

 was also the start of a Metonic cycle (Richards, 1998, pp. 

350-351), hence  

1AD is a 2
nd

 year of a Metonic cycle 

(ii) Moreover, by eq(2.1),   

1AD is a 4
th

 year of an Indiction cycle 

(iii) It is known that in the Julian calendar (§4.2), the year of the Council of Nicaea 

started on Friday; i.e. 1/1/325AD was a Friday. Therefore, 1/1/328AD was a Monday of a 

leap year, hence by the definition of the 28-year solar cycle (§2.3.2), this was a  
st
 year of 

a solar cycle. Since 328  20 mod28  

1AD is a 10
th

 year of a Solar cycle 

 4.1.2 The mathematical problem 

Instead of going into Scaliger’s early elaborate approach, we outline Gauss’ treatment 

in his Disquisitiones Arithmeticae (Gauss, 1801, Part II §36; Ore, 1988, pp. 245, 247). 

The mathematical problem consists of finding the year x (1AD) which is the 2
nd

 year of 

a Metonic cycle, the 4
th

 year of an Indiction cycle, and the 10
th

 year of a Solar cycle; i.e.  

                         x  10 mod28,   x  2 mod19,   x  4 mod15                                     (4.1) 

Since (28,19,15) are pair-wise relatively prime, by the Chinese Remainder Theorem 

(Dence & Dence,  999, §4.5; Ireland & Rosen,  982, §3.4; Vinogradov,  954, §IV.3) a 

solution x exists, unique modulo 28× 9× 5=7980 

                               x  (10x1 + 2x2 + 4x3) mod7980                                                  (4.2) 

where (x1, x2, x3) is the solution of the auxiliary system of congruences 

        x1=  9× 5y1  1 mod28, x2= 28× 5y2  1 mod19, x3=  9×28y3  1 mod15      (4.3) 

This can be solved easily to get (y1, y2, y3) = (45, 10, 28), and therefore  

                                                           
9
 Reiner in Paderborn Germany (12

th
 century), making one of the first uses of Arabic numerals and the 

decimal system, had argued already that all time reckoning methods introduced significant errors over long 

time periods (Borst, 1993, pp. 73-74). 
10

There is no zero AD. In astronomy years BC are given by non-positive integers, with 0 for 1BC; Richards, 

20 3, § 5. .9. 
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                                      x  196234 mod7980 = 4714                                              (4.4) 

as the unique solution in a long temporal cycle of 7980 years, starting on 4713BC; the 

temporal cycle on which the JD is based.  

This is a rich example that can be extended in several directions in a heritage-like 

perspective (§3. ), ranging from insights into the history of Chinese mathematics
11

, the 

appearance of similar problems in Fibonacci’s Liber Abbaci (Sigler, 2002, pp. 402-403) 

and the importance of this book for the emergence of arithmetical concepts and methods, 

or the significance of Gauss’ Disquisitiones Arithmeticae
12

, to subjects less central to 

mathematics like the origin and significance of the temporal cycles of §2.3, etc. Here, 

history has a cultural role that helps both to appreciate the cultural aspects of (otherwise 

abstract) mathematical problems and to provide teachers’ with resourceful material (§3.2). 

Clearly, in this example, the historical development (both extrinsic and intrinsic to 

mathematics) is the main goal to a large extent (§3.3) by focusing on the cultural and 

societal aspects of the problem and implementing an illumination approach, e.g. in the 

context of a course in number theory and its applications (§3.4).       

4.2 The optimal leap year rule & continued fractions: Julius Caesar, Omar 

Khayyam & Pope Gregory XIII  

4.2.1 The problem in historical perspective 

This example concerns the historically long struggle to reconcile two of the basic 

clocks (the year and the day), in a way applicable for civil purposes and easy enough 

to be understood by people. This has been a difficult problem for several reasons: 

(i) There is no unique definition of the three basic “clocks” because of the relative 

motions of the sun, moon and earth, and because these motions are quite complicated as a 

result of the complicated interaction dynamics among these bodies and the other planets. 

This gives rise to several periodic phenomena with slightly different periods. However, 

these differences cannot be ignored over long time intervals and/or if high precision is 

required, leading to many refinements of the basic clocks. For the year: sidereal, (mean) 

tropical, anomalistic, lunar; for the month: sidereal, (mean) synodic, anomalistic, nodical; 

for the day: sidereal, apparent solar, mean solar, day (SI). Conventionally, the tropical 

year tY (for the seasons), the synodic month tM (for the lunar phases) and the day (SI) tD 

(§§ .2, 2.3) are used (for details see e.g. Smart,  97 , ch.VI and §§24, 28, 8 -83, 86). 

(ii)  For social reasons, both the day & the (mean) tropical year are important. 

(iii) The ratio tropical year/day is not an integer, eq(1.2). This required introducing 

additional days, done in diverse ways in different historical periods and/or cultures 

(Richards, 1998, part II). E.g. the calendar in ancient Egypt (util the 1
st
 century BC) 

consisted of 12 30-day months plus 5 additional (or “intercalation”) days, yielding a year 

of 365 days; i.e. [tY], the lowest-order approximation to tY (Richards, 20 3, § 5.2. ). 

(lowest approximation) ancient Egyptian calendar: tY = 365
d 

= 2×30
d
 + 5

d 
(intercalation) 

During the Roman republic a more complicated and considerably less symmetrical 

variant was used (Richards, 1998, ch.16). However, since tY is longer by about ¼ of a day 

(eq(1.2)), the seasons’ periodicity lagged behind the civil year by almost 1 month within 

                                                           
11

 For the history of the Chinese remainder theorem see Katz, 1998, pp.197-199; Dauben, 2007, p. 302. 
12

 E.g. close to the context of Goldstein et al, 2007, especially chs. I.1, I.2. 
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one century! On the advice of the Alexandrian astronomer Sosigenes, Julius Caesar 

introduced in 46BC a better approximation: 4-year cycles consisting of 3 common years 

and one leap year (the Julian calendar) 

(first approximation) Julian year (JY): tY = 365
d
.25, 

Julian calendar (4-year cycles): 4×365.25
d
 = 3×365

d 
(common year) + ×366

d 
(leap year) 

(iv) Table 4.1 shows that this was again an approximation, amounting to a discrepancy 

of about  0 /year between the J  and the tropical year according to the Alfonsine tables
13

 

(late middle Ages). This amounts to the loss of 1 day in about every 134 years. 

tY
  

year 

current value  

tJY 
Julian year  

tM 
month (mean synodic) 

current value  

t′Y 

Alfonsine tables 

(1252/1492)  

tD
 
 

day 

current value  

365
d
.2422  365

d
.25  29

d
.53059  365

d
.242546  86,400 sec(SI)  

365
d
 5

h
 48 46″  365

d
 6

h 29
d
 12

h
 44 2″  365

d
 5

h
 49  6″   

tJY - t′Y =10′ 4″ = 0.0074537 days/year, or 1 day lost every 134.16 years 

Table 4.1 

This tiny measurement errors due to the limited accuracy of observations produced 

observable effects only over long time intervals (centuries). Nevertheless this was 

important for several reasons: (1) religious: to have regular and strict celebration of 

festivities (especially the Christian Easter); (2) historical: to reckon correctly facts in 

different epochs at different places; (3) political: to coherently realize seasonal activities 

related to society, economy, agriculture etc. 

Many attempts for corrections were made in the middle Ages, greatly enhanced by the 

gradual establishment of the Arabic numerals and the positional number system in the 

Renaissance. Thus the French cardinal P. d’Ailly ( 4 2) proposed to omit 1 day every 134 

years; more importantly, the Italian astronomer and mathematician P. Pitatus (1568) 

proposed to omit 3 days every 400 years, because 
 

   
 

 

    
 
 

 
 

   
 

(Dutka, 1988, p. 60). Probably influenced by this proposal and upon request of Pope 

Gregory XIII, a group of scholars with central figures the Italian physician and astronomer 

A. Lilius and the Jesuit mathematician and papal astronomer C. Clavius proposed the 

currently used rule; namely, Pitatus’ rule omitting from the leap years the centurial years 

not divisible by 4, thus keeping only 97 leap years in 400 years. This was the Gregorian 

reform of the calendar officially declared and implemented in 1582 (Richards, 1998, ch. 

19; 2013, pp. 598-599; Dutka, 1988; Duncan, 1998, ch. 13). 

Later, in his Introductio in analysin infinitorum Euler developed tY as a continued 

fraction. This approach, understood in a heritage-like perspective (§3. ) with history 

playing a strong cultural role (§3.2), provides interesting insights into the underlying 

mathematics and its cultural significance. This enriches the teachers’ didactical 

background by interrelating mathematics with other non-mathematically oriented domains 

                                                           
13

 In honor of Alfonso X of Castille (1252-1284), who supported the conduction of accurate astronomical 

tables during his regnal period (Richards, 1998, pp. 38-39). 
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and deepens the awareness of mathematics as an intellectual endeavour having strong 

permanent bonds with culture and society. We proceed to reveal this point more clearly. 

4.2.2 Continued fractions 

In view of the historical outline above, two questions naturally arise (Rickey, 1985): 

- Since there is always a difference between the tropical and the civil year, is there any 

better leap-year-rule? 

- Can the Julian and Gregorian calendar rules be mathematically described uniformly? 

Here, continued fractions enter the scene; a historically and mathematically interesting 

and rich concept introduced by Bombelli, Huygens, Wallis, Euler and others (cf. §2.3. ): 

Any (rational) number a is represented by a (finite) continued fraction by subtracting the 

integral part from it, taking the reciprocal, recording the integral part and subtracting it, 

and repeating the procedure: 

                        
 
 

     

     
 

     
 
 

       

             
 

     
                                (4.5) 

This leads to the continued fraction representation of the rational number. If truncated at 

the n
th

 step, it gives its convergents 
  

  
 obeying recursive relations already proved by 

Wallis (1655) and Euler (1737) (Hairer & Wanner, 1996, §I.6, theorem 6. ): 

     
 

   
 

   
 

   
 

   
 

   
 
  

 
  

  
                          (4.6) 

with 

                                                                                                 (4.7a) 

                                                                           (4.7b) 

With tY -[tY] = 0.2422 to four decimals (Table 4.1) and b0=0, b1=4, we get the continued 

fraction expansion (cf. Rickey, 1985; Eisenbrand, 2012; Grabovsky, n.d.) 

       
    

     
 

    

    
  

 

  
 

  
 

  
 

  
 

  
 

  
 

  
 

  
 
 

                 (4.8a) 

 

and its convergents giving possible calendar options shown in Table 4.2. 

 

 
   

 

  
  

 

  
  

  

   
  
   

   
  
   

   
  

   

    
  

   

    
  
    

    
                         (4.8b) 

Table 4.2 includes both the JY (1
st
 row) and another proposal by the 11

th
 century Persian 

scholar and poet Omar Khayyam (2
nd

 row), largely forgotten but more accurate than the 

Gregorian one (3
rd

 row), which is shown for comparison even though it does not 
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correspond to any convergent of tY -[tY] (Rickey, 1985): 

- 2
nd

 row (Omar Khayyam): 7 consecutive 4-year cycles with 1 leap year per cycle, 

followed by one 5-year cycle having 1 leap year  

But there are other even more accurate options: 

- 4
th

 row: 32 consecutive 4-year Julian cycles with no leap year in the last one; 

- 5
th

 row: the Gregorian rule applied to centurial years divisible by 5 (i.e. 96+25=121 leap 

years in 5 centuries), with the 5000
th

 year not being a leap year (Rickey, 1985). 

convergent Proposal Value temporal cycles of JY 

(1 leap year per cycle) 

1
st Julian calendar (46 BC) 1/4 = 0.25 4y =  ×4y 

leap years: 1 

3
rd Omar Khayyam (c. 1076 AD) 8/33 = 0.2424… 33y = 7×4y +  ×5y 

leap years: 8 = 7+1 

 Gregorian Calendar (1582 AD) 97/400 = 0,2425 400y = 3×(25×4y- d) +  ×(25×4y) 

leap years: 97 = 3×(25- ) +  ×25 

4
th 

Other possibilities 

31/128= 0.24219 128y = 3 ×4y +  ×4y-1d 

leap years: 31 = 32-1  

9
th 1211/5000= 0.2422 5000y =  0×[4×(25×4y- d)+ ×(25×4y)] +  d 

leap years: 1211 =  0× [4×(25- )+ ×25] +   

Table 4.2 

Non-mathematical arguments of a social or practical nature for or against these 

alternatives can be a stimulating part of an interdisciplinary teaching module on this 

problem, with emphasis on historical information about the mathematics required, used, or 

underlying it and the cultural and social issues that called for its solution and stressed its 

significance (§3.4). In this context, while exploring the driving forces behind this problem, 

historical issues are dominant, thus serving mainly as a goal in themselves (§3.3).   

4.3 The weekday on a given date: From old dominical letters to modern 

computer algorithms 

4.3.1 Outline of the problem and its history  

Finding the weekday on a given date has attracted considerable attention throughout 

history for social, political and religious reasons (§§2. , 2.2(d); e.g. it is crucial for 

finding the date of Easter Sunday; §4.4). Its treatment involves three temporal cycles 

of different origin: the year, of astronomical origin, the civil month, and the week, 

both being determined by a mixture of astronomical and civil factors
14

. Though 

mathematically elementary (simple counting is sufficient in principle), it is a non-

trivial problem if a sufficiently quick method is requested, and/or dates with a long 

time separation are considered. This implies that an as much as possible formalized 

procedure is desirable or necessary. Therefore, this problem has considerable 

recreational value (e.g. Kraitchik, 1953, ch.5; Ore, 1967, ch.8; Beveridge, n.d.), 

reinforced by its “asymmetric” aspects that allow for no simple solution because of 

various reasons of diverse character:        

(1) Since 3651(mod7) and 3662(mod7), each date moves forward by 1 or 2 

                                                           
14

 For historical issues see Richards, 1998, chs. 15- 7, 2 ; 20 3 §§ 5. .6,  5.3.2,  5.3.3;  uncan,  999, ch. 

2; Whitrow, 1988 pp. 32, 55, 68-70. 
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weekdays per common or leap year respectively; 

(2) There is 1 leap year every 4 years (Julian calendar), plus the correction for 

centurial years (Gregorian calendar). This is due to the lack of a simple rational 

relation between the year and the day, and the obvious request that socially important 

temporal cycles should be expressed by relations involving integer numbers only; 

(3) For historical or even incidental reasons, the number of days is distributed irregularly 

among civil months; 4 having 30 days, 7 having 31, 1 having 28 or 29. 

Due to the interest it arose throughout history, it has been considered by different 

people (including many eminent mathematicians) in various ways, several of which are 

interesting from a heritage-like educational perspective (§3. ). No comprehensive 

presentation will be given. We simply note that the problem can be tackled and solved in 

different, progressively formalized ways roughly reflecting the historical development:  

(i) In the early middle Ages, due to the lack of sufficiently developed mathematical 

background, the problem was treated by simple counting, possibly using the four 

arithmetical operations and extensive data tabulation. In this connection the 28-year solar 

cycle was central (§2.3.2), which is not directly applicable to the Gregorian calendar 

however, because some centurial years are common (§4.2.2).  

(ii) With the development of (elementary modern) mathematics - the arabic numerals, the 

positional number system, and the emergence of elementary algebraic symbolism and 

methods - it became possible to use these tools to parameterize dates and weekdays, thus 

reducing the use of tabulated data. 

(iii) Further development of mathematics led to the invention of more compact methods 

and their algebraic formulation that minimized the need for data tabulation, and by a 

progressively more elaborate formalization the development of numerical algorithms 

admitting computer implementation nowadays. 

The key historical steps in this development could form the basis of a teaching module, 

focusing on the religious and social need to obtain a sufficiently simple and practical 

solution (§3.4). Identifying and elaborating on these steps means that history will serve 

mainly as a goal in itself (§3.3), helping to realize both the cultural significance and the 

evolving character even of the most elementary mathematical knowledge that today is often 

considered as “something that was always there” (e.g. the positional number system, or the 

existence of algebraic symbolism; §3.2(a)). On the other hand, since there are several 

different equivalent formulations and solutions of the problem (Appendix A), it is 

mathematically interesting and insightful to check and prove their equivalence. This 

ranges from simple computational exercises, to more sophisticated mathematical 

elaborations, thus helping to get acquainted with specific pieces of mathematics and 

enriching the teachers’ didactical background (§3.2(b)).  

4.3.2 A semi-formalized method of solution 

To illustrate some points of §4.3. , a “hybrid” solution method is outlined; a semi-

formalized one (close to Richards’  998, ch.24) minimizing the need of data tabulation.  

(1) Each method uses some mapping of the weekdays to an arithmetical set. Here and 

in Appendix A we use the following numbering and notation: 
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Sun Mon Tue Wed Thu Fri Sat 
Weekday number W 

1 2 3 4 5 6 7 

Table 4.3 

Year AD   Month  Day of month  date  Weekday number  

Y  Y=100c+y  m  d  d/m/Y  W  

Table 4.4 

(2) The dates of the year  / , 2/  …, 31/12 are numbered consecutively from 1 to 365, 

assigning to each one its remainder when divided by 7, its so-called calendar number; that 

is, the calendar numbers are given by the  

        canonical mapping: { / , 2/  … 3 / 2 }  { , 2, 3, …, 365}                   (4.9) 

with the important convention that 29/2 and 1/3 are both mapped to 60  4(mod7) (a 

year’s 60
th

 day is 1
st
 March (common year), or 29

th
 February (leap year)). 

To avoid confusion with the weekday numbers, identify calendar numbers with calendar 

letters: 

{1, 2, 3, 4, 5, 6, 07}  {A, B, C, D, E, F, G}  

(3) Though obvious, it is important to note that each weekday in a (common) year has 

the same calendar number/letter throughout the year (i.e. the same image in   ). For a 

leap year, each weekday has two calendar letters; one for January and February and one 

for the other months, this one being identical with the calendar letter of that day in the 

next year.  

(4) Therefore, define the dominical letter/number of the year Y as  

                    NY = calendar letter/number of Sundays of year Y                                  (4.10) 

Little inspection shows that NY determines the weekday of 1/1/Y. By (3), there are 14 

alternatives for NY, shown in Table 4.5, which readily implies that 

                                                      W1/1/Y + NY  2 mod7                                           (4.11) 

 Dominical Number/Letter   

Week day, 1/1  W N (Common Year) Leap Year (N \ N -1)  Forward in time  

Sunday  1  1  A  1\7  A\G  

 

Saturday  7  2  B  2\1  B\A  

Friday  6  3  C  3\2  C\B  

Thursday  5  4  D  4\3  D\C  

Wednesday  4  5  E  5\4  E\D  

Tuesday  3  6  F  6\5  F\E  

Monday  2  7  G  7\6  G\F  

 For the whole year  Jan, Feb\ Mar-Dec 

Table 4.5 
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common year leap year 

W1/1/Y+1  (W1/1/Y +1) mod7 W1/1/Y+1  (W1/1/Y +2) mod7 

NY+1 = NY -1 NY+1 = NY -2 

Table 4.6 

Therefore if NY is known, this relation gives the week day of 1/1/Y (Table 4.6). This in 

turn gives the weekday of any date in the year Y, as shown below. This is one of the 

reasons for which dominical letters played an important role in the past (especially before 

the development of algebraic symbolism and operations) and were extensively tabulated 

(Richards, 1998, ch.24; Dominical Letter, n.d.); e.g. Table 4.5 immediately gives the 

succession of years in the 28-year solar cycle, thus providing a constructive proof that 

every 28 years, each date of the year – and for all dates - falls on the same weekday, as 

shown in Table 4.7 (solar cycles start on a leap year with 1/1 being Monday; §2.3.2).          

Year of the cycle N Year of the cycle N 

1 G/F 15 C 

2 E 16 B 

3 D 17 A/G 

4 C 18 F 

5 B/A 19 E 

6 G 20 D 

7 F 21 C/B 

8 E 22 A 

9 D/C 23 G 

10 B 24 F 

11 A 25 E/D 

12 G 26 C 

13 F/E 27 B 

14 D 28 A 

Table 4.7 

(5) Define the regular of month m, Rm by 

                         Rm = (calendar number of 1/m) mod7                                           (4.12) 

By (4.9), Rm is independent of the year (common or leap) and given in Table 4.8 

m  Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  

Rm  1  4  4  0  2  5  0  3  6  1  4  6  

Table 4.8 

It is readily seen that W1/m  (W1/1 – 1 + Rm) mod7; hence, for any day d of that month: 

                                    Wd/m  (W1/1 – 1 + Rm + d –1) mod7                                         (4.13) 

Therefore, the problem reduces to determining W1/1/Y . Given that passing from Y to Y+1 

each date moves forward by 1 or 2 weekdays per common or leap year respectively, it is 

readily seen that for the Gregorian calendar and for a common year there have been Y-1 + 
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[Y/4] – [Y/100] + [Y/400] shifts forward from 1/1/1 to 1/1/Y
15

. For a leap year, 1 should 

be subtracted from the r.h.s. for m≤2 (i.e. for January, February) since its leap day has 

already been added in the above sum. 1AD can be replaced by any other reference year 

Y0, adding a constant depending on Y-Y0 and Y0 being a common or leap year. Choosing 

Y0 to be a common year for which        
 is known and combining the above number of 

shifts with (4.13) gives the weekday number for any date 

Wd/m/Y  (d – 1 +  Rm + Y–1 + [Y/4] – [Y/100] + [Y/400] + a) mod7 

with a specified by Y0; e.g. 1/1/2018 was Monday, hence W1/1/2018 = 2 (Table 4.3). 

Therefore W1/1/2018 = 2  (2507+a) mod7  (1+a) mod7  a = 1 and Wd/m/Y is: 

                   Wd/m/Y  (d + Rm + Y–1 + [Y/4] – [Y/100] + [Y/400] - δ) mod7              (4.14a) 

 δ =  
1 ; for Y leap year & m≤2  

                                        (4.14b) 
0 ; otherwise  

Though what precedes gives only the basics of the method, it is clearly susceptible to 

considerable elaboration in various directions; discussion on the role of 

algebraic/symbolic modelization vs. using exclusively tabulation methods (the only thing 

medieval scholars could do); comparison with other methods (e.g. those in Appendix A); 

finding other equivalent formal expressions and developing algorithms appropriate for 

computer implementation; further discussion on calendars different from the Gregorian, 

and conversion procedures from one to another (e.g.  Richards, 1998, part III) etc.      

4.4 Computus & Easter Sunday: The struggle for reconciling astronomical 

and civil temporal cycles   

Finding the date of Christian Easter Sunday has been central for Christendom since the 

early middle Ages, closely related to finding the weekday on any given date (§4.3). 

Though by modern standards the problem in principle requires only very basic 

mathematics (the positional number system, the four arithmetical operations, the decimal 

representation of fractions, and an elementary algebraic symbolism and modelization), it is 

difficult to be dealt without the mathematical sophistication of §4.3. In fact, it is even 

more difficult because four temporal cycles are involved instead of three: two of the 

“basic clocks” (the (tropical) year and the lunar (synodic) period), and two of social origin 

(the civil month and the week), all measured in days (the third “basic clock”). The 

complications inherent to this problem for astronomical and civil reasons, and the lack of 

sufficiently adequate mathematical background prohibited an accurate - hence definite – 

solution. This made it a subject of ceaseless interest since the early Christian era, greatly 

influencing social life, theological debates and religious customs, and calling for more and 

more accurate astronomical observations and ever increasing mathematical sophistication. 

The interference of nonmathematical (basically theological) issues as the motive force, 

with the treatment of complicated astronomical data by means of mathematical techniques 

developed for that purpose, led to the medieval computus; the particular art of calculating 

Easter Sunday’s date developed by specialized scholars and clergymen, and whose basics 

had to be familiar to the clergy in medieval Europe (cf. §2. ; for historical details see 

                                                           
15

 The number of years that passed since 1AD, plus the additional days because of the leap years, minus the 

centurial years that are common (for the Julian calendar, the last term [Y/400] is missing). 
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Borst, 1993, chs. 4-10; Duncan, 1998, chs. 5-7, 11; Whitrow, 1988, Appendix 3). 

Being a meeting point of ancient Greek astronomy, time reckoning in the Roman 

Empire, and the Jewish lunar calendar and festivities, it is a historically fascinating and 

strongly intercultural and interdisciplinary subject related to elementary mathematics. 

Therefore, from an educational point of view, it is ideal for perceiving pieces of 

elementary mathematics from a non-mathematical perspective (§3.2(a)) by revealing the 

cultural factors that influenced the development of mathematics and the social problems 

solved in this way (§3.2(b)). In a heritage-like perspective (§3. ) the emphasis is on 

learning about the historical origin and development of some nowadays very basic 

mathematics (§3.4(a)). By following a history-based approach, the key steps of this 

development will shape the presentation (§3.4(b)) in the form of the questions and 

problems that were the driving forces for exploring and solving the problem (§3.3).  

Some issues related to this problem were discussed in the previous sections. Therefore, 

only certain basic points are presented with reference to the literature for further details.       

4.4.1 The historical milieu 

Since its original appearance as a historical religion, Christianity considered Easter’s 

celebration as the most important part of its worship. Originally, this was dependent on the 

Jewish Passover because according to the Gospels, Jesus’ Crucifixion took place one day 

after the Passover feast on the 14
th

 day of Nisan, the first month of the religious Jewish 

year, starting near the vernal equinox (Richards, 1998, ch.17). Given that the Jewish 

calendar is lunar, but the Julian calendar (hence, the Gregorian as well) is solar, Christian 

Easter could not be celebrated on a fixed day of the year. Therefore, after Constantine the 

Great allowed Christians to follow their faith without oppression in 313AD, he convened 

the first Ecumenical Council in Nicaea, Asia Minor, in 325AD, which – among other 

things (§4. . ) – set out the framework for Easter’s celebration by requesting: (i) 

independence from the Jewish calendar, as it was done by the Alexandria’s church 

(namely that it must be celebrated on a Sunday necessarily after the vernal equinox); and 

(ii) celebration on the same date everywhere. After a transient period in which the 

Alexandrine computational method was stabilized into its final form, this led to the 

following convention used as a normative rule throughout Christendom since long ago
16

: 

 Christian Easter is celebrated on the first Sunday after the first full moon that 

coincides with or follows the 21
st
 of March (the ecclesiastical vernal equinox).   

It is here assumed that the full moon occurs on the 14
th

 day after the new moon (counting 

new moon’s occurrence as the first day). The lunar cycle in the above rule is called the 

paschal moon and its full moon is the paschal full moon. 

4.4.2 The astronomical background and the resulting complications 

(a) Easter’s celebration rule clearly involves the combination of three temporal cycles: 

The (Julian) civil year via the vernal equinox; the lunar synodic period (or lunation; §2.3) 

via the occurrence of a full moon; and the 7-day week via the request of Easter’s 

celebration being on a Sunday. Therefore, its actual implementation meets several 

difficulties for the following reasons (cf. § .2): 

(1) The (Julian) civil year and the tropical year differ and the difference accumulates, even 

if one leap year is inserted every 4 years. Moreover, leap years introduce further 
                                                           
16

This is an oversimplified picture of the complicated historical development (Richards, 1998, ch.24).  
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computational complications similar to those in §4.3; 

(2) There exist no simple rational relations among the above three temporal cycles; 

(3) Civil months (the 4
th

 cycle involved) differ considerable from the lunar synodic period;  

(4) Because of (2), the full moon does not occur exactly 14 days after the new moon; 

(5) The vernal equinox does not occur exactly on March 21
st
 (March equinox, n.d.). 

Hence, the result of applying the above rule for Easter’s celebration deviates from the 

occurrence of the astronomical phenomena it is supposed to describe. It corresponds rather 

to a notional picture close but not coincident with physical reality. This gets clearer below.  

(b) The Alexandrians employed the 19-year Metonic cycle (§2.3. ) to determine Easter 

Sunday. Based on this, Victorius of Acquitaine (5
th

 century AD) realized that the dates of 

Easter Sunday repeat every 532 years which was named after him (Victorian cycle). But 

this cycle is the least common multiple of 19, 28 and it is illuminating to note in Table 4.9 

its interrelation with other cycles (§2.3).   

cycle      Solar Metonic Callipic Victorian 

duration (years) 
       28 ×  9    =  ( 9 × 4) × 7 =  76 × 7  = 532 

origin Astronomical & 

civil conventions 

Astronomical 
 

Astronomical & 

civil conventions 

Table 4.9 

By combining the Victorian cycle with the AD era introduced in 525A  (§§2. , 4. . ), 

tables with the Easter days were produced for two Victorian cycles (i.e. until 1064AD), 

originally by Isidore of Seville (early 6
th

 century AD) and then by Bede in his influential 

De temporum ratione (725AD); Borst, 1993, ch. 5, Richards, 1998 ch. 28. But because of 

the reasons in (a) above, these calculations led to results incompatible with the physical 

phenomena over long time periods: The use of (i) the Julian year (365
d
.25) instead of the 

slightly shorter tropical year tY= 365
d
.2422,  eq(1.2), and (ii) the notional lunation 

obtained as the mean value of the lunar synodic month in one Metonic cycle (§2.3. ) i.e. 

6940
d
/235 = 29

d
.5319, instead of tM= 29

d
.5306, eq(1.3), produced a cumulative effect: the 

vernal equinox was falling progressively earlier than 21 March, and astronomical new 

moons appeared progressively earlier than the calendar dates of notional new moons. 

It is obvious how difficult it was to deal with this problem without the nowadays 

elementary mathematical knowledge of the positional number system, the arithmetic 

operations and fractions’ decimal representation. It also gives hint why the computus 

(based on simple counting and extensive use of tables) required special training and was 

accessible to a limited circle of educated people (Fraser, 1987, p. 81).  

At the same time, it is illuminating to consider the problem from a modern perspective 

and comment briefly on why a possible solution was never implemented. Table 4.10 gives 

the values of the physical and notional quantities involved (approximated to four 

decimals; cf. §§ .2, 2.3). Imposing the condition that the civil year should have 12 (civil) 

months, yields  

Metonic cycle = ( 9 ×  2) = 228 civil months = 235 notional lunations = 6940
d 
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    tY current value  tJY Julian year  tM lunar synodic period  

365
d
.2422  365

d
.25  29

d
< 29

d
.5306 < 30

d
  

19tY =6939
d
.60  19tJY =6939

d
.75  235tM= 6939

d
.69  

rounded to 6940
d
 (Metonic cycle)  

 
                           physical fact 

29
d
 < tM < 30

d
  

17
 

12 tM < tJY <13 tM  

never used 
civil (common) year 365

d
 = 12 months  

     = 7 × 30
d
 + 5 × 3 

d
  

     = 5 × 30
d
 + 6 × 3 

d
 + ×29

d 

     = 4 × 30
d
 + 7 × 3 

d
 + ×28

d
  

tJY = 29
d
.5 ×  2 +   

d
.25  

     = 354
d
 + 11

d
.25     

original (roman) 

final (current) 

Table 4.10 

If it is further required that notional lunations contain an integer number of days (29
d 

or 

30
d
), then the Metonic cycle admits a unique partition into notional lunations; namely  

29x + 30y = 6940  
  

x = 110  

x + y = 235  y = 125  

However, this solution is incompatible with the additional requirement of civil years 

having 12 months, in the sense that no such convenient division exists! 

  4.4.3 The adopted solution and a modern formulation 

Because of the many “asymmetric” features of the problem (partly due to social 

constraints or historical incidents) the solution finally accepted is as follows (for details 

see Richards, 1998, ch. 29):  

(a) The Metonic cycle is used, consisting of 235 notional lunations, or “months” m of 

either 30
d
 or 29

d
. 

(b) These lunations are distributed among the 19 solar years as follows: 12 years are 

common in the sense that they contain 6 lunations of 30
d
 and another 6 of 29

d
. The 

remaining 7 are embolismic in the sense that they contain a 13
th

 (embolismic) lunation, 

which has 30
d
 for the six of these year and 29

d
 for the last one. Finally the remaining 5

d
 

were added by inserting 1
d 

every 4 years into whichever lunation contains 24 February. 

Or, in symbols   

235m = 12y × 12m/y + 7y × 13m/y = 

          =  12y × 6m/y × (30d/m + 29d/m) + 6y × [7m/y × 30d/m + 6m/y × 29d/m] + 

      + 1y × [6m/y × 30d/m + 7m/y × 29d/m] + 5d = 6940d 

(c)  The paschal full moon is on the14
th

 day of the notional lunation on or after 21/3 

and this notional lunation should always have 29
d
. This can be accounted for by arranging 

lunations so that the first one has 30
d
 for all years of the Metonic cycle. This means that 

the earliest is on 21/3, and the latest on 18/4 (full moon on 20/3 + 29d). Therefore, Easter 

Sunday falls from 22/3 to 25/4 (paschal full moon on Sunday 18/4). 

Clearly, this is not a mathematically elegant solution. For centuries it was necessary to 

                                                           
17

 A purely lunar calendar of 12 lunar synodic periods equals 354.3672
d
. It can be approximated by six 30-

day and six 29-day months corresponds to a lunar year of 354 days, with some years having one additional 

day to account for the resulting discrepancies. The Islamic calendar is of this kind (Richards, 1998, ch. 18).   
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construct appropriate tables satisfying the above conditions and in some way depicting the 

notional lunations in the calendar of the 12 civil months. To this end further parameters 

were defined for each year; the golden number and the epact (see below). With the 

development of algebraic symbolism and operations it became possible to formalize the 

solution further, so that nowadays this formalization is complete admitting computer 

implementation. This procedure is nontrivial and can constitute a nice project in discrete 

mathematics, computer algorithms etc. No details are given, but we define the additional 

concepts needed and simply state the final result (Richards, 1998, ch. 29).  

(d)  We define: 

(i) The Golden Number GY of the AD year Y (the place of Y in the Metonic cycle; §4. . ): 

                                                GY  1+Y mod19                                                           (4.14) 

(ii) The Epact
18

 of Y: The age of the notional moon on 1/1/Y (ranging from 0 for a new 

moon, to 28). 

(iii) Having in mind (c) above, we define the mapping  

                              {2 /3, 22/3 … 25/4}  R = {2 , 22,…,56}                                  (4.15) 

and consider the Easter Sunday number, SY and the next day of the Paschal full moon, rY. 

By (c) above, SY, rY  R and it can be shown that the following relations hold: 

The calendar number C of rY (§4.3.1) is  

                                                   C  (rY +3) mod7                                                       (4.16) 

Moreover, 

                                                 rY  (75- EY) mod30                                                   (4.17) 

                                               EY  (11 GY - 3) mod30                                                (4.18)  

Writing (4.11) in the equivalent form    

                                               NY  (9 – W1/1/Y) mod7                                                 (4.19) 

it can be proved that the date of Easter Sunday for the year Y is given by  

                                           SY  rY + (7 + NY – C) mod7                                             (4.20) 

Clearly the above relations can be combined to give several other equivalent forms of 

the final result (4.20). The important thing to note here is that by means of some careful 

algebraic modelization, any reference to tabulated data has been dispensed with. 

Following in detail the procedure leading to the above result provides a nice opportunity 

of getting insight into the way an appropriate mathematical formalization replaces more 

empirical and common sense methods to deal with a problem of non-mathematical origin.       

4.5 Accurate clocks, the escapement mechanism & the underlying physico-

mathematical theories: Galileo & Huygens  

This is a vast subject in which interesting mathematics, (partly) advanced physics and 

complicated technology interact in a multifarious way. The discussion will be 

confined to comments on Galileo’s and especially Huygens’ contribution. 

According to the previous examples there was a gradually increasing need for more and 

more accurate time-keeping, further enhanced by the nontrivial problem of determining 

geographic longitude (especially at sea) during and after the great geographical 

expeditions (Whitrow, 1988, ch. 9; Newton, 2004, chs. 5 & pp. 59-61). To this end, 

devices were invented based on continuous processes (e.g. water clocks), or oscillatory 

processes (e.g. mechanical clocks), with a gradual shift from the first to the second 
                                                           
18

 Introduced by the Alexandrian church in the 3
rd

 century AD (Holford-Strevens, 2005, ch. 4 & Appendix 

B).  
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because of the invention of the verge escapement (Appendix B). Originally these were 

inaccurate because of swinging across wide angles (at least 50
0
). Without going into 

details, we comment on two historically important cases in which technology and 

mathematics are interconnected:  

-The simple pendulum clock: Although Galileo’s discovery of the simple pendulum 

isochronism (c.1602; Drake, 1995, pp. 68-70, 72-73) motivated him in his later years to 

think of it as the basis of a possible time-keeping mechanism described posthumously 

(1659) by his biographer Viviani (Fig. A.1; Drake, 1995, pp. 378-379, 399, 419-421), such 

a clock was constructed by Coster in 1657 only after Huygens’ theoretical investigations 

(Fig. A.2; van Helden, 1995; Whitrow, 1988, pp. 122-124; Richards, 1998, p. 58). 

-The Cycloidal pendulum: Also invented by Huygens in 1659 and described in his 

influential Horologium Oscillatorium (1673/2013, Part I), which is an ingenious 

construction based on the mathematical properties of the cycloid that he also proved (Fig. 

4.5; Whitrow, 1988, p. 123; Horologium Oscillatorium, n.d.).  

  4.5.1 The simple pendulum clock 

The first sufficiently accurate clocks (17
th

 century) were based on the isochronism of 

the simple pendulum
19

. Though discovered empirically (Newton, 2004, pp. 87-88; cf. 

Drake, 1995, p.397), it can be deduced as a simple application of Newtonian mechanics 

(see e.g. Sommerfeld,  964, §III. 5): Since the pendulum bob of mass m moves under its 

own weight mg and the tension T along the massless rod or string of length l (g being the 

gravity acceleration), applying Newton’s second law gives the equation of motion in terms 

of the oscillation angle, accents denoting differentiation with respect to time t (Figure 4.1):  

 
 

 

Figure 4.1: The physics of the simple pendulum 

                                          
 

 
                                                                            (4.21) 

This is a non-linear 1
st
-order differential equation, whose solution can be obtained in 

terms of elliptic integrals (Sommerfeld, 1964, ibid). It is well-known that for very small 

oscillation amplitudes, i.e. to lowest order in the oscillation amplitude (maximum of |θ|), 

(4.21) becomes linear and its solution is a simple periodic function independent of this 

amplitude with period T given by (4.21').      

                               
 

 
            

 

 
                                                         (4.21') 

As an interesting application of elliptic functions and integrals, it is insightful to solve 

                                                           
19

 For earlier constructions see Newton, 2004, ch.3; Whitrow, 1988 pp. 120-122; 1972, ch.4; Clock, n.d.   
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(4.21) and get T in (4.21') as the lowest order approximation of the elliptic integral’s 

modulus as a function of the pendulum’s parameter (l/g)
1/2

.      

4.5.2 The cycloidal pendulum clock 

(a) The next very important development both theoretically and technically, was 

Huygens cycloidal pendulum and the underlying mathematical properties and physical 

theory. Huygens sought and conceived (more) accurate clocks (Huygens, 1673/2013). The 

key steps of his approach are schematically 

- The study of the cycloid;  

- The introduction of the novel geometrical concept of the evolute (and implicitly its dual 

concept, the involute) of  a curve (Evolute, n.d.); 

- The proof of the cycloid’s important properties: its tautochrone (oscillations along it are 

isochronous) and its self-involuteness (its involutes are again cycloids identical to it); 

- The design of in principle more accurate clocks
20

. 

Though Huygens’ approach is geometrical (in the Euclidean tradition of that period), its 

outline below is analytical (based on Newton’s laws), and it is insightful to be compared 

in detail with Huygens’ approach and proofs, in a heritage-like perspective (§3. ). This 

comparison points to the evolutionary character of the same mathematical results, by 

looking at them from a different, less familiar perspective (§3.2(a)), thus learning specific 

pieces of mathematics and developing a wider and richer view of mathematics (§3.2(b)).    

(b) A cycloid is the trajectory of the point of contact of a circle and a straight line, as 

the circle is rolling along the line without slipping (Fig. 4.2). 

 

Figure 4.2: The geometry of the cycloid 

By Newtonian mechanics, a point mass moving along a cycloid under its weight obeys the 

equation 
  

  
  

  

  
 ; v being its tangential speed and s the arc length along the cycloid. 

Expressing s in terms of x, y and noting that   
  

  
, recasts this equation as a linear 

differential equation in cos(θ/2) formally identical to (4.21') (Sommerfeld,  964, §III. 7).  

                                    
  

      
 

 
  

 

  
   

 

 
                                                              (4.22) 

Therefore, the period of oscillation is independent of the point’s initial position, given by 

                                                     
 

 
                                                                       (4.23) 

i.e. strict isochronism holds irrespective of the oscillation amplitude. This is the 

cycloid’s tautochrone property (Huygens, 1673/2013, Part II, proposition XXV).   

(c) In his investigation of the cycloid, Huygens introduced the geometrical concepts of 

the evolute (Latin: evolutione) and involute (or evolvent) of a curve (without naming the 

                                                           
20

 Huygens’ design was based on the verge escapement, soon surpassed by the much better anchor 

escapement (Figure A.3; Whitrow, 1988, p. 123; Escapement, n.d.). 
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latter explicitly; Huygens, 1673/2013, Part III, Definitions I & III). They can be described 

in two mathematically equivalent but conceptually different ways (one geometrical and 

one physical) and they are dual to each other in the sense below:  

 Physical description: An involute of a curve cE is the locus cI of the free end of a 

taut string attached to a point of the curve cE as the string is wound along cE.
21

 

 Geometrical description:  The evolute of a curve cI is the locus cE of the center of 

curvature of its points.  

Clearly, each curve has infinitely many involutes (depending on the initial point chosen 

for the string’s fixed end), but only one evolute. It can be shown that an involute of a 

curve is orthogonal to the curve’s tangents (Huygens, 1673/2013, Part III, Proposition I; 

Stillwell,  989, § 6.2; Evolute, n.d.; Involute, n.d.) implying that these concepts are dual 

to each other in the sense that the evolute of an involute of a curve is the curve itself, 

hence the use of the same symbols in the above definition (Table 4.11; Figure 4.3). 

curve cI curve cE 

Locus of free end of a taut string attached to a 

point of curve cE as the string is wound along cE  

Locus of center of curvature of the 

points of curve cI  

Involute of cE is cI Evolute of cI is cE 

          cI
 
 orthogonal to the tangents to cE  

Table 4.11: The involute-evolute dual concepts 

 
(a) The involutes cI

 
 are orthogonal to the 

tangents to the evolute cE 

 

 
 

(b) The involutes of a circle cE  are spirals cI; 

The evolute of a spiral cI is a circle cE 

 

 
(c)The involutes of a catenary cE are tractrices 

cI; The evolute of a tractrix cI is a catenary cE 

 

(d) The involutes of a cycloid cE are cycloids 

cI identical to it; the evolute of a cycloid cI is 

an identical cycloid cE 

Figure 4.3: Examples of the involute-evolute dual concepts 
                                                           
21

 This formulation appears already in Huygens’ ( 673/20 3)  proof of Proposition I, Part III.  
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The important result here is the “self-involuteness” of the cycloid (Figure 4.3(d)), 

proved by Huygens (1673/2013, Part III, proposition VI).  

(d) The above two mathematical properties of the cycloid were combined by Huygens 

to give an appropriate clock based on a cycloidal pendulum; i.e. a pendulum constrained 

to oscillate between two cycloidal cheeks: Because of the cycloid’s self-involuteness, a 

point mass (pendulum’s heavy bob) suspended by a weightless (inelastic) string, 

constrained to move under its own weight between two cycloidal cheeks, moves along a 

cycloid. Therefore, by the tautochrone property, its oscillation period is amplitude-

independent; that is, it takes the same time for all pendulums to arrive at the lowest point, 

irrespective of their initial position, i.e. the oscillation amplitude (Figure 4.4).  

Fig. 4.5(a) is Huygens’ own, showing both the cycloidal cheeks constraining the 

pendulum’s motion and the “verge escapement” converting the pendulum’s oscillations 

into pulses measuring time (cf. Fig. A.3(a)). Fig. 4.5(b) is a modern reconstruction. 

 
Figure 4.4: Schematic drawing and function of the cycloidal pendulum. 

 
 

 

 

(a) Huygens’ cycloidal pendulum clock 

(Huygens, 1673/2013, p.4) 

(b) A modern drawing showing the verge 

escapement (Pendulum, n.d.) 

Figure 4.5 

The above outline of Huygens achievements related to the cycloidal pendulum, could 

be the basis of a teaching sequence inspired by history, either as an illumination approach, 

or as a complete teaching module (§3.4), depending on the time available, the specific 

didactical objective and other external constraints. History will serve mainly as a tool 

when following an illumination approach (e.g. in a course on mechanics, calculus, 
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differential geometry, or their combination). On the other hand, in a teaching module 

devoted to this problem, historical issues (e.g. extensive use of original excerpts) can be 

treated in more detail and shape teaching explicitly (§3.3). The above presentation could 

also be used in an interdisciplinary module with emphasis on the mathematical basis of the 

technological achievements underlying clocks’ construction; e.g. by elaborating on the 

various kinds of escapement mechanisms (see Appendix B), or the industrial applications 

of the geometrical concept of the involute etc (Involute, n.d.). This will emphasize the 

social context and its influence on the development of mathematics (§3.4(a)), thus helping 

to appreciate this development as the result of a cultural-human endeavour (§3.2(b)).             

5  Concluding remarks  

This paper aimed to provide evidence in support of the following main point: The 

multifarious aspects of the “time measurement issue” constitute an interdisciplinary 

resource for mathematics education, fruitful and insightful at quite different levels and 

purposes both for the learners and their teachers. The historical and epistemological facts 

were considered in the context of a theoretical framework for integrating history in 

mathematics education and the main point above was illustrated by means of five 

examples of varying mathematical content and social significance. Their presentation is 

far from being exhaustive, but was intended to stress the richness of the “time 

measurement issue”: its mathematical content per se; its relation with other disciplines; 

and the social significance of the mathematics involved. A detailed presentation of these 

examples as teaching sequences and/or resource material will be given elsewhere.   

APPENDIX A: Formalized methods to find the weekday on a given date 

Examples of such methods are given below without proof (in the notation of §4.4) but 

with reference to the literature. The interested reader can try to check and possibly 

simplify them, explore conversions between them etc. 

A1. C. F. Gauss  

In an unpublished note, Gauss gave a formula for calculating the weekday number 

W1/1/Y of year Y, from which a formula for Wd/m/Y results (for the original, details and 

proof see Schwerdtfeger, 2010; see also Richards, 1998, pp. 376-378): 

                    W1/1/Y = 2 + (5Y mod4 + 4Y mod100 + 6Y mod400) mod7                  (A.1a) 

From this, numbering months from March (m=1) to February (m=12), and using Y-1 

instead of Y for January and February, a formula for Wd/m/Y results:  

                    Wd/m/Y = 1+ (d + [(13m-1)/5] + y + [y/4] + [c/4] -2c) mod7                    (A.1b) 

(A.1b) is a variant of the formula in Weekday, n.d.  

A2. C. Zeller 

In 1883, the German mathematician C. Zeller gave another formula for Wd/m/Y where 

months are numbered as in (A.1b) (Zeller’s congruence, n.d.; Richards, 1998, chs.23-24); 

                Wd/m/Y = (d + [13(m + )/5] + y + [y/4] + [c/4] -2c) mod7,      m =m+2           (A.2) 

A3. A. De Morgan 

In 1845, De Morgan gave a verbally expressed algorithm for finding the dominical 

letter of a given year (§4.3.2; also Richards, 1998, p.377; Dominical Letter, n.d.). It can be 
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adapted to give W1/1/Y for any year Y (then, Wd/m/Y is found by the method of §4.3.2) 

I. Add 1 to the given year.  

II. Take the quotient found by dividing the given year by 4 (neglecting the remainder).  

III. Take 16 from the centurial figures of the given year if that can be done.  

IV. Take the quotient of III divided by 4 (neglecting the remainder).  

V. From the sum of I, II and IV, subtract III.  

VI. Find the remainder of V divided by 7, and subtract from 7: this is the weekday number 

of 1/1.  

Or, as a formula: 

              W1/1/Y = 7- (1 + Y + [Y/4] + [(Y-1600)/400] - [(Y-1600)/100]) mod7             (A.3)   

A4. C. L. Dodgson (Lewis Carroll) 

In 1887, Lewis Carroll published another verbally expressed algorithm (Richards, 

1998, ch.24; Weekday, n.d.):  

 “Take the given date in 4 portions, viz. the number of centuries, the number of years 

over, the month, the day of the month. Compute the following 4 items, adding each, 

when found, to the total of the previous items. When an item or total exceeds 7, divide 

by 7, and keep the remainder only.  

- Century-item: For ‘Old Style’ (which ended 2 September 1752
22

) subtract from 18. For 

‘New Style’ (which began  4 September 1752) divide by 4, take overplus from 3, multiply 

remainder by 2.  

- Year-item: Add together the number of dozens, the overplus, and the number of 4s in the 

overplus.  

- Month-item: If it begins or ends with a vowel, subtract the number, denoting its place in 

the year, from 10. This, plus its number of days, gives the item for the following month. 

The item for January is ‘0’; for February or March (the 3
rd

 month), ‘3’; for December (the 

12
th

 month), ‘12’.  

- Day-item: The total, thus reached, must be corrected, by deducting ‘1’ (first adding 7, if 

the total be ‘0’), if the date be January or February in a leap year, remembering that every 

year, divisible by 4, is a Leap Year, excepting only the century-years, in ‘New Style’, 

when the number of centuries is not so divisible (e.g. 1800).  

The final result gives the day of the week, ‘0’ meaning Sunday, ‘1’ Monday, and so on.” 

A5. Modern methods 

It is remarkable that the problem is still attracting modern researchers’ interest. E.g. a 

much simpler algorithmic method was published recently for finding W1/1/Y
23

; the so-

called “odd-plus-11 method”, where a very limited tabulation of data is also needed (Fong 

& Walters, 2011; Dominical Letter, n.d.): 

            
            

 
    

            

 
                                (A.4) 

where W1/1/100c is the (tabulated) weekday number (Table 4.3) of 1/1 of the century to 

which Y belongs, and δ = 1 for leap years and 0 otherwise.  

Though (A.4) appears complicated, the quantity in parentheses is verbally expressed 

easily: If and only if y is odd, then add 11 to y. Divide the result by 2. If and only if the 
                                                           
22

 The year Great Britain adopted the Gregorian calendar. 
23

 The algorithm (slightly adapted to the present context) was invented for finding the so-called “doomsday” 

of the year (Doomsday, n.d.). 
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result is odd then add 11. Compute the result modulo 7 and subtract from 7. 

APPENDIX B: Basic characteristics of clocks 

Some more information is given below about the general characteristics of a clock’s 

mechanism, with emphasis on mechanical clocks (§4.5). Further elaboration could lead to 

an interdisciplinary module with emphasis on the mathematical basis of the technological 

achievements underlying clocks’ construction (cf. §4.5.2(d)). 

 Figure A.  shows Galileo’s conception of a time-keeping device based on a simple 

pendulum’s oscillations (§4.5). It is essentially an escapement mechanism, since no dials 

or drive are shown (Drake, 1995, pp. 419-420). Figure A.2 shows Huygens’ original 

pendulum clock, with the verge escapement shown on the right. The improved cycloidal 

pendulum clock is shown in figure 4.5. For more details see Pendulum clock, n.d.  

 
 

(a) Galileo’s pendulum clock drawn by 

Viviani (Pendulum clock, n.d) 

(b) A 19
th

 century reconstruction
24

 

Figure A.1 

 
 

Figure A.2: Huygens’ first pendulum clock (Gerland & Traumüller, 1899) 

 

                                                           
24

 Retrieved from https://cosmolearning.org/images/galileos-pendulum-clock-c-1642/ (11/11/2018). 
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A clock consists of three main parts (Richards, 1998, pp. 58-60; Clock, n.d.) 

I. The energy source e.g. 

Type of clock Energy source 

Water clocks water  

Mechanical clocks weight  

springs (elastic potential energy)  

Quartz clocks electricity  

II. The regulator; i.e. the time-keeping element (oscillator). It is very important that the 

regulator possesses a natural frequency to resist vibration at other frequencies and in this 

way to minimize the effect of external disturbances; e.g. 

 Regulator Type of clock 

 

No natural frequency 

periodic filling of 

scoops with water  

water clocks  

 

 

Possess natural frequency 

(resistance to vibration at 

other frequencies)  

balance wheel (foliot) 

pendulum  
mechanical clocks  

quartz crystal  quartz clocks  

vibrating atom  atomic clock  

III. The Escapement mechanism (control energy release). The decisive step for 

improving the accuracy of clocks in measuring time was the invention of the escapement 

mechanism (Newton, 2004, ch. 3; Whitrow, 1972a, ch. 4, p. 60; 1988, chs. 7, 8; Fraser, 

1987, pp. 49-58; Richards, 1998, ch.3; Verge escapement, n.d.). In general, this is a device 

that controls the energy release during the oscillatory process, by transferring energy to 

the oscillator to replace its energy loss due to friction, and allowing its oscillations to be 

counted; thus measuring time in this way (Escapement, n.d.). The invention of the verge 

escapement was a decisive step, originally combined with a balance wheel (not giving a 

very accurate clock), then with a spring. Verge escapements are shown in figures 4.5, A.2 

of Huygens’ clocks, as well as in figure A.3(a), (c), (d) below. It was finally superseded by 

the anchor escapement (figure A.3(b)) in the last quarter of the 18
th

 century (see Verge 

escapement, n.d.; Anchor escapement, n.d.; Clock, n.d.; Pendulum clock, n.d.) 

Escapement mechanism Type of clock 

    Verge escapement 

    Anchor escapement  
mechanical clocks 

     Electronic oscillator circuit  electronic clocks 

Microwave cavity attached to microwave oscillator, 

controlled by microprocessor  

atomic clocks 
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(a) verge escapement (b) anchor escapement 

 

 
 

 

(c) Verge with balance wheel (d) Verge with spring 

Figure A.3: Escapement mechanisms 
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ABSTRACT 

The idea of the fusion of plane and solid geometry originated from projective and descriptive geometry, 

which worked with projections in space and sections. Different authors of textbooks (starting from 

Bretschneider in 1844 to Méray in 1874/1903; de Paolis in 1884; Lazzeri & Bassani in 1891, also translated 

into German by Treutlein in 1911) adopted this idea, mixing plane and solid considerations. For instance, 

the chapter on the properties of incidence also referred to the mutual position of a plane and a straight line, 

while homothety was defined in space and then on the plane. Pupils were supposed to have a better intuition 

of spatial relations when passing from space to plane, and to reason by analogy. Moreover, proofs could be 

presented of plane theorems using projections in space of simple known configurations. In the textbook of 

Lazzeri and Bassani we can see that one of the aims of the authors is to prove plane theorems with the help 

of considerations in space that allow to avoid part of the congruence axioms and the theory of proportions. 

This is not a novelty within history of mathematics, the development of conic sections is linked to this point, 

and Monge, too, used it in 1799. The question was also considered at the ICMI Congress of 1911—within 

the more general theme of the fusion of different branches of mathematics—by giving examples of 

successful textbooks (Fehr, 1911; Barbin & Menghini, 2013). This paper will discuss the methodological 

question of the fusion of plane and solid geometry bringing examples from different textbooks, and 

presenting some of the discussions on the subject, with particular reference to Italy, where there was even 

talk of a fusionist school (Borgato 2006 and 2016). 

1 Introduction 

This paper concerns the fusion of plane and solid geometry in the teaching of 

mathematics; that is the simultaneous use of plane and solid considerations when 

presenting and proving geometric properties at school. In Italy, at the turn of the 19th and 

20th century this methodological question was deeply debated and there was even talk of a 

“fusionist school” (Borgato, 2006 and 2016). 

We will consider the history of mathematics education starting from about two 

centuries ago, in the era of Gaspard Monge. However, the method of “fusion” does not 

belong only to the history of mathematics education but to history of mathematics in 

general. Indeed, it was used already by Apollonius to determine plane properties of the 

conic sections. 

In 1911 the first plenary meeting of the International Commission on the Teaching of 

Mathematics (IMUK / ICMI / CIEM) was held in Milan (Italy). On this occasion a 

broader concept of fusion was discussed. The report of the discussion (Fehr 1911) was 

published in the Journal l’Enseignement Mathématique, which was at that time the official 

organ of the Commission. The report, based on an overview presented by Charles Bioche, 

refers to the teaching in various countries, and to the way in which they realize the 

different types of “fusion”: geometry and arithmetic, plane geometry and trigonometry, 

plane and solid geometry (which is of interest for us), solid and descriptive geometry 

(which, as we will see, has also some interest for our question). 
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As to the fusion of plane and solid geometry, we read in the report (p. 469) that “the 

fusionists do not wait to have finished the treatment of all plane geometry before starting 

with spatial considerations”
1

, and that “generally the two teachings are separated, 

excluding the entrance classes, because of the programmes. But “notable works appeared 

on geometric fusionism”. The mentioned textbooks are those written by the German 

Anton Bretschneider (1844), the French Charles Méray (1874/1903), and the Italians 

Giulio Lazzeri &Anselmo Bassani (1891).The report does not say very much about the 

educational pros or cons of the different of proposals. 

Concerning the fusion of solid geometry and descriptive geometry, the report notes that 

these teachings are generally separated, and often not given by the same teacher (the 

report refers mainly to Realschulen in German speaking countries). 

In the same number of the Journal we find a book review (Book review 1911) of 

Lazzeri & Bassani’s Elemente der Geometrie, the German edition of the textbook, 

translated by Peter Treutlein and published by Teubner. 

The review underlines that the idea of the fusion of plane and solid geometry is not new, 

since this methodology had already been presented in the Journal by “one of the main 

founders, Ch. Meray”. 

The first edition of his [Méray’s] book dates back to 1874, while the first Italian work –

established on different bases –was published by De Paolis in 1884.The present work 

broadly follows the order traced by De Paolis (Book review 1911, p. 429). 

The review lists the contents of the book but does not describe the methodology used. 

Rather, it seems aimed at proving the priority of Méray (who died in 1911) with respect to 

“fusionism”. 

But the important sentence in the review is “established on different bases”. What does 

it mean? 

We do not know what the author of the review was meaning, but surely we can 

distinguish between two kinds of approach: 

- a methodological/educational approach based on a “new order” of the content 

allowing a “neighbourhood” of analogous properties in plane and space (mainly the one of 

Bretschneider, but also of Méray and de Paolis, with some exceptions). We describe this 

approach in section3. 

- a mathematical/foundational approach based on the proof of plane theorems by means 

of space configurations (mainly the one of Lazzeri & Bassani). 

This second approach is shown in the next chapter. 

2 Proofs by means of space configurations 

The link between plane and space dates back to the beginning of the history of conic 

sections, which are defined as plane sections of a solid. It is not only a question of 

definitions: their properties can be proved looking at their position with respect to the cone. 

2.1 Apollonius 

One of the major works about conic sections is The Conics by Apollonius of Perga (3
rd

-2
nd

 

cent. B.C.). In Book 1, Proposition XI (ver Eecke, 1963, p.22) we find a sort of “equation 

of the parabola”. 

                                                           
1
All translations are by the author. 
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The cone is defined by Apollonius as the set of straight lines that join a point A (the 

vertex) to the points of a circumference. It is therefore an oblique circular double cone. 

Fig. 2.1 (taken from Ver Eecke, 1963, p.22) represents the case in which the cone’s 

section yields a parabola. 

 
 

Figure 2.1 Figure 2.2 

To slightly simplify the proof, let us consider a right circular cone, where BC is the 

diameter of the base circumference. In Fig. 2.2 we consider 

EF BC; H = EF BC; VH   AC. 

The plane EFV is therefore parallel to a generatrix of the cone and cuts it in a parabola. 

Now we chose any circumference whose diameter B’C’ is parallel to BC, and take MN 

on the circumference and on EFV so that MN   EF and K = MN B’C’ 

Euclid’s “geometric mean theorem” holds for triangle B’C’M: 

MK
2
=B’K▪KC’ 

What does it mean to find the equation of the parabola? We need a relation between 

two mutually perpendicular segments, in this case MK and KV,      ,which 

correspond to our x and y. 

To find this relation Apollonius considers the similarities between VB’K and ABC, and 

between AVS and ABC, obtaining  

   

   
  

  

  
                  

  

  
 =        

  

  
 

  

  
  

  

  
              

  

  
     

In the previous formulas we replaced B’V by KV (two sides of an isosceles triangle, 

note that this is the only point in which we use the fact that the cone is a right cone) and 

VS by KC’ (two opposite sides of a parallelogram).  Substituting in the formula for the 

geometric mean theorem we obtain 

MK
2
=               

  

  
 
 

x
2 
=p y 

In the previous equality we have considered that MK and KV are variables which 

depend on the changeable circumference whose diameter is B’C’. All the rest is constant 

and depends on the cone and the point in which the plane of the parabola cuts the cone. 
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The original proof is of course more difficult because Apollonius uses only proportions 

between geometric objects (for instance our p of the last equation corresponds to a 

segment – name d  in Fig. 2.1 – with certain properties). Apollonius finds analogous 

relations for the ellipse and the hyperbola, but what is interesting for us is that starting 

from a space definition and considering (always in space) elementary geometric properties 

we find a relation between two segments in the plane. 

2.2 Gaspard Monge 

In 1799 the Géométrie Descriptive by Gaspard Monge was published. The book is “pour 

l’usage des élèves de la première École Normale” and is devoted to future teachers. 

Descriptive geometry deals with the representation of three-dimensional objects 

through drawings in two dimensions by projection and section (its first aim).In a certain 

sense it can be seen as a generalization of conic sections: the latter rise from a projection 

of a circle from a point and a successive section with a plane. Descriptive geometry deals 

with parallel or central projections of different geometric objects, and plane sections. The 

second aim of descriptive geometry is, according to Monge, “to research truth in 

geometry”. The exactness of drawings and the research for truth render the content 

important for all the students of the French educational system (Barbin, to appear).  So we 

have again to do with the history of mathematics education. 

The first part of the book deals with the method of projections and shows how to 

determine the position of a point in space. The second part concerns tangent planes and 

normals to surfaces. It requires the capacity of seeing relations in the space. Here we find 

very interesting proofs of plane theorems made with the help of space considerations. 

Let’s for instance consider one of the properties proved by Monge (1847, p. II, n. 39, 

see Fig. 2.3). Our proof follows the notation of Fig. 2.4. 

 
Figure 2.3 

Let’s take a line and points on it Q, Q’, etc. From each point Q, Q’, … we draw 

tangents to a given conic section (e.g. an ellipse E). For each pair of tangents, we draw 

line r cutting the ellipse in two points R and R’. All the lines constructed in the same way 

pass through a same point P. 
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Figure 2.4 Figure 2.5 

Proof: let the ellipse rotate about one of its axes, thus obtaining an ellipsoid. A cone with 

vertex Q touches the surface in an ellipse C (Fig. 2.5). 

If the two tangent planes trough the line QQ’ touch the ellipsoid in two pointsP1, P2 

(see Fig. 2.6, where P and P1 are exchanged), the ellipse C passes through P1 and P2. 

Figure 2.6
2
 

 The plane of C is   to  1 (the plane containing the original ellipse E), and C E = R, 

R’ (note that C is any circumference rotating about the line P1P2, while the dark 

circumference indicated with   in figure 2.6 is a limit case of C when Q is the point at 

infinity of the line common to the two planes). The intersection P1P2   RR’ yields the 

point P. This happens for any point Q, so the theorem is proven. 

2.3 Pierre Germinal Dandelin 

In a paper of 1822 Pierre Germinal Dandelin, a former student of the Ecole Polytechnique, 

                                                           
2
 Retrieved from https://commons.wikimedia.org   
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Figure 2.7
3
 Figure 2.8

4
 

presents a well-known proof that links the definition of a conic as a section of a cone to its 

definition as a locus of points. We are in a period in which the development of descriptive 

geometry brings with it also a revival of synthetic geometry. 

For the proof, Dandelin considers two spheres tangent to a cone and to the plane that 

yields a conic section. We will consider the case of an ellipse, following the notation of 

Fig. 2.8: 

A plane cuts a cone in an ellipse E. The sphere S touches the cone in a circumference 

C, and touches the plane containing E in f. The sphere S’ touches the cone in a 

circumference C’ and touches the plane containing E in f’. Take p on E. The generatrix 

through p touches S in s, and S’ in s’. It holds 

pf = ps; pf ’ = ps’ (equal tangent segments to the spheres) 

 pf+pf ’ = ps + ps ’ = ss’ 

The distance ss’ = constant. We thus obtain that for any point p on E the sum of the 

distances pf + pf ’ is constant. This is the definition of an ellipse as locus of points. As for 

the proof by Apollonius, we used elementary geometric properties in space to find a 

relation in the plane. 

This proof can be found in some textbooks, but strangely I did not find it in books 

which present a fusionist approach; instead I found it in the part concerning solid geometry 

                                                           
3
 From Dandelin, 1822, p. 169 

4
 Retrieved from https://xavier.hubaut.info/coursmath/2de/belges.htm 
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of books as Henrici & Treutlein (1891/1901) and Cateni & Fortini (1958). 

3 A new order in the textbooks 

3.1 Carl Anton Bretschneider 

One of the first textbooks to present a new order allowing a better integration of plane and 

space considerations is the one by Carl Anton Bretschneider in 1844. The aim is clearly 

stated in the introduction:  

Basing the synthetic part of my book on the division into geometry of position, of 

form, measure, and organic geometry, which is offered by the nature of this science, 

the separation of the matter into the two main sections of plane and solid geometry 

could not be allowed anymore […]The pedagogical value cannot be denied 

(Bretschneider, 1844, p. VI). 

Let’s see in which way Bretschneider groups the various topics; in the following list of 

contents the chapters 1, 3, 4 of Book one concern plane geometry, the other concern 

geometry of space. In Book 2, the first five chapters are about plane geometry, the others 

about solid geometry. 

Book 1. Geometry of position 

Ch. 1 the straight line 

Ch. 2 the plane 

Ch. 3 plane angles 

Ch. 4 parallelism in the plane 

Ch. 5 wedges[dihedral angles in the 

space] 

Ch. 6 Angles between lines and planes 

Ch. 7 parallelism in space 

Book 2. Geometry of form 

Ch. 1 plane figures 

Ch. 2 plane triangles 

Ch. 3 quadrilaterals 

Ch. 4 circles 

Ch. 5 circumscribed and inscribed circles 

Ch. 6 solid angles 

Ch. 7 polyhedra in general 

Ch. 8 pyramids 

Ch. 9 prisms 

Ch. 10 the sphere 

Book 3 concerns the Geometry of measure and also contains the theory of proportions 

and of similarity. The first 6 chapters are about plane measures, the 4 last chapters are 

about volumes and surfaces and lengths in the space. 

The second part of the book is on analytic geometry, more precisely: 

Book 4 and 5 are on plane goniometry and trigonometry,  

Book 6 is on coordinates, and Ch. 5 considers coordinates in space. 

Then we find five appendices, about geometric constructions in the plane; geometric 

loci in the plane, in particular conics; the method of projections; the area of a parabola and 

of an ellipse; the area of spherical triangles. 

Appendix 3 deserves particular attention. It presents the method of projections (the 

“new geometry”) in plane and space and contains interesting propositions, including the 

proofs of Apollonius for parabola, ellipse and hyperbola. Other plane propositions, proved 

by Monge using 3D geometry, are proved here using the theory of polars in the plane.  

So, we can see that in the textbook of Bretschneider there is still a separation between 

plane and solid considerations, but similar topics are – when possible - the one near the 

other. The only really “fusionist” argumentations are the proofs by Apollonius, which are 

presented using the proportions among similar triangles, as shown in chapter 1. 
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3.2 Charles Méray 

Another very interesting book is the one by Charles Méray, written in1874, which reached 

its major success in 1901, when it was revived thanks to the new programmes for the 

teaching of mathematics of France. 

In the introduction Méray criticizes the “disorder” of Euclid’s Elements. In particular, 

he states that the division between plane geometry and solid geometry makes no sense, 

because nature only presents objects in space (Méray, 1874, p. XI). In his text, Méray 

substitutes most axioms with intuitive properties of motions in space (folding a piece of 

paper on itself, translating an object, rotating about a line). 

The subdivision of the matter is not very different from Bretschneider, as in all other 

fusionist books, but in some chapters there is a better integration of plane and space 

thanks to the use of geometric transformations. 

The chapters from 1to 4 deal with intersection, perpendicularity, and parallelism of 

lines and planes, and with plane and dihedral angles. 

Translation is defined as a motion of figures in space. Two lines are parallel if a 

translation maps the one onto the other (independently from being in a plane or in space). 

The same for parallel planes and for lines parallel to a plane. 

A plane is perpendicular to a line if it is mapped onto itself by the rotation about the 

line. Two lines are perpendicular if they meet and each of them is on a plane perpendicular 

to the other. 

So, we can see that in these chapters plane and space are treated simultaneously and, 

for instance, perpendicularity between straight lines is defined using the perpendicularity 

between a plane and a line. 

Not all chapters present such an integration, but we find it again in chapter 5, dealing 

with the comparison of segments. The intercept theorem (Thales theorem) about the 

proportion of segments is given both for plane and space. In chapter 10 areas are 

compared by means of a projection of an area on a plane (using trigonometry) (Méray, 

1874, p. 96, see Fig. 3.1). 

Not all chapters present such an 

integration, but we find it again in 

chapter 5, dealing with the comparison 

of segments. The intercept theorem 

(Thales theorem) about the proportion of 

segments is given both for plane and 

space. In chapter 10 areas are compared 

by means of a projection of an area on a 

plane (using trigonometry) (Méray 

1874, p. 96, see Fig. 3.1). 

In chapter 13 homothetic figures and 

similarity are treated both in plane and 

in space. (ibid. p. 122, see Fig. 3.2) 
 

 Figure 3.1 
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Figure 3.2 

Let us note that Méray presents separately the parabola, hyperbola and ellipse referring to 

their eccentricity. He never uses the term “conic sections”. Indeed, we can suppose that - 

being his a fusionist book – he would be then obliged to link the eccentricity to the 

definition of these figures as sections of the cone. 

3.3 Riccardo De Paolis 

The textbook by the Italian Riccardo De Paolis of 1884 is mentioned in the review of the 

textbook by Lazzeri & Bassani published in1911 inl’Enseignement Mathématique(see 

section 1). 

In his introduction De Paolis writes: 

There is a big analogy between certain figures in the plane and certain figures in the 

space; by studying them separately we renounce to know all that we can learn from 

this analogy, and we fall into useless repetitions. If we look for the properties of a 

line or a surface without being able to use the geometrical entities placed outside 

the line and the surface, we limit the forces we can dispose of and we renounce to 

geometric tools that would help to simplify constructions and proofs. In fact, how 

can you construct the midpoint of a given segment without leaving the segment 

itself? Instead, using the geometrical tools of a plane that contains it, the 

construction is known and very simple. How can one construct an isosceles triangle 

that has each of the two angles equal to twice the third? The triangle is easily 

constructed, and without applying the theory of equivalence or proportions, if we 

use the geometric objects placed outside its plane (page 92) (De Paolis, 1884, p. III-

IV). 

The proof mentioned by De Paolis is not as easy as he states, but what is important in 

this last sentence is the fact that proofs can be performed without applying the theory of 

equivalence or proportions. Indeed, it is necessary to observe that if – as was the case in 

Italy – the textbooks follow the books of Euclid, the theory of proportions takes much 

time and is quite difficult. Therefore the possibility to avoid it has a particular value. 

Do not object that for beginners it is easier to conceive a plane angle than a 

dihedral angle; it is exactly because the mind of the students is forced to think and 
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draw only flat figures in the first years of their geometric studies, that they find 

difficulties afterwards (ibid. p.IV). 

In his book De Paolis gives much importance to geometric transformations, as Méray 

does. He also presents many interesting exercises and problems. But his proofs are often 

too long, being the author also much interested in rigour. 

As in Méray, the first part of the book concerns properties of incidence and parallelism. 

Let’s look, for instance, at the following theorem: 

The angles formed by two intersecting lines are equal to those formed by two lines 

parallel to them, which meet (ibid., p. 33) 

The formulation does not state if 

we are speaking of a plane theorem 

or of a theorem in solid geometry. 

This means that the theorem holds 

in both cases. The first part of the 

proof is performed in space and is 

based on the sliding of the pair of 

lines APC and BPD on the dihedral 

angle formed by the two couples of 

parallel lines AC, A’C’ and BD, 

B’D’ …(Fig. 3.3) 

Only afterwards De Paolis presents 

the proof for lines lying all in the 

same plane, which refers to 

previous theorems based on the 

properties of parallel lines. 

 

 Figure 3.3 

A further theorem presents what we could call a “fusionist” proof: 

Given           . Suppose that             all meet in  , and that        and 

       ; we want to prove that        (ibid., p. 92). 

 

 

Figure 3.4 Figure 3.5 

If the given triangles are not on the same plane, the proof is obvious: the two planes 
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          are parallel, because of the hypotheses, and hence also        (Fig. 3.4). 

If              are on a same plane, take two points    on any line (in space) 

through P, from which we project the triangles. So we have twice the solid case. For the 

transitivity of parallelism, the proof is completed (Fig. 3.5). 

To follow the second part of the proof, we need to consider the same configuration of the 

first case, but looking at it differently: in the first case we “see” a solid configuration, in 

the second case a plane one.  

Let us also note that this theorem is a particular case of the Desargues theorem, 

corresponding to the situation in which the intersection points of correspondent sides are 

on a line at infinity (i.e., correspondent sides are parallel). Hilbert shows that the 

Desargues theorem can be proven using only the incidence axioms for the space, and 

avoiding the congruence Axiom III, 5 (Hilbert, 1899). 

3.4 Giulio Lazzeri and Anselmo Bassani 

We arrive now to the last and most important book presenting a fusionist approach: the 

book by Lazzeri and Bassani, which was written in 1891 for the pupils of the Accademia 

Navale (naval academy) in Livorno – at that time a secondary technical school – and had a 

second edition in 1898 devoted also to the Lycées. 

The introduction is very similar to the one of De Paolis. The authors mention - as their 

predecessors - Bretschneider, De Paolis, Angelo Andriani(Andriani 1887; another Italian 

fusionist book) and – above all –Monge, 

who showed the utility of the fusion by proving, with the help of three-dimensional 

figures, many theorems concerning plane figures in a very simple way (Lazzeri & 

Bassani, 1891, p. X). 

Moreover, they add that this method of proving plane theorems with the help of solid 

geometry “is well accepted today in projective geometry […] and has now been realized 

also in elementary geometry” (ibid.). 

Indeed, in the book by Lazzeri & Bassani the method is very often applied. 

Substantially there is no chapter in which plane and space are separated. Moreover, they 

state that they "succeeded in making many questions independent from the theory of 

proportions and of measures" (ibid., p. XI).A first example is given by the following 

theorem: 

Two lines r and r’ are given, with r parallel to r’, and A, B, C, D on r.  Consider a point 

O and the lines OA, OB, etc. which cut r’ in A’, B’, C’, D’. We want to prove that if AB = 

CD then A’B’ = C’D’. 

The theorem could be easily proven using proportions and similarity. But we can find a 

different proof that avoids the theory of proportions: 

With reference to Fig. 3.6, move OAB to O’CD, so that A’B’ = A”B”. 

Take V not on the plane of the figure, and consider the tetrahedral OCDV and O’CDV 

and a plane containing r’ parallel to the plane VO'O": this plane intersects the triangle 

VCD (common to the two tetrahedra) in HK. 
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Figure 3.6 

  

A previous theorem states that in a 

tetrahedron we can always consider a plane 

parallel to two opposite edges and at an 

intermediate distance from them. This plane 

cuts the tetrahedron in a parallelogram (fig. 

3.7).  

Thanks to this theorem we have that HKC’D’ 

and HKA”B” are parallelograms; therefore 

HK = A”B”= A’B’; HK = C’D’, hence A’B’ 

= C’D’. 

 

 Figure 3.7 

This proof only involves questions of parallelism and intersection. It is not a difficult 

proof, if we have the habit to “see” in space. 

Let us look at second example, with the following theorem: 

Given two circumferences       (      ) on the plane, the locus of points such that 

the tangent segments led from each point to the two circumferences are equal is a straight 

line perpendicular to the line joining the two centres, and external to the circumferences if 

the circumferences are the one external to the other (Fig. 3.8) 

 

Figure 3.8 

The proof refers to Fig. 3.9, which is taken from Lazzeri & Bassani (1891, p. 188). 

Consider two equal spheres      passing through      , with centres   
    

 . Take 

    
   

         in its midpoint (plane of reflection of      ). 
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Figure 3.9 

Call r =    α; r is the locus on α such that the tangent segments led from each point to the 

two spheres are equal and hence also to the two circles. We show that      
       :the 

perpendiculars to α through   
    

 meet αin      and forma plane     , 

containing     
           

   
       . Also                         being     

   
       , so planes 

 and meet in a line   and hence       
       . 

The book by Lazzeri and Bassani presents very interesting and beautiful proofs. It is not 

easy to judge its difficulty without knowing in depth the teaching methods of such a topic 

in that period, and in particular of Lazzeri himself, who was a teacher in the naval 

academy. Indeed, at the time the book was well considered by teachers, but the question 

does not have a definite answer, as we can see in the next section. 

4 Discussions about the question 

In 1899 the Journal l’Enseignement Mathematique published a paper by Giacomo 

Candido, where the author describes the debate that takes place in Italy, presenting the 

arguments against fusion and the arguments in favour of fusion (Candido, 1899). 

Against the fusion are the programmes of the Lycées, which present stereometry only in 

the third year, following the same order of Euclid; moreover the fusion seems too difficult, 

too much linked to systematization (with reference both to De Paolis and to the book of 

Andriani, who – according to Candido – found “non-existing connections” between plane 

and space). 

In favour of fusion are the fact that it is time saving (it is not necessary to repeat certain 

parts of the school programs) and allows a simplification of some considerations on 

planimetry by explaining them through considerations in space. Furthermore, it allows a 

major harmony between the study of mathematics and that of other topics. 

The author mentions the book by Lazzeri & Bassani among the arguments in favour of 

fusion. Indeed, it contains better proofs “through” space. The success in a technical 

institute (the Accademia Navale of Livorno, where Lazzeri was a teacher) brought the 

book to be used also in Lycées (Candido, 1899). 

The Italian association of mathematics teachers Mathesis published different 

discussions and also asked to change the programs so as to allow fusion (Borgato 2006 

and 2016). 

Again in l’Enseignement Mathematique, Méray presents the 1903 edition of his 

Eléments (Méray, 1904) with a big critique to Euclid, as contained in the introduction of 

the book (see 3.2). He mentions the great Italian “fusionist” school, but notes that his book 

was written earlier. 
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In the second book of the series on Elementary Mathematics from a higher standpoint, 

first published in 1908 with a new English translation in 2016, Felix Klein presents the 

book by Scheffers & Kramer (1925): 

The text is based on the view that for the development of the best possible space 

intuition, the fusion between planimetry and stereometry has to be dealt with more 

systematically and from an earlier time in school than has happened so far. If we 

start to realise this idea of fusion, we encounter soon the necessity to perform 

spatial constructions graphically and to imagine solids on the plane. The 

planimetry-stereometry-fusion urges therefore a broader notion of fusion, which 

comprises descriptive geometry (Klein, 2016, p. 303). 

In a book of 1928 discussing the teaching of geometry in German schools Kuno Fladt 

states: 

Already in the 1840s the need was felt of merging stereometry closely with 

planimetry. Even if too much weight was given at that time to a scientific 

systematization, there was anyway an educational idea: that the pupil who has to do 

only with planimetry is almost educated to “space blindness”. Both types of reasons 

lead in Italy to an extended “fusion” of planimetry and stereometry. But there was a 

setback: the too early and extended employment of stereometry turned out to be too 

difficult. 

This does not exclude that, on the one hand, in the first teaching of geometry plane 

objects are shown on solids, from which they are then abstracted, and that, on the 

other hand, when presenting new plane figures, we always consider and present the 

solid bodies in which they can be found. This is a “moderate fusion” as now 

required in the new programmes of Würtenberg of 1926/27 (Fladt, 1928, p. 126) 

A compromise is indeed often a good solution, and this can happen also in the case of 

fusionism. A presentation of the incidence properties as presented in the first chapters by 

Méray is surely a wonderful help to space representation. 

In the case of conic sections, proofs as the one by Apollonius or by Dandelin allow the 

link between different definitions of conic sections, which is not usual in schools. 

But also other suggestions come from this historical overview, which could help the 

construction of a curriculum that avoids “space blindness”. 
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ABSTRACT 

The introduction of the “new math” and teacher training are very interesting topics in the 

newer history of mathematics education. The “New Math” Reform was curricular change 

in secondary school mathematics that occurred in the early sixties. It spread through many 

countries attempting major changes in content and methods for teaching mathematics. In 

Portugal, the reform measures introduced in the 1960’s were linked to economic 

considerations and the new initiatives in mathematical education were aimed at the more 

able senior student. Some of the new contents were modern algebra, sets, relations and 

vector calculus. Most of the mathematics teachers were not acquainted with these contents 

so they were not ready to teach them. This paper focuses on the training for secondary 

school (liceus) mathematics teachers, in Portugal, and aims to contribute to deepen our 

knowledge on this topic. We will briefly characterize the teacher education system, in the 

second half of the1950s and during the1960s. We attempt to clarify in what way the new 

ideas for the teaching of mathematics were discussed and being developed on teacher 

training courses held in Liceu Normal de D. Manuel II, between 1957 and 1963. Similarly, 

we will characterize the in-service training for teachers put in place during the Modern 

Mathematics’ reform, in Portugal. The documents related to the mathematics teachers 

training in Liceu Normal de D. Manuel II, show that the trainees had become acquainted 

with the new math ideas, either on the application of new contents as on changes 

introduced in teaching practices. Regarding the in-service training courses, we have 

noticed that its main purpose was to improve the level of preparation of mathematics 

teachers on the new concepts and contents that they would be requested to give on a next 

future. The teacher training courses held at the Liceus Normais and the continuous in-

service training for mathematics teachers did not made available an enough number of 

mathematically qualified teachers on "new mathematics". As the new material was 

presented to a much more diverse range of pupils, teaching the more abstract new ideas, 

particularly to weaker students, proved to be difficult for teachers.It is hardly surprising 

that the attempts to reform the mathematics curriculum did not meet with total success. 

This paper concerns the history of Portuguese mathematics education and it is based on 

printed and manuscript sources, as well as interviews. 

 

Keywords: History of Mathematics Education, Mathematics teachers education, Modern 

Math. 
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ABSTRACT 

This paper is a result of a comparative literature study of four Nepali early mathematics books from the 

period 1880-1935. The books used in this study are the first mathematics book written in Nepali language 

Vyaktachandrika (Arithmetic) (1884) by Gopal Pandey; the first mathematics book written in Nepali poetry, 

Ankendushekhar (Pinnacle of numbers) (1900) by Pahalman Simh Swar; Ganitchandrachandrika (A treatise 

of mathematics) (1922) by Raghunath Pant and Shishubodha Tarangini part II (Series of lessons for 

children) (1933) by Tikaram Dhananjaya.  A content analysis and comparison of these four books based on 

seven categories recognized a few historical features that can be made useful in the teaching and learning of 

mathematics today. 

1 Introduction  

The teaching and learning of mathematics in Nepal is not a very new phenomenon. 

However, the formal teaching of mathematics in schools in Nepal started quite recently at 

the end of the nineteenth century. The start of the first formal school in 1885 for the public 

(Sharma, 1990), and a slow-paced increase in the number of schools thereafter motivated 

the production of teaching and learning materials of mathematics. A handful of 

mathematics books came into existence during the next 70 years, some of these books 

found their way to antiquarian sections of local libraries, and some of them were lost. A 

historical account of mathematics teaching and learning situations in Nepal can be found 

in these articles (Lardner, 1967; Tuladhar & Jha, 2002; Jha, Adhikari & Pant, 2006; 

Maskey, 2013). Readers interested to learn history of Nepal are recommended to see 

(Whelpton, 2005). A historical narrative of education situation in Nepal can be found in 

(Vaidya, Manandhar & Joshi, 1993, pp. 269-329). 

Several studies support the use of old mathematics in teaching and learning of current 

mathematics contents and concepts. Research suggests that using history to teach 

mathematics generates positive attitude among students for learning mathematics 

(Marshall, 2000; Tözlüyurt, 2008; Goktepe & Ozdemir, 2013), motivates abstract 

concepts (Laubenbacher, Pengelley & Siddoway, 1994), creates interest in learning of 

mathematics (Tözlüyurt, 2008), and engages student in metalevel analysis (Barnett, 

Lodder & Pengelley, 2014). The use of original sources in the mathematics classroom has 

been proven beneficial to students in many aspects (Van Mannen, 1997; Jahnke et al., 

2002). In spring 2011, I had an opportunity to take a graduate number theory course. This 

class, taught by professor David Pengelley, at New Mexico State University was based on 

Sophie Germain’s translated manuscript. Over the last few years, I have used primary 

historical source projects (Otero, 2017; Klyve, 2017) produced by TRIUMPHS (TRI, 

2015) in my classrooms. These experiences made me realize the value and importance of 

primary historical sources in teaching and learning of mathematics. In the beginning of the 
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twentieth century, Barwell (1913) suggested to use history of mathematics in teaching and 

learning of mathematics in the west, whereas Nepali mathematicians were just starting to 

produce mathematics books in Nepali language at the moment. In the west, the use of 

history of mathematics in teaching and learning was happening in the 1960s and 1970s 

(Fried, 2001), while Nepal was still working on its first mathematics curriculum. 

Nowadays, many countries in the world are advocating the use of history of mathematics 

in teaching and learning (Fauvel & Maanen, 2000); on the other hand, the modern 

curriculums of Nepal (MoE, 2014; MoE, 2009; MoE, 2007) and school sector 

development plans (MoE, 2016) does not even foresee the history of mathematics in 

teaching and learning as a possibility.  

In 2017, a newspaper article (THT, 2017) reported that traditional teaching and 

learning techniques currently employed in the majority of Nepali institutions is a catalyst 

for the rapid decline in students’ interest in mathematics. Moreover, it is also observed 

that current Nepali mathematics curriculum is formal, abstract, decontextualized and 

disconnected from everyday life (Luitel & Taylor, 2007; Wagle et al., 2008). The 

historical sources considered in this study are rich in cultural and contextual problems. 

These culturally based mathematics curriculum has a potential to increase student’s 

understanding of mathematical concepts (Lipka & Adams, 2004), and possibly remove 

barriers to motivation and engagement (Miller & Roehrig, 2016). The growing interest in 

history of mathematics education research in Nepal can be realized from these two recent 

PhD dissertations (Acharya, 2015; Subedi, 2017), and this paper seeks to initiate a more 

formal discussion on the use of old Nepali primary sources in teaching and learning of 

mathematics in Nepali institutions. A comparative content analysis of Nepali mathematics 

books from the period 1880-1935 is carried out in this study in order to identify useful 

features that can be made beneficial in teaching and learning of mathematics today. 

2 Methods  

The suggestions for analyzing the printed documents are followed from (Robson, 2002). 

Robson suggests a content analysis of printed documents, the textbooks in this case, with 

the following specific steps: start with a research question, decide on sampling strategy, 

define the recording unit, construct categories for analysis, test the coding on samples of 

text and assess reliability, and carry out the analysis. With a major research question on 

how to identify the useful features from these sources that can be beneficial in modern day 

teaching and learning of mathematics, a sampling strategy is initiated. Based on published 

newspapers and research articles, a list of books published in between 1880-1935 was 

formed. A total of 17 books were recorded. Robson further suggests reducing the task to a 

manageable dimension from population of interest. However, in this case, the options 

were limited. The major challenge was to locate a sample of these books from local 

libraries in Nepal. To locate a sample of books published in that period, the website of 

local libraries and their collections were searched. Google search was not helpful. The 

collection of Madan Puraskaar Pustakaalaya (MPP), Keisher Pustakaalaya, and Tribhuvan 

University Central Library were searched. These libraries are located in Kathmandu. MPP 

houses a collection of old Nepali mathematics books. Ten out of seventeen books from my 

list is found in MPP website. A total of six books were received. The library takes months 

to produce a digital copy. They charge cash amount to be paid in exact change. There is 

always a need for a person to go there on my behalf. A few friends came forward to help 
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me. All six books were received as a digital copy in different times. There might be other 

books in other libraries outside Kathmandu. I did not have easy access to those materials.  

Taking suggestions from Frejd (2013), I confined the data collection to those sources, 

which I have an easy access to from my working location in the US. After receiving the 

sources, I worked on another crucial step of categories construction. Robson (2002) 

suggested creating mutually exclusive and exhaustive categories; however, I followed 

suggestions from Frejd (2013) in this regard too. As Frejd suggested, I considered the 

curriculum contents, which are purposed in a different level of current Nepali mathematics 

curricula (MoE, 2014; MoE, 2009; MoE, 2007), as well as pragmatic considerations, for 

example, the contents must be possible to compare (Frejd, 2013). Two books out of six 

were not considered for this study for the following reasons. Bhasvati (1931) by Tikaram 

Dhananjaya is dropped because it has more astrology content than mathematics, and 

Ganitasagara (1921) by Gangaprasad Shrestha is not considered because it only lists 

questions and answers throughout the book. It was not easy to compare this book with 

other books based on the seven categories discussed below and shown in Table 3.1. This 

study attempts to answer the following specific questions: What does the preface say? 

What does the table of contents look like? What is the structure of the textbook? Are there 

any definitions/procedures explained? Are there any story problems?  What is the 

presentation style of the book? How do the authors treat zero? Are there any 

answers/solutions provided?  

3 Results and Discussion 

A brief discussion about the books and their authors is provided in this section. This 

section also attempts to answer the questions considered in each category.  

3.1. Books and Authors 

The first book Vyaktachandrika (Arithmetic) was originally published in year of Vikram 

known as Vikram Samvat 1940 which is equivalent to 1883/1884 AD. A digital copy of 

second edition of Vyaktachandrika was received. Record shows that this book was in 

demand for about 30 years, and a several editions of the book were produced. The second 

edition was published in 1895, third edition in Hindi was published in 1907, and the fourth 

edition was published in 1914 (Maskey, 2013). The second edition considered for this 

study was published by Nirnayasangara Chhapakhana located in Mumbai, India. The front 

page of the book has a rubber stamp mark ‘Kamalko Nepali Samgraha’ indicating that the 

book was collected in the Nepali collections of Kamal. Late Kamal Mani Dixit was the 

founder of the Madan Puraskaar Pustakaalaya. It is not clear how this book landed in 

Kamal’s collection.  

Gopal Pandey (?1847-1921), the author of the book Vyaktachandrika, was a teacher at 

Sanskrit pathasala located in Kathmandu for more than four decades. He was taught by 

Bapudeva Shastri (1821-1900), a prominent mathematician and astronomer in India. 

Pandey has written several other books. Interested readers are suggested to see (Panta, 

1980) for more information.  

The second book Ankendushekhara (Pinnacle of numbers) was written in the Falgun 

month of Vikram Samvat 1956 on Tuesday, which is equivalent to the beginning of 1900 

AD. The date was given in page six in the form of shloka. The copy from MPP has a 
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handwritten name Prof. SR Pant, who is a former department head of the Central 

Department of Mathematics at Tribhuvan University. It appears that the book was in his 

possession at some point. The second edition of the book was published in 1953 AD by 

Sarba Hitaishi Company located in Banaras, India. This book was quite popular in the first 

decade of 20
th

 century Nepal and India (Subba, Sinha, Nepal & Nepal, 2009). 

Pahalman Simh Swar (1879-1933) is considered the first drama writer in the Nepali 

language. He worked for the government of Nepal for some time and moved to India. He 

had written several books on drama, poetry, story and spiritual writings. More on his life 

and work can be found in this biographical publication (Swar, 1982). 

 

Figure 3.1 : The cover pages of the books 

The third book Ganitachandrachandrika (A treatise of mathematics) was published in 

1922 AD according to the MPP website. The digital copy received is the second edition of 

part I, which was published by Bhagawati Press, Kathmandu, Nepal in 1933 AD. The 

book was written by Raghunath Pant. 

It was not possible for me to find any relevant sources to write biographical 

information about Raghunath Pant, the author of the book Ganitachandrachandrika.  

The fourth book Shishubodha Tarangini Part II (Series of lessons for children) was 

believed to be published in 1991 Vikram Samvat which is equivalent to 1933/34 AD. 

There is a handwritten date 1991 in the cover page of the book. There is no other printed 

publication date provided for this book. The purported author of the book is Chandrakala 

Dhananjaya, who did not receive any formal education in her lifetime. Later, when she 

was interviewed by Modnath Prashrit she revealed that she did not write the book 

(Prashrit, 2002). She also confirmed that the book was written by her husband Tikaram 

Dhananjaya. I found this book in MPP, and it is probably the one out of three-surviving 

copies of the book. Part I seems to be lost. Although, the part III was in the plan for 

writing, it is possible that the part III was never written because of sudden death of 

Tikaram at the age of 26. Interested readers can find more on this in Basyal (2015). 

Tikaram Dhananjaya (1909-1936) was a poet, mathematician, translator, astrologer, 

commentator, writer, grammarian and an inventor of a sign language. In his short life of 

about 26 years he produced a good number of books on different area of knowledge. 

Tikaram earned his high school degree from Banaras, India. After returning back from 

Banaras, he worked as a mathematics and astrology teacher in a local school.  

700



3.2. Categories  

In this section, the categories being considered are discussed and commented on what is 

observed in each category. Table 3.1 provides a summary of the results. Now, each 

category will be discussed in detail with examples and explanations. 

Table 3.1: Summary of findings 

 

What does the preface say? 

Only two books provide the preface. In Arithmetic, it is stated that the first edition was 

well received by the readers and all 500 copies were sold soon after it was published. It 

does not state the number of copies published in the second edition. 

My translation of the preface in Gopal Pandey’s book is given here:  

The calculations we make with one, two, three and more such numbers, is called 

Arithmetic. The European learned Arithmetic from Arabian, and Arabian learned 

from Indians and they still call it ‘Hindu-mathematics’. … 

[…] People in various countries have written arithmetic in their own languages to 

teach their children. People might think that Gorkhali does not know mathematics 

because we still have no arithmetic written in Parvatiya language. Therefore, I am 

writing this book with my limited knowledge to prevent the situation. (Pandey, 

1985, p. 1) 

In the quote above Gorkhali and Parvatiya both refers to Nepali. In the preface, Pandey 

further goes on to indicate that the most contents for his books are taken from 

Bhaskaracharya’s Lilavati. He also cites his teacher Bapudeva Shastri’s work on page 43 

for the method ‘casting out by eleven’. As promised in the preface, Pandey tried to 

simplify the rules and provided thoughtful and useful examples. He also hoped that the 

book will be much easier for learners to follow as the book is written in local language.   

The preface in Pahalman Swar’s book roughly translates to:  

Dear gentleman, for a long time, I had a desire to write mathematical shlokas in 

Nepali vernacular. I have realized that it would make a special contribution to write 
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mathematical shlokas. Here, I present a few mathematics in shloka for gentleman. 

As my readers are aware of the fact, writing anything new is not an easy task, so 

writing mathematics is not easy either. With my limited knowledge, I am taking this 

daunting task. (Swar, 1953, pp. 2-3) 

After reading these prefaces one can conclude that these books were written to fulfill 

the lack of mathematical resources in Nepali language. Note that Pandey managed to 

credit his sources; however Swar did not mention anything about his sources.  

What does the table of contents look like? 

Three books provide a table of contents: The content in Arithmetic is given in three parts, 

the third part being geometry. The Pinnacle of Numbers does not provide a table of 

contents; however, a table of contents is created by observing the content given in book. 

The order of contents is written as it was presented in the book. The Series of Lessons for 

Children provides 63 titles in mathematics and astrology in the table of contents. 

However, only mathematics titles are translated here. 

A closer look at Table 3.2 suggests that these books were written to teach the basic 

rules and word problems related to arithmetic. The addition, subtraction, multiplication 

and division of whole numbers are presented in every book. The rule of three, five, seven 

etcetera, compound interest, mixtures, barter and series were also common topics of the 

time. These basic rules of arithmetic were used for illustrating how some real-life 

problems can be solved using these arithmetic tools. The work-rate problems, interest 

calculation, and conversion of local money and land units are also considered. These 

topics given in Table 3.2 can be identified in current Nepali curriculums (MoE, 2014; 

MoE, 2009; MoE, 2007), so there is an opportunity to create guided classroom worksheets 

and projects and use them in the classroom to test the usability of these contents.   

Table 3.2: Table of Contents of the books 

Arithmetic 

(1884) 

Part I: Numeration and pronunciations of numbers,  addition, subtraction, multiplication, division , 

exponentiation, taking roots, greatest common divisor, least common multiple, dividing by a same 

number, addition of fractions, [subtraction] of fractions, addition of fractions with its parts, multiplying 
fractions, compound fractions, addition and subtraction of a number with its parts, dividing by fraction, 

division of fractions, exponentiation of fractions, taking roots of fractions, eight rules with zero, rule of 

three, rule of five, seven and etcetera, barter, mixtures, working backwards, supposition, double false 
position, using sum and difference to find the two numbers, quadratic [Diophantine] problems 

Part II Method for checking if multiplication is correct, addition of decimals, subtraction [of decimals], 

multiplication of decimals, division [of decimals], exponentiation of decimals, repeating decimals, taking 
roots of decimals, taking root of fractions, taking cube root [of fractions], ratio, adding whole in ratio,   

Part III Definitions, area and volume for simple shapes, triangles, rectangles, ratio with areas, circle, 

length measure. 

Pinnacle of 

Numbers 

(1900) 

Invocation, definitions, numeration, local values, addition, subtraction, multiplication, division, dividing 

in five, four, and seven equal parts, money exchange, rule of three, inverse rule of three, rule of five, 

seven, nine and eleven, compound interest, mixtures, shadow measures, series, miscellaneous problems 

A treatise of 

mathematics 

(1922) 

Definitions, number writing, pronunciations of numbers, local values, addition, addition of whole 
numbers, subtraction, subtraction of whole numbers, multiplication, multiplication of whole numbers, 

division, division of whole numbers, role of grouping symbols, several topics, concerning addition 

and subtraction, concerning multiplication and division, working backwards, concerning addition and 
subtraction, money, rate and miscellaneous, examples workout and various question, examples, 

answers 
 

Series of 

lessons for 

children 

(1933) 

Invocation, definitions, eight fundamental rules of arithmetic concerning whole numbers, 

greatest common divisor, least common multiple, eight fundamental rules of arithmetic concerning 

fractional numbers, multiplying fractions, adding or subtracting a fraction and a whole number, 
Increasing and decreasing a fraction by a fractional amount, rule for addition and subtraction of fractions, 

eight fundamental rules of arithmetic concerning zero, eight fundamental rules of arithmetic concerning 

decimals, working backwards, method for checking if multiplication is correct, method of supposition, 
using the sum and the difference of two numbers to find the numbers, the rule of three, simple interest, 

Investigation of mixtures, series 
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Are there any definitions/ procedures explained? 

All books show a procedure to write numbers. The mathematical rules and working 

procedures are explained either in prose or in verse in all books. 

Figure 3.2: A few contextual story problems 

In Table 3.5, I provide a translation of mathematical procedure known as Rule of Three. 

The working rules with zero are provided in Table 3.4. In Table 3.7, the definition of 

Greatest Common Divisor and Least Common Multiple from both old book and modern 

book is provided. These procedures and definitions can be compared with the definition 

given in modern curriculums to gain some pedagogical insights.  

Table 3.3: Translation of contextual problems in Figure 3.2 

Pandey (1884) Pant (1922) 

(2) Two buffalos can finish eating grass of a 

field in five days. Two cows can finish in 

seven days. How many days does it take for 

a cow and a buffalo to finish eating the 

grass? 

(3) There were four taps connecting to a 

pond. First tap can fill the pond in two ghadi, 

second one in three ghadi, third one in four 

ghadi, fourth one in five ghadi. If all taps are 

open at a time, how long will it take to fill 

the pond? 

 

(3) I lend 2501 rupiya and 475 rupiya to a 

person to buy a house. He also received 250 

rupiya for household expenses. Now he is 

paying back all he received and 12 extra 

rupiya for an interest. How much should I 

get from him? 

(4) One rich person has 125000 rupiya in the 

first bank, 35000 more than that of in the 

first bank is in the second, 45500 more than 

that of second bank is in the third bank. If he 

have 72075 rupiya with him. How much 

money does this rich person have? 

Are there any story problems? 

Yes. A few contextual story problems can be found in each book, the third one being the 

richest in the contextual problems. A few contextual story problems are given in Figure 

3.2. A translation of the problems in Figure 3.2 is provided in Table 3.3. Studying how 
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these problems are similar and different mathematically in the current context could be a 

lesson for today’s students. These problems are comparable with the problems given in 

modern textbooks. A sample of problems in modern textbooks is given in Table 3.6. 

Table 3.3 provides a rough translation of first two problems from each book given in 

Figure 3.2. Pandey’s problems are taken from (Pandey, 1895, pp. 34-35), and Pant’s 

problems are taken from (Pant, 1932, p.22). 

Looking at these representative problems from these books, one can get a sense of 

market products, rates, measurement and monetary units of that time. These problems 

where one talks about buffalos, rupiya, ghadi and the person with less than 1 million 

Nepali rupees would be considered a rich person are all foreign and old-fashioned to 

today’s student. Similar problems can be seen in modern textbooks. Table 3.66 shows a 

few representative problems from textbooks used today in Nepali schools in various 

grades. These books are mostly used in private schools where the language of instruction 

is English. These books are also written in English. 

What is the presentation style of the book? 

Arithmetic is written in a mixture of Sanskrit shloka (verse) and Nepali prose, which 

consists of topics on arithmetic, algebra and geometry. The Pinnacle of Numbers and the 

Series of Lessons for Children are rich in Nepali shloka, whereas the A Treatise in 

Mathematics is rich in word problems. The Series of Lessons for Children book would be 

a great motivational and mnemonic resource as it lists 137 shlokas to explain 

mathematical rules, procedures and problems.  

 

 

Figure 3.3: Rules in Shlokas 

How do the authors treat zero? 

Interesting treatment of zero can be found in (Pandey, 1884) and (Dhananjaya, 1933). 

Figure 3.3 provides a screenshot of rules with zero given in Pandey and Dhananjaya. 

Pandey copied the Sanskrit shloka from Lilavati as it is. Dhananjaya gave a completely 

new shloka in Nepali to explain these rules. One change I noticed in Nepali shloka is that 

Dhananjaya removed the part where it talks about addition and subtraction with zero. 

Therefore, the rule reduced down to six rules from eight rules given in Sanskrit shloka. 

Dhananjaya provides examples in which addition and subtraction to and from zero is 

necessary. Table 3.4 provides a translation of the Sanskrit shloka taken from (Patwardhan, 

Naimpally & Singh, 2001, p. 47). My translation of Nepali shloka in Figure 3.3 is 

provided in the right side of Table 3.4.  

It is fair to say that Dhananjaya was translating Sanskrit shloka into Nepali shloka 

without changing much information given in the original Sanskrit shlokas. Even the 

coherence of the presentation is kept intact. Out of 137 shlokas given in Series of Lessons 

for Children, a good number of shlokas seem to be a direct translation of Sanskrit shlokas 
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in Lilavati. Other two books considered in this study treat zero as a placeholder and do not 

mention the multiplication and division by zero at all. 

Table 3.4: Translation of Shlokas in Figure 3.3 

Pandey (1884) Dhananjaya (1933) 

If zero is added to a number, the result is the same number; 

the square etc. (i.e., square, square-root, cube, cube-root) of 

zero is zero; any (non-zero) number divided by zero is 

khahara, i.e., infinite; the product of a number and zero is 

zero. 

(If in some mathematical calculations, multiplication and 

division by zero are likely to occur frequently then, though a 

number multiplied zero is zero,) one should maintain the form 

of multiplicand and multiplier zero in rest of the operations 

(until the final operation is reached). This is because if a 

number is multiplied by zero and divided by zero then the 

result is the (former) number. (Patwardhan, Naimpally & 

Singh, 2001, p. 47) 

Zero multiplied by any 

[number] is zero. [Any number] 

multiplied by zero is zero. The 

square and square root of zero is 

zero. [Any number] divided by 

zero is infinity. If there is more 

work to be done, the zero 

divided by zero remains 

unchanged. 

 

 

 

Figure 3.4: Rule of Three and Examples in Swar (1900) 

Table 3.5 provides a translation of shlokas given in Figure 3.4. The rule of three on the 

left side of Figure 3.4 and the example related to rule of three given in right side of Figure 

3.4 are both written in shloka (Swar, 1953, pp. 51-54).  

The given words Ichhya, praman, phala and labdha translates to desire or the 

requisition, scale, fruit, and the desired result. The rule is essentially saying if we were to 

calculate a desired result given three things, we need to multiply desire by fruit and divide 

by the scale. 

An equivalent rule from current grade 8 book reads:  
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In direct variation, the value of unit quantity is obtained by dividing the value of any 

quantity by that quantity and the value of any quantity is obtained by multiplying the 

value of unit quantity by that quantity. (Shrestha, Karki, & Bhandari, 2015d, p.60) 

Table 3.5: Translation of shlokas in Figure 3.4 

Rule of Three in Swar Example related to Rule of Three in Swar 

Ichhya, praman are of 

similar type. Phala is the 

smaller one. First we write 

the praman [on the left 

side], phala in the middle, 

and ichhya on the edge. 

Multiply phala by ichhya 

and divide by praman. The 

result is a labdha. 

If five hundred pomegranates cost fifty rupiya, 

how much does it cost for one hundred 

pomegranates? 

If one thousand apples are sold in eighty-five 

[rupiya], how much does it cost for four hundred 

[apples]? 

Twenty-five drabya can buy eighty-five good 

pomegranates, then how many pomegranate does 

ten drabya buy? 

Table 3.6: Problems in current Nepali mathematics textbooks 

A few exercise problems in current mathematics books in various grades  

Deepak had Rs 2645. Sony gave him Rs 4675. How much money does he have altogether? 

(Shrestha, Karki, & Bhandari, 2015, p.67) 

 

The monthly expenditure of Khadka family is Rs 12500 on food, Rs 2400 on fuel, Rs 6500 

on education and Rs 9475 on miscellaneous. Find the total expenditure of the family in a 

month. (Shrestha, Karki, & Bhandari, 2015, p.67) 

 

Hari earned Rs 85,250 in a year and spend Rs 78,375. How much money did he save in the 

year? (Shrestha, Karki, & Bhandari, 2015a, p.59) 

 

If 6 men can finish a piece of work in 12 days, in how many days would 18 men finish the 

same work? (Shrestha, Karki, & Bhandari, 2015b, p.116) 

 

In a barrack, 250 soldiers have food enough for 40 days. How long would the food enough 

for only one soldier? (Shrestha, Karki, & Bhandari, 2015c, p.102) 

 

Tap A can fill a tank in 3 hours and Tap B can fill it in 6 hours. If they are open together, in 

how many hours the tank can be filled completely? (Shrestha, Karki, & Bhandari, 2015d, 

p.67) 

 

Are there any answers/solutions provided? 

Pandey and Pant provide a list of practice problems at the end of each chapter with 

answers, whereas, other two books provide mostly the worked-out problems.  
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Table 3.7: Definitions of GCD and LCM from old and modern books 

A number which will divide two or more numbers evenly is called a common divisor [of 

the numbers]. The largest of such divisors is called the greatest common divisor. 

(Dhananjaya, 1933, p.9) 

 
The greatest number that divides the given numbers without remainder is called H.C.F of 

those numbers. (Shrestha, Karki, & Bhandari, 2015b, p.42) 

 
By reducing [dividing] all the numbers [by some numbers] until there is no remainder, 

keep the numbers separately. The product of these numbers with the numbers [which 

appear to be remainders] is called the least common multiple by mathematicians. 

(Dhananjaya, 1933, p.12) 

 
Lowest Common Multiple (L.C.M) of two or more numbers is the smallest number that 

can be divided by those numbers without leaving any remainder. (Shrestha, Karki, & 

Bhandari, 2015b, p.45) 

4 Concluding Remarks 

These considered categories and identified historical features such as: the contextual 

problems, old fashioned units of measurements, presentation style of the book and 

problems and solutions may be a useful resource for current teaching and learning of 

mathematics. These may be directly used in the classroom, in teacher trainings, and in 

textbook writing. Avital’s (1995) suggestions to replace current problems with old ones 

might improve instruction and learning of mathematics. Empirical research is needed to 

confirm the usefulness of these sources and features, which is clearly a future direction. 

However, as discussed in Jankvist (2009) these primary historical sources can be used 

both as ‘history as a tool’ and ‘history as a goal’. As suggested in Frejd (2013) these 

historical contexts can be used as a 'history as a tool' to assist students and teachers in the 

learning and teaching of mathematics, and 'history as a goal' to show that mathematics is a 

part of evolution of society and that mathematics has been developed and changed over 

time. As noted by (Schubring, 2011), these features can be helpful in teacher education to 

provide the meta-knowledge of mathematics so that it will eventually help increase the 

meta-knowledge in teacher and student. Glaz and Liang (2009) observed an improvement 

in student learning by using poetry as a pedagogical tool in a mathematics classroom, I do 

see an ample opportunity to use these shlokas in classrooms to enhance the teaching and 

learning of mathematics for both teachers and students alike. Moreover, these primary 

sources can be a resource for multidisciplinary study such as literature, linguistics, poetry, 

sociology, history, and Sanskrit study. Many topics observed in Table 3.2 can be 

identified in modern day primary schools’ curriculums and textbooks (MoE, 2007; MoE, 

2009; MoE, 2014; Shrestha, Karki, & Bhandari, 2015, 2015a, 2015b, 2015c, 2015d), and 

the topics such as series, compound interest, false position, double false position and 

topics in geometry are present in current school curriculum, so there is an opportunity of 

using these contents in different levels of school today. The creation of guided task based 

projects similar to TRIUMPHS projects, and use it in an empirical study to test the 

usability and usefulness of these resources is my future direction.  
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ABSTRACT 

In search of the reasons for Swedish students’ low achievement in algebra in international evaluations, this 

study analyses and compares the algebraic content in the 1980 and 2011 Swedish curricula for the grades 1-

9. In order to characterize the algebraic content, Blanton et al.’s (2015) five big ideas of algebra have been 

applied as an analytical tool. The results show that algebra is introduced earlier in 2011 compared to 1980 

and that the big idea generalized arithmetic is weakly represented in both curricula. There is a high emphasis 

on practical and everyday mathematics in both curricula and there seems to be an increased emphasis on 

verbal abilities as opposed to computational skills over time.  

1 Background  

During the past decades, research on algebraic thinking at primary school level has gained 

increasing interest within the research field of mathematics education (for an overview, 

see Kieran, 2018). The assumption that young pupils are not capable to think algebraically 

has been challenged by several mathematics educators (e.g. Blanton, et al., 2015; 

Carraher, Schliemann, Brizuela & Earnest, 2006). Also, the idea that students’ 

development of learning algebraic concepts would be reflected in the historical 

development of algebra has been questioned (Bråting & Pejlare, 2015; Schubring, 2011). 

In fact, recent studies reveal that it is not only possible, but also beneficial, to start 

working with algebraic ideas and generalizations in parallel with arithmetic from the very 

beginning (Mason, 2018). 

This development is also visible in steering documents where several countries have 

revised their mathematics curricula in order to introduce students to algebraic thinking 

already in the early grades (NCTM, 2006). This is also the case in Sweden, which is the 

focus of the study reported in this paper. In Sweden, algebra has always been a part of 

mathematics that has caused school students major difficulties. In the international 

evaluation TIMSS (Trends in International Mathematics and Science Study), Swedish 

students’ results in algebra have been below average ever since the 1960s (Hemmi et al., 

2018). Even in the TIMSS test from 1995, where the overall result was the best ever for 

Sweden, the result in algebra was still below the international average. In the two TIMSS 

tests from 2007 and 2011, when the Swedish overall result decreased significantly, algebra 

was the topic that deteriorated the most (Yang Hansen et al., 2014). In the recent TIMSS 

evaluation from 2015, the Swedish overall result slightly increased, but the result in 

algebra remained poor (National Agency for Education, 2016). 

Besides the revisions in the curriculum documents, there have been various attempts to 

improve school algebra teaching in Sweden through in-service training projects for 

teachers, and the “Algebra for All” movement ensuring that all school students are 

studying algebra before graduating high school. In connection with the latter, a specific 
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textbook (see Bergsten, Häggström, & Lindberg, 1997) was compiled and used in teacher 

education at several universities in Sweden. However, it is not possible to discern a 

general positive effect of these efforts on Swedish students’ learning in algebra, at least 

not if we consider the results in the TIMSS evaluations. 

The study reported in this paper is part of an ongoing research project aiming at 

characterizing Swedish school algebra (Hemmi, et al., 2018). Both diachronic and 

synchronic studies are being conducted focusing on both formulation and realization 

arenas (Lindensjö & Lundgren, 2000) in order to identify the specific teaching tradition 

developed in Swedish school algebra (Bråting, 2015). The formulation arenas refer to 

steering documents and curriculum materials, and the realization arenas to schools and 

teachers who develop and maintain their own more or less tacit traditions. The overall 

purpose of the project is to find reasons for the failure to raise the quality of algebra 

teaching in Sweden, but also to find possible ways to improve the situation.  

The study in this paper focuses on the formulation arena as it investigates Swedish 

curriculum documents in a historical perspective. The aim is to analyze and compare the 

algebraic content in the 1980 and 2011 Swedish mathematics curricula by using Blanton et 

al.’s (2015) so called big ideas of algebra as an analytical tool. In a longer perspective, the 

intention is to analyze the algebraic content in all Swedish mathematics curricula from the 

implementation of primary school (“grundskolan”) in 1962 until today. In total, there have 

been five curriculum reforms in Sweden during this time period; in 1962, 1969, 1980, 

1994 and 2011. An investigation of all these curricula provides valuable knowledge of 

how school algebra has traditionally been treated in Sweden with respect to the 

formulation arena. The study reported in this paper is a first step towards that goal.   

2 Research on curriculum documents and school algebra in Sweden 

During recent years, there has been an increased interest of research on mathematics 

curriculum and policy documents in Sweden with respect to the formulation arena (c.f. 

Boesen et al., 2014; Prytz, 2015; Bergqvist & Bergqvist, 2017). For instance, Prytz (2015) 

has given an overview of the Swedish mathematics curricula between the years 1850 to 

2014 regarding structural aspects such as length (number of pages and words), the amount 

of time allocated to mathematics, and variation of mathematical topics through the years. 

The results show that the three curricula from 1980, 1994 and 2011 contain 50% more 

words compared to the curricula from 1962 and 1969. One reason is that the number of 

topics included in Swedish school mathematics has increased over the years and the 

descriptions of what it means to know that something has become more versatile. 

Moreover, Bråting and Österman (2017) illuminate a development from numerical and 

computational skills toward an increased emphasis on verbalizations and practical uses of 

mathematics in the Swedish school mathematics through the years.  

Another study on the formulation arena is Boesen et al.’s (2014) investigation 

regarding mathematics teachers’ response to the implementation of mathematical 

competency goals (see NCTM, 2000; Niss & Jensen, 2002) in the Swedish mathematics 

curriculum documents. The results reveal that the teachers are positive to the competences 

but it is difficult for the teachers to identify the meaning of the competence message by 

using national curriculum documents and national tests. Even though the competences 

were introduced fifteen years ago, Boesen et al. (2014) argue that the implementation 

should still be viewed as an ongoing reform in curriculum documents as well as in 
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textbooks, assessment and teaching. Drawing on Boesen et al’s (2014) study, Bergqvist 

and Bergqvist (2017) have investigated to what extent and how clearly the national policy 

documents convey the competence message. The results show that the message is present 

to a large extent in the policy documents, but that it is vague and formulated with complex 

wording.  

Although there is research on the formulation arena in connection to Swedish 

mathematics curricula, this research has not been conducted specifically on school 

algebra, the focus of the study in this paper. An exception is Bråting, Madej and Hemmi’s 

(2019) investigation of the algebraic content in current Swedish textbooks in mathematics 

for grades 1-6, which is included in the same research project as the present study. In 

conformity with the study in this paper, Bråting et al.’s (2019) study applies Blanton et 

al.’s (2015) big ideas as a base for an analytical tool. However, in Bråting et al.’s study the 

focus is limited to the grades 1-6 and the five big ideas are merged into three. In this 

study, we use all five big ideas and we take all grades from 1 to 9 into consideration. The 

results of Bråting et al.’s (2019) study show that the big ideas “functional thinking”, and 

“inequalities, expressions, and equations” are well represented both in the Swedish 

textbooks for grades 1-6. Meanwhile, the big idea “generalized arithmetic” is poorly 

developed in the textbooks. Apparently, this result is significant and helpful for the study 

in this paper. 

Furthermore, Jakobsson-Åhl (2008) has conducted a historical study regarding the 

development of algebraic content in Swedish textbooks for upper secondary school 

between the years 1960–2000. Jakobsson-Åhl (2008) states that over the years the 

algebraic content has become more integrated with other school subjects, the level of 

complexity of algebraic expressions in textbook exercises has decreased, and algebra has 

more often been considered as a tool for solving practical and everyday problems.  

There are some additional Swedish research studies focusing on school algebra within 

the realisation arena.  or instance, Häggström (2008) compares how algebra is taught in 

Sweden and China, focusing on the treatment of systems of linear equation in grade 8 

mathematics classrooms from the perspective of variation theory. The result reveals that 

the tasks used in the Chinese mathematics textbooks showed extensive variation in many 

relevant aspects, while the Swedish textbooks contained very similar tasks that did not 

open many dimensions of variation. Furthermore, a case study by Kilhamn (2014) shows 

that two Swedish grade 6 teachers using the same textbooks introduced variables in very 

different ways. The differences mainly depended on the two teachers’ different views of 

the meaning of the variable concept, but also the meaning of algebra. A longitudinal study 

on students’ algebraic understanding at upper secondary school is conducted by Persson 

(2010), who followed the same class of students for three years. Persson (2010) identified 

five main factors for success in algebra learning: pre-knowledge, concept development, 

instruction, time for learning, and interest, attitudes and feelings. 

3 Methodology  

We have analysed and compared the algebraic content in the 1980 and 2011 Swedish 

national curricula in mathematics for grades 1-9. In this section, a brief characterization of 
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the two curricula will be given
1
, followed by a description of the analytical tool and the 

procedure of the data analysis.  

3.1 The two curricula – Lgr80 and Lgr11  

The 1980 Swedish mathematics curriculum for compulsory school, included in “Läroplan 

för grundskolan” (Lgr80), consists of the two sections: 1) Goals, and 2) The main content. 

In the first section, the following two main goals are prescribed:  

1. The teaching in mathematics should be based on the students’ experiences and needs, and prepare 

them for the role of adult citizens. Students should therefore, in the first place, acquire an ability to 

solve such mathematical problems that usually occur in everyday life. This means that the students, 

by means of the teaching, should acquire  

• numerical abilities with and without technical resources, 

• skills in mental arithmetic and estimate calculations, 

• knowledge primarily in percentage calculations, practical geometry, units and unit 

transformations, and descriptive statistics. 

2. By means of the school activities the pupils will also acquire mathematical knowledge and skills 

usable for studying other subjects, to further studies after primary school, at leisure and in working 

life. This requires, in addition to the above, that the students acquire knowledge about 

• the real numbers, 

• geometric relationships, 

• algebra and basic knowledge about functions, 

• statistics and probability, and 

• the usage of computers and computer knowledge (Lgr80, 1980, p. 98). 

Section 2, the main content, is divided into nine topics where each topic is described for 

the grade levels 1-3, 4-6 and 7-9. These nine topics consists of problem solving, 

arithmetic, real numbers, percentages, measurements and units, geometry, algebra and 

basic functions, descriptive statistics and probability, and computer knowledge. The topic 

Algebra and basic functions is, besides computer knowledge, the topic with the least space 

in this section. In the study reported in this paper, all three sections of the curriculum are 

considered but only section 2, the main content, is included in the investigation.  

The 2011 Swedish mathematics curriculum for compulsory school, included in 

“Läroplan för grundskolan, förskoleklassen och fritidshemmet” (Lgr11) consists of the 

three sections: 1) Introduction to the subject, 2) Central content, and 3) Knowledge 

criteria. Section 1 is the same for all grades 1-9 and includes a historical background to the 

subject and a description of the aim of school mathematics, which is summarized in terms 

of five competencies in the following way:  

The teaching in mathematics will give students the opportunity to develop their ability to 

• formulate and solve problems by using mathematics as well as evaluate selected strategies and 

methods, 

• apply and analyse mathematical concepts as well as relations between concepts, 

• select and use appropriate mathematical methods to make calculations and solve routine tasks, 

• conduct and follow mathematical reasoning, and 

                                                           
1
 For a more detailed summary regarding the overall structure of the Swedish curricula between 1850-2014, 

see (Prytz, 2015). 

714



• use mathematical expressions to discuss, argue and account for issues, calculations and conclusions 

(Lgr11, 2011, p. 2). 

Furthermore, sections 2 and 3 are split between the grade levels 1-3, 4-6 and 7-9. 

Section 2, the central content, is divided into six mathematical topics; Number sense and 

the usage of numbers, Algebra, Geometry, Probability and statistics, Relationships and 

change, and Problem solving. Section 3, the knowledge demands, is based on the five 

mathematical competencies in section 1, mentioned above.  

In the present study, all three sections are considered but only section 2, the central 

content, is included in the investigation.  

3.2 The analytical tool and data analysis 

In order to characterize the algebraic content in the material, Blanton et al.’s (2015) so 

called big ideas has been used as a base for an analytical tool. These are the areas that 

should be developed through the grades as students develop their algebraic thinking. Next, 

we give a brief description of each big idea and how these have been interpreted in this 

study. 

1. Equivalence, expressions, equations, and inequalities (EEEI) include relational 

understanding of the equal sign, representing and reasoning with expressions and 

equations, and relationships between and among generalized quantities (Blanton et 

al., 2015, p. 43). An example of a task within this category is the solving of the 

open number sentence: 8+5=__+4 and being able to reason based on the structural 

relationship in the equation. Number sentences such as 8+5=__ have not been 

included in this category since this kind of tasks consider the ability to calculate.  

2. Generalized arithmetic (GA) involves reasoning about structures of arithmetic 

expressions (rather than their computational value) as well as generalizations of 

arithmetical relationships, which includes fundamental properties of numbers and 

operations (e.g., the commutative property of addition) (Blanton et al., 2015; Kaput, 

2008). In this study, this category also includes relations between operations, such 

as multiplication defined as repeated addition. Sometimes the term generalized 

arithmetic is referred to as the bridge between arithmetic and algebra (Fujii, 2003). 

A more detailed description of generalized arithmetic can be found in Bråting, 

Hemmi and Madej (2018). 

3. Proportional reasoning (PR) refers to opportunities for reasoning algebraically 

about two generalized quantities that are related in such a way that the ratio of one 

quantity to the other is invariant (Blanton et al., 2015, p. 43). In this study, some 

specific applications of proportional reasoning, such as scaling and similarity are 

also included. 

4. Functional thinking (FT) involves generalizations of relationships between 

covarying quantities, and representations and reasoning with relationships through 

natural language, algebraic (symbolic) notation, tables, and graphs (Blanton et al., 

2015, p. 43). For instance, this can mean generating linear data and organizing it in 

a table, identifying recursive patterns and function rules and describing them in 

words and using variables, and using a function rule to predict far function values.  

5. Variable (VAR) refers to “symbolic notation as a linguistic tool for representing 

mathematical ideas in succinct ways and includes the different roles variable plays 

in different mathematical contexts” (Blanton et al., 2015, p. 43). One typical 
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example within this category is the ability to use variables in order to represent 

arithmetic generalizations.  

The data analysis was conducted in the following way. The two curricula were first 

analysed separately in the original language. The unit of analysis was a statement or part 

of a statement that addressed an issue connected to one of the big ideas. The results of this 

process were written down in five tables (one for each big idea) for each curriculum. Each 

table was divided into the three grade levels 1-3, 4-6 and 7-9 and consisted of all the 

statements connected to a specific big idea. For instance, the table representing the big 

idea FT for the 1980 curriculum was structured as in Table 3.1. 

Table 3.1: FT-categorized content in the 1980 curriculum 

FT in Lgr80 
 

Grades 1-3 Grades 4-6 Grades 7-9 
 

Statement 1 

Statement 2 

… 

 

Statement 1 

Statement 2 

… 

 

Statement 1. 

Statement 2. 

… 

In a few cases, it was not all clear whether a statement represented a certain big idea or 

not. For instance, some statements connected to the decimal system were excluded 

because they were considered to belong to the development of number sense rather than 

algebra. In these cases, the interpretation had to be reconsidered which led to minor 

corrections.  

After this procedure, the statements from the two curricula were compared for each big 

idea. In order to do that, the five tables from the 1980 curriculum were merged with the 

five tables from the 2011 curriculum, as in Table 3.2 below.  

Table 3.2: FT-categorized content in the 1980 and 2011 curricula 

FT in Lgr80 and Lgr11 
 

 Grades 1-3 Grades 4-6 Grades 7-9 

Lgr80 
 

Statement 1 

Statement 2 

… 

 

Statement 1 

Statement 2 

… 

 

Statement 1  

Statement 2 

… 

Lgr11 
 

Statement 1 

Statement 2 

… 

 

Statement 1 

Statement 2 

… 

 

Statement 1 

Statement 2 

… 

Within this process, specific features, gaps, similarities and differences between each 

curriculum were identified. The merged tables for each big idea are presented in the result 

section here below. 

4 Results  

The results of the analysis are presented separately for each big idea. Every section 

commences with a table displaying the categorization of the authentic expressions 

identified in the curriculum documents. This is followed by a comparison of the two 

curricula with respect to how they address the big idea in question at the different grade 

levels. 
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4.1 EEEI – Equivalence, Expressions, Equations and Inequalities  

Table 4.1 shows the distribution of algebraic content categorized as EEEI with respect to 

the grade levels 1-3, 4-6 and 7-9. 

Table 4.1: The distribution of EEEI-categorized content in 1980 and 2011 curricula 

 Grades 1-3 Grades 4-6 

 

Grades 7-9 

Lgr80 Solving simple 

equalities by trial and 

error.  

Solving simple equations 

mainly by trial and error 

and on the basis of 

problems.  

Setting up, simplifying 

and calculating algebraic 

expressions.  

 

Expressions with 

parentheses, factorization, 

and identities of the 

binomial squares are 

treated, with particular 

consideration to the 

students' maturity, interest 

and needs. 

 

First order equations, 

including unknowns on 

both sides of the equality 

sign and with parenthesis 

and fractional numbers.  

 

Problem solving with 

simple equations. 

 

Systems of linear 

equations and simple 

second order functions 

mainly in connection with 

problem solving and 

preferentially with 

graphical solution.  

 

Lgr11 Mathematical equalities 

and the importance of 

the equal sign. 

 

 

Methods for solving 

simple equations. 

 

Simple algebraic 

expressions and equations 

in situations that are 

relevant for the students. 

Algebraic expressions, 

formulas and equations in 

situations that are relevant 

for the students. 

 

Methods for solving 

equations. 

In grades 1-3, the topic equalities are included in both curricula. In Lgr80, it is 

emphasized to solve simple equalities by trial and error, while in Lgr11 the term equality 

is mentioned together with the importance of the equal sign. In grades 4-6 equalities are 

still considered in both curricula, but the focus is directed to equations. While the Lgr80 

document explicitly prescribe trial and error based on problems as a solution method, the 

Lgr11 document only mentions that methods of solving equations should be presented but 

does not pinpoint the character of the methods. 

The topic algebraic expressions are considered already in grades 4-6 in Lgr11, while in 
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Lgr80 algebraic expressions first appear in grades 7-9. In Lgr11 it is pointed out that 

equations and algebraic expressions should be considered in situations that are relevant for 

the students. It is noticeable that the Lgr11 document mentions simple algebraic 

expression for grades 4-6, but leaves the decision of what to do with the expressions to the 

teachers.  

In grades 7-9, the big idea EEEI consists of equations and algebraic expressions in both 

curricula. However, the Lgr80 document includes more detailed descriptions than Lgr11 

and emphasizes abilities such as being able to set up, simplify and calculate algebraic 

expressions. It is also specified that expressions with parentheses, factorization, and 

identities of the binomial squares should be treated. Meanwhile, the Lgr11 document only 

refers to “algebraic expressions and formulas” (Table 4.1). Also in connection with 

equations, the content is more specified in Lgr80 compared to Lgr11. The latter refers to 

“methods of solving equations” and that the equations should be connected to situations 

that are relevant for the students. Meanwhile, the Lgr80 document prescribes that first and 

second order equations as well as systems of equations should be treated, followed by a 

specification for each kind of equation.  

Both curricula highlight that the mathematical content should be relevant for the 

students and connected to the students’ interests. In Lgr80, it is also stated that students’ 

maturity and needs should be taken into account (Table 4.1).  

4.2 GA – Generalized arithmetic  

Table 4.2 shows the distribution of algebraic content categorized as GA with respect to the 

grade levels 1-3, 4-6 and 7-9. 

Table 4.2: The distribution of GA-categorized content in the 1980 and 2011 curricula 

 Grades 1-3 

 

Grades 4-6 Grades 7-9 

Lgr80  

 

  

Lgr11 Properties and relations 

of the four arithmetical 

operations and their usage 

in different situations. 

 

  

GA is the least represented big idea in both curricula. In fact, in Lgr80 we could not 

find any content connected to generalized arithmetic. One item could be found in Lgr11: 

in grades 1-3 the properties and relations of the four arithmetical operations are included. 

As within EEEI, the usage in different situations is pointed out.  

4.3 PR – Proportional reasoning  

Table 4.3 shows the distribution of algebraic content categorized as PR with respect to the 

grade levels 1-3, 4-6 and 7-9. 

In grades 1-3, simple examples of enlargements and reductions are PR-categorized 

content in both curricula. The term scale is introduced already in grades 1-3 in Lgr11, 

while in Lgr80 scale first appears in grades 4-6. In Lgr11, different proportional 

relationships, including doubling and halving, are also included in grades 1-3. It is 

noticeable that in Lgr80 the term proportion first appears in grade 7-9 in connection with 

linear functions (see Table 4.4 below). 
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In grades 4-6, the main topics within PR in both curricula are percentage and scale. In 

both curricula, the relations between fractions, decimal numbers and percentages are 

emphasized. In Lgr11, the relation between proportionality and percentage is also 

considered. As already mentioned, in Lgr80 the term proportion first appears in grades 7-

9.  

In grades 7-9, the PR-categorized topics percentage and scale are still considered in both 

curricula. It is noticeable that the Lgr80 curriculum emphasizes calculations with 

percentages while in Lgr11 percentage is used to express change and change factor as well 

as calculations in everyday situations. Furthermore, in both curricula uniformity is 

introduced in grades 7-9. In Lgr80 the term congruence is also used.  Both curricula point 

out the connection between the mathematical content and students’ interests across all 

grades 1-9. In Lgr11 the expression “in situations relevant for the students” is used while 

in Lgr80 uses the terms “practical usage” and “everyday contexts”. In Lgr80 the 

connection to other school subjects is also mentioned. 

Table 4.3: The distribution of PR-categorized content in the 1980 and 2011 curricula 

 Grades 1-3 

 

Grades 4-6 Grades 7-9 

Lgr80 Simple and practical 

examples of enlargements 

and reductions, for instance 

in connection with maps 

and handicraft objects. 

 

 

Treatment of the 

percentage concept in 

connection with practical 

problems and other 

school subjects.  

 

Calculations with 

percentages. 

 

Relations between 

fractions, decimal 

numbers and 

percentages. 

 

Treatment of scale in 

everyday life. 

 

Calculations with 

percentages, parts and 

the whole. 

 

Usage of the concept of 

scale mainly in practical 

contexts.  

 

Treatment of 

congruence and 

uniformity. 

Lgr11 Different proportional 

relationships, including 

doubling and halving. 

 

Students can use and give 

examples of simple 

proportional relations in 

situations relevant for the 

students. 

 

Scale with simple 

enlargements and 

reductions. 

Proportionality and 

percentage and their 

relationship. 

 

Percentages and the 

connection to fractions 

and decimal numbers. 

 

Graphs for expressing 

different types of 

proportional relations in 

simple investigations. 

 

Scale and the usage of 

scale in situations 

relevant for the students. 

Percentage to express 

change and change 

factor as well as 

calculations with 

percentage in everyday 

situations and within 

other disciplines. 

 

Scale with enlargement 

and reduction of two- 

and three dimensional 

objects. 

 

Uniformity in the plane. 
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4.4 FT – Functional thinking  

Table 4.4 shows the distribution of algebraic content categorized as FT with respect to the 

grade levels 1-3, 4-6 and 7-9. 

Table 4.4: The distribution of FT-categorized content in the 1980 and 2011 curricula 

 Grades 1-3 

 

Grades 4-6 Grades 7-9 

Lgr80  

 

The function concept is 

introduced through 

practical experiments.  

 

Interpretations of simple 

functions in the first 

quadrant in a coordinate 

system.  

 

Calculations of functions 

values by inserting them 

into formulas, connected 

to everyday life or other 

school subjects. 

 

Interpretations and 

constructions of graphs in 

the whole coordinate 

system. 

 

Linear functions, 

especially those that 

indicate proportionality. 

 

Lgr11 How simple patterns in 

number sequences and 

simple geometrical forms 

can be constructed, 

described and expressed. 

 

How patterns in number 

sequences and 

geometrical patterns can 

be constructed, described 

and expressed. 

 

The coordinate system 

and strategies for scaling 

coordinate axes. 

 

Tables and graphs. 

Functions and linear 

equations.  

 

How functions can be 

used to investigate 

change, rate of change 

and other relationships. 

 

In grades 1-3, the big idea FT is not represented at all in Lgr80. In the same grade level 

in Lgr11, FT-categorized content consists of simple patterns in number sequences and 

simple geometrical forms as well as how these can be constructed, described and 

expressed. This topic is also considered in grades 4-6 in Lgr11. The only difference is that 

in grades 4-6 the word “simple” (in connection with simple patterns) is removed.  

Furthermore, in grades 4-6 the coordinate system and graphs are included in both 

curricula. In Lgr80, the term “function” appears in grades 4-6, while in Lgr11 the term 

“function” first appears in grades 7-9. In Lgr80, interpretations of simple functions in the 

first quadrant as well as calculations of function values by inserting them into formulas are 

emphasized in grades 4-6. In grades 7-9, not only interpretations of functions are 

emphasized but also constructions of functions in the whole coordinate system. Linear 

functions, especially those that indicate proportionality, are also mentioned in Lgr80. In 

Lgr11, the description of the content of functions are not as detailed as in Lgr80. 

However, the Lgr11 document prescribes the usage of functions in order to investigate 

change (Table 4.4).  
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4.5 VAR – Variables  

Table 4.5 shows the distribution of algebraic content categorized as VAR with respect 

to the grade levels 1-3, 4-6 and 7-9. 

Table 4.5 7. The distribution of VAR-categorized content in the 1980 and 2011 curricula 

 Grades 1-3 

 

Grades 4-6 Grades 7-9 

Lgr80  

 

  

Lgr11  Unknown numbers and 

their properties and also 

situations where there is a 

need to represent an 

unknown number by a 

symbol. 

The meaning of the 

variable concept and its 

use in algebraic 

expressions, formulas and 

equations. 

In Lgr80, we could not find any content connected to the big idea VAR. In Lgr11, 

VAR-categorized content first appears in grades 4-6 and 7-9. Unknown numbers and their 

properties are included in the content in grades 4-6. It is also pointed out that situations 

where there is a need to represent an unknown number by a symbol should be treated. In 

grades 7-9, the focus is on the meaning of the variable concept as well as its use in 

algebraic expressions, formulas and equations. 

5 Discussion  

The result reveals both similarities and differences between the two curricula. Next, this 

will be discussed on the basis of the following issues: The earlier introduction of algebra 

over time, the representation of different big ideas, the movement from a focus on 

computational skills to verbal abilities between the years 1980 and 2011, and finally the 

high emphasis on practical and everyday mathematics in both curricula. 

The result of the analysis reflects the recent international trend to integrate algebra in 

school mathematics already from primary school (Blanton et al., 2015; Carraher et al., 

2006; NCTM, 2006). Several parts of the algebraic content are introduced earlier in the 

Lgr11 document compared to the Lgr80 document. For instance, in Lgr80 algebraic 

expressions and proportionality first appear in grades 7-9, while in 2011 algebraic 

expressions appear in grade 4-6 and proportionality already in grades 1-3 (Table 4.1 & 

4.3). An exception in this study is the function concept which is introduced in grades 4-6 

in Lgr80 and not until grades 7-9 in Lgr11. However, the Lgr11 document prescribes 

“patterns” already in grades 1-3 which might be viewed as a first step to understand the 

function concept (Blanton et al., 2015). That is, even though the function concept appears 

earlier in the Lgr80 document, the big idea ‘functional thinking’ (Blanton et al., 2015) is 

represented earlier in Lgr11 compared to Lgr80 (see Table 4.4). 

Furthermore, the function concept is applied somewhat different in the two curricula. 

For instance, the Lgr80 document prescribes calculations of function values which is not 

mentioned in Lgr11. Instead, the Lgr11 document emphasizes the usage of functions in 

order to investigate rate of change and other relationships which is not included in Lgr80 

(Table 4.4). One reason to this might be that ‘Relationships and change’ constitutes a new, 

separate category of mathematical content in the Lgr11 curriculum (see the Methodology 

section above, p. 5). In previous Swedish curricula, the content in ‘Relationships and 
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change’ was distributed among the different topics, especially algebra. The emphasis on 

‘Relationships and change’ is probably an effect of a recent international trend where 

‘Relationships and change’ has been identified as one of the four broad mathematical 

content categories in the PISA framework for school mathematics (OECD, 2010). This is 

also reflected in the current Swedish textbooks in mathematics, where the big idea 

‘functional thinking’ is a dominating content with a clear progression throughout the 

grades 1-6 (Bråting et al., 2019). Meanwhile, as mentioned in the Methodology section 

above, in Lgr80 ‘Algebra and basic functions’ is one of the smallest topics in the 

curriculum and it is also pointed out that individualization based on students’ ability is 

necessary within this topic (Lgr80, p. 105). 

‘Generalized arithmetic’ is the least represented big idea in both curricula. Apparently, 

it is not represented at all in the content description of the Lgr80 document and very little 

in Lgr11 (Table 4.2). As already mentioned, generalized arithmetic is seen as one of the 

most important parts of school algebra by several researchers (Blanton et al., 2015; Kaput, 

2008). Sometimes generalized arithmetic is considered as a bridge between arithmetic and 

algebraic thinking ( ujii, 2003), that is, as a development of “algebra as generalized 

arithmetic” throughout compulsory school. However, we cannot find any notion of 

building a bridge between arithmetic and algebra in the two curricula. In fact, the terms 

‘generalize’ and ‘generalization’ do not appear in neither of the two curricula. It can also 

be noted that the term variable (or unknown) is not mentioned at all in the Lgr80 

document which probably is a reaction to the great focus on abstract mathematics in 

connection with “New math” during the 70s (c.f Prytz, 2015).  

The results reveal that the Lgr80 document emphasizes computational skills to a greater 

extent than Lgr11. Within the big idea EEEI, a typical example is the emphasis on setting 

up, simplify and calculate algebraic expressions in Lgr80 (Table 4.1). Furthermore, the 

Lgr80 document prescribes solving equations and specifies which kind of equations that 

should be treated. Instead, the Lgr11 document emphasizes methods for solving equations 

and the meaning of the equal sign (which is pointed out already in grades 1-3). Moreover, 

the Lgr11 document stresses abilities such as expressing and describing. For instance, 

within the big idea PR, percentage is connected to the ability to express change (Table 4.3) 

and within the big idea FT patterns should be constructed, described, and expressed 

(Table 4.4). 

The emphasis on terms such as methods, expressing and describing in the Lgr11 

reflects the implementation of the mathematical competency goals (NCTM, 2000; Niss & 

Jensen, 2002) in the Swedish mathematical curriculum. As already mentioned in the 

methodology section above (p. 5), the competency goals consist of abilities such as 

analysing mathematical concepts, evaluating selected strategies and methods as well as 

use mathematical expressions to discuss conclusions. These abilities cannot be found in 

the Lgr80 document where computational or operational aspects are in focus. Based on the 

results in this study, one could grasp a movement of focus from computational and 

operational abilities in Lgr80 to more verbal abilities in Lgr11 (c.f. Bråting & Österman, 

2015). This is in accordance with the results of Jakobsson-Åhl’s (2008) study which 

revealed that the level of complexity of algebraic expressions in Swedish textbook 

exercises had decreased over the years.  

The implementation of the competency goals in the Swedish curriculum is an ongoing 

reform in Swedish school mathematics (Boesen et al., 2014) and according to Bergqvist 
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and Bergqvist (2017) it is problematic for teachers to convey the message which is vague 

and formulated with complex wording. The focus on the implementation of the 

competencies in Swedish school mathematics might be one reason why the traditional 

emphasis on computational skills has been disregarded during the past decades. However, 

we believe it is important to have a balance between the emphasis on verbal abilities on 

the one hand and computational abilities on the other. 

Apparently, both curricula frequently point out the importance of practical and 

everyday mathematics within the algebraic content. However, the view of how these 

aspects should be acquired differs between the two curricula. In the Lgr80 document, 

practical skills and the acquirement of everyday mathematics are considered as a part of an 

overall ability, which should be acquired by means of learning computational, numerical 

and geometrical skills. Let us consider the same citation of one of the two main goals with 

mathematics from Lgr80 which was cited in the methodology section above:  

Students should therefore, in the first place, acquire an ability to solve such mathematical problems 

that usually occur in everyday life. This means that the students, by means of the teaching, should 

acquire  

• numerical abilities with and without technical resources, 

• skills in mental arithmetic and estimate calculations, 

• knowledge primarily in percentage calculations, practical geometry, units and unit transformations, 

and descriptive statistics (Lgr80, p. 98). 

Here, it is clearly stated that the teaching must be based on the students’ own experiences. 

However, the practical skills are closely linked to the specific mathematical content. This 

differs from the Lgr11 document where the specific mathematical content is more 

separated from the practical and verbal abilities within the descriptions of the goals (as in 

the citation of the competency goals on p. 5 in the methodology section above). Moreover, 

it is prescribed in Lgr11 that mathematics should be used as a tool to solve everyday and 

practical problems such as private economy, social life, and electronics. It seems that in 

Lgr11 the mathematical content is used to solve the practical and everyday problems, 

while in Lgr80 the practical and everyday problems are used as a platform to learn the 

specific mathematical content (see also Bråting & Österman, 2015). This is in accordance 

with Jakobsson-Åhl’s (2008) study where the results revealed that algebra has more often 

been considered as a tool for solving practical and everyday problems through the years 

and that algebraic content has become more integrated with other school subjects. 
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ABSTRACT 

This article is dedicated to the comparison of ways mathematics was taught in secondary schools with Polish 

and German as languages of instruction on the territory of Poland from 1795 to 1918. Particular attention 

will be paid to gymnasia (Pol. gimnazjum, Ger. Gymnasium) and real schools (Pol. szkoła realna, Ger. 

Realschule), which constituted the best types of secondary schools at that time. Mathematics teachers 

education, mathematics curricula and school leaving examinations, called also Matura examinations, will be 

compared. But firstly, there will be explained why there were schools with different languages of instruction 

on the territory of Poland from the end of the 18th to the beginning of the 20th century.  

 

Keywords: mathematics, mathematics teaching in Poland, secondary schools, gymnasia, real schools, 

partitions of Poland. 

1 Introduction 

In the early 18
th

 century, Poland was a prosperous country with its own mathematical 

culture and mathematical traditions. In 1773, the Polish government established the 

Commission of National Education. This Commission reorganized the system of Polish 

education, prepared new school curricula, new school textbooks, organized a system of 

teachers’ education and school supervision system. Regulations prepared by the Polish 

Commission of National Education (Ustawy Kommissyi Edukacyi Narodowej dla Stanu 

Akademickiego i na szkoły w kraiach Rzeczypospolitey przepisane, 1783) were based 

partly on the rules of Jesuits and Piarist schools but they also took into consideration the 

pedagogical concepts the age of Enlightenment. New school curricula paid attention to 

mathematical and natural sciences, especially on: arithmetic, geometry, trigonometry and 

algebra. Those regulations also described the best method of teaching: professors should 

abandon the lecture method in favour of experiential teaching in which students will 

understand what they are learning (Ustawy Kommissyi Edukacyi Narodowej dla Stanu 

Akademickiego i na szkoły w kraiach Rzeczypospolitey przepisane, 1783, 36). 

The Polish Commission of National Education was the first Ministry of Education in 

Europe, it was a secular organisation, independent of the Church. It was the first European 

attempt to transform chaotic teaching into an organized system of education – from 

elementary schools to universities. 10 years later everything was ready and implemented 

on the territory of Poland.  

One year before establishing the Commission of National Education, so in 1772, the 

First Partition of Poland took place. Three empires, Prussia, Austria and Russia, occupied 

some territories of Poland as a result of the unstable political situation in Poland. In 1793 

there was the Second Partition of Poland, in 1795 – the Third Partition of Poland. From 
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the Third Partition of Poland to 1918 all territories of Poland were occupied
1
 (Fig. 1.1). 

For 123 years Poland disappeared from the map of Europe. 

 

  

Figure 1.1: Partitions of Poland2 

In 1795 Prussia, Austria and Russia began the process of germanization and 

russification of the territories of Poland.  

Prussia and Austria almost immediately introduced German as a language of instruction 

to Polish schools, Polish teachers were replaced by those from Prussia and Austria, 

Prussian and Austrian curricula and textbooks were also introduced. In 1868 the territories 

of the Austrian Partition gained autonomy
3
 in education and there was established the 

Polish Ministry of Education: National School Council (Pol. Rada Szkolna Krajowa), 

Polish was the language of instruction, there were Polish teachers, Polish textbooks and 

Polish curricula. In 1875 the freedom of Poles was limited and all decisions of the Polish 

Ministry of Education had to be approved by the Ministry of Education and Religious 

Affairs in Vienna (Świeboda, 1984, 111–112). In the Prussian Partition from 1795 to 1918 

there were schools with German as a language of instruction and Prussian rules of 

education only.  

In the Russian Partition from 1795 to 1831
4
 there were Polish schools with Polish rules 

of education and Polish teachers. In 1831 freedom of Poles was limited and all decisions 

related to Polish schools had to be approved by the Department of Religious Affairs and 

Public Education of the Polish Provisional Government, which was under the supervision 

of Russian Emperor (Manteuffel, 1929, 26). The year 1839 is considered the beginning of 

the process of combining  Polish education with the school organization of the Russian 

                                                            
1 The Polish lands were occupied by Prussia, Austria and Russia almost for the entire time from 1795 to 

1918. The exception are the years 1807–1815 when part of the Polish lands under the name Duchy of 

Warsaw were under the authority of the French emperor, Napoleon Bonaparte. After the fall of Napoleon, 

the Duchy of Warsaw was enlarged at the Congress of Vienna in 1815 and transformed into a Kingdom 

under the rule of the Tsar of Russia. Education in the Duchy of Warsaw remained in the hands of the Poles. 
2 Source of maps: https://pl.wikipedia.org/wiki/Rozbiory_Polski#/media/File:Partitions_of_Poland.png. 
3 Obtaining autonomy by the territories of the Austrian Partition was a process lasting several years: 1860–

1873 (Majorek, 1980, XIII–XVI). It should be emphasized here that from the 1850s, there were schools on 

the territories of the Austrian Partition with Polish language of instruction, however there were only a few of 

them (Sprawozdanie…, 1885, 26–27). 
4 In 1831 November Uprising took place. 
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Empire (Królikowski, 2008, 285). Changes were introduced gradually – Russian teachers 

were successively brought to Polish lands and regulations concerning the functioning of 

Polish schools were issued, e.g. in 1851 another school reorganization was approved, 

under which Polish philology gymnasia were made similar to this type of schools in 

Russia (Królikowski, 2008, 287). After the January Uprising, taking place in 1863, Polish 

schools were revived for a short time thanks to Aleksander Wielkopolski, but already in 

1867 they were thoroughly Russified (along with the introduction of the Russian language 

of instruction to all schools) (Manteuffel, 1929, 37-49). Until 1867, many Polish names 

appeared in the composition of the central educational authorities for the Polish territories 

of the Russian Partition (Manteuffel, 1929, 51-69). The managerial positions (such as the 

director, curator, minister, etc.) were usually filled by the Russians, however, also the 

Poles had a great influence on the form of teaching in the Polish lands.   

This article will compare the teaching of mathematics in schools with Polish and 

German language of instruction functioning in Polish territories in all partitions. Particular 

attention will be paid to gymnasia and real schools, in which, in the 19
th

 century, Matura 

exams were already carried out. Gymnasia were focused on teaching humanities subjects, 

and real schools – mathematics and natural science subjects. These were schools for the 

chosen, not the majority. These schools educated the intellectual elite of the country. 

Young people starting gymnasia and real schools were specially selected. During the 

entrance exams to these schools, on the one hand, students had to demonstrate knowledge 

of the material obligatory in elementary schools, while on the other hand, they had to 

demonstrate high general abilities, whose determinants were intelligence, creative 

thinking, good memory and imagination. Only students with these skills could 

successfully continue their education in gymnasia and real schools and pass the 19
th

 

century Matura exam. Among students, especially in real schools, there were also people 

with special abilities in mathematics (see also: Karp, 2009). It allowed to implement the 

widest possible curricula, also in the field of mathematics. 

Comparison of the method of mathematics education in gymnasia and real schools in 

the Polish territories during the partitions is therefore a comparison of the mathematical 

education of the intellectual elite in Poland with the way of its education in Prussia and 

Austria. It is a comparison of the mathematics education in the occupied country, seeking 

independence, and the way it is taught in the occupying countries.  

Stefan Banach said that only countries that cherish mathematics can be strong and 

powerful. Mathematical education has often been an instrument of political reform (see, 

e.g., Karp & Funinghetti, 2016; Karp & Funinghetti, 2018). A lot has been written about 

this in the context of Prussia or France. Here we will focus on Poland. We will discuss the 

teaching of mathematics in a country that wants to free itself from slavery. We will try to 

answer the following questions: What kind of mathematics was taught to the Polish 

intellectual elites, which as a result, in 1918 raised Poland from the fall? Did Poles model 

themselves on the reaching systems implemented in Prussia and Austria or did they 

develop their own teaching system? Was the national element visible in teaching – was 

teaching adapted to the needs of the Polish society? Was mathematics aimed at practical 

application taught, or maybe the 19
th

 century tendency was followed: “learning 

mathematics was intended to contribute to the development of one’s mental capacities. 

Practical value or applicability of mathematics was typically much less important” (Smid, 

580)? How were mathematics teachers educated?  
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  The analysis carried out in this article is a contribution to the study of the history of 

mathematics teaching. It presents the means by which high effects of mathematical 

education were achieved in Poland in 1795-1918. It also allows to draw conclusions for 

modern educational practice. 

Let us compare mathematics teaching in schools with Polish and German as languages 

of instruction in all partitions of Poland. 

2 Mathematics teachers in schools with Polish and German as 

languages of instruction 

2.1 Regulations related to teachers’ education 

2.1.1 Polish regulations  

The first Polish regulations related to teachers’ education were prepared by the 

Commission of National Education. It took place in the 1780s (see: Popławski, 1780; 

Ustawy Kommissyi Edukacyi Narodowej dla Stanu Akademickiego i na szkoły w kraiach 

Rzeczypospolitey przepisane, 1783, 15–18). The Commission operated until the Third 

Partition of Poland. However, its general regulations were in force for a dozen years after 

1795. Moreover, its regulations related to teachers’ education were kept for almost the 

entire first half of the nineteenth century in Polish schools
5
.  

The most important part of education, in the opinion of the Polish Commission of 

National Education, was teachers. According to the phrase, the result of education will 

resemble the level of the teachers (Popławski, 1780), the Commission of National 

Education has prepared a system for educating Polish teachers.  

From 1780 those people who wanted to work in Polish secondary schools had to finish 

teachers seminars. The first Polish teachers seminar was opened in 1780 at the university 

in Cracow. Later, another seminars were opened – at universities in Vilnius and Warsaw
6
. 

Each teachers seminar lasted for 4 years and consisted of a one-year general pedagogical 

course and 3 years’ university studies related to the main subject of the candidate’s 

teachers course (Popławski, 1780). 

Let’s look at a schedule of 3 years’ university studies in mathematics at Warsaw 

University in 1822 (Table 2.1). This is the framework of the 3-year part of the teachers 

seminar in mathematics. 

 

                                                            
5 Certain regulations were also applied at the end of the 19th century and the beginning of the 20th century, an 

example here is delegating teachers to foreign scholarships in order to improve their skills. 
6 See: (Więsław, 2007, 110–114 and 256–276). 
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Main subjects7: 

1. Higher algebra. 

2. Analytic geometry. 

3. Differential and integral calculus. 

4. Descriptive geometry (theory and 

practice). 

5. Mathematical Physics. (cancelled!) 

6. Analytical Mechanics. 

7. Astronomy. 

8. Celestial mechanics. (cancelled!) 

 

Associate subjects: 

1. Philosophical encyclopedia. 

(cancelled!) Fundamental philosophy. 

2. Logic. (cancelled!) 

3. Metaphysics. (cancelled!) 

4. Aesthetics. (cancelled!) 

5. History and literature of philosophy. 

(cancelled!) 

6. General physics and elementary 

mechanics. 

7. Chemistry (one-year course). 

8. Mineralogy and crystallography. 

9. Botany (one-year course). 

10. Zoology, ditto ditto8. 

Table 2.1: Teaching Plan at the Philosophy Department of the Royal Warsaw University 

for those who pursue a Master’s degree in Philosophy at the Mathematical Department 

(1822)
9
 

For example, let us discuss the program implemented during the lectures on differential 

and integral calculus. The then professor Adrian Krzyżanowski (1788–1852) during these 

lectures discussed the Taylor formula, power series, he determined the extrema of the 

functions of one variable and he introduced the basic theorems related to determination of 

integrals and their application. During the lectures he used Gottfried Leibniz’s works 

(Więsław, 2007, 245). As historian says, mathematical studies at Warsaw University were 

at similar level of education to these at other European universities at that time (Duda, 

2019, 115–117).  

                                                            
7 On the whole-source Teaching Plan some subjects are cancelled, there is also one subject that was added in 

handwriting. This is probably a consequence of the fact that at that time, the teaching plans were prepared 

individually for each student (Ustawy Kommissyi Edukacyi Narodowej dla Stanu Akademickiego i na szkoły 

w kraiach Rzeczypospolitey przepisane, 1783, 16–17).  
8  Ditto is an Italian word that means “as above”. Ditto ditto in this context should be understood as: (one-

year course). 
9 State Archives in Łódź, sign. 39/ 592/0/2.1/734.  

731



 
 

2.1.2 Prussian regulations  

In Prussia teachers’ education was finally settled at the beginning of the 19
th

 century. In 

1810 teachers examinations were introduced and they had to be passed after finishing 

university studies (Wiese, 1864, 545–547). Over the years, these ordinances have been 

improved, e.g. in 1831 the scope of material in mathematics which was applicable for the 

exam for mathematics and natural sciences teachers was determined: school arithmetic, 

geometry, plane trigonometry and algebra, higher mathematics, especially the application 

of mathematics to astronomy and physics (Kröger, 1837, 50–84).  

2.1.3 Austrian regulations 

In the Austrian empire in the first half of the 19
th

 century the teachers of the highest grades 

of secondary schools, according to the regulations of 1786, were required to graduate from 

university studies, but in practice they were not often observed (Świeboda, 1984, 71–72). 

Teachers were employed on the basis of the so-called competition, which consisted of a 

written exam of subjects that the candidate was intended to teach. There were opinions 

that these exams often did not check the candidate’s knowledge in a sufficient way, and 

did not check pedagogical knowledge and skills at all (Świeboda, 1984, 72). The first 

detailed regulations related to the teachers examinations in Austria were issued in the 

1849. From then on, secondary school teachers had to graduate from university studies 

and pass a teacher’s exam. These ordinances have been respected. In 1856, they were 

clarified (see: Seidl, Bonitz, Mozart, 1856, 673–686; Rakoczy-Pindor, 2012).  

Since 1856 examinations could be passed in two subjects which the candidate intended 

to teach. Candidates had to prepare also a pedagogical, philosophical or didactical work at 

home on the topic given by the Examination Board (see: Rakoczy-Pindor, 2012, 164–

167). 

Requirements for mathematics teachers were as follows: higher algebra and number 

theory, elementary geometry, analytic geometry on the plane and in space, descriptive 

geometry, differential and integral calculus with applications, variational calculus, theory 

of functions (Rakoczy-Pindor, 2012, 165). 

Austrian regulations were quite similar to Prussian. These regulations were also valid in 

Polish schools with the Polish language of instruction on the territory of the Austrian 

Partition.  

2.2 Teachers characterization 

In what way teachers on the territory of Poland under partitions can be characterized? 

Teachers in Polish schools from 1780, in schools under Prussian Partition from 1810 and 

in schools under Austrian Partition from 1849 can be characterized in a similar way. They 

published articles related to mathematics education, for example discussing arithmetic 

sequences of higher degrees
10

, binomial theorem and properties of binomial coefficients, 

                                                            
10 Definition of arithmetic sequences of the higher degrees (Koppe, 1869): 

1. Sequence    
      

 is an arithmetic sequence of the first degree if it is a sequence of natural numbers. 

2. Sequence    
      

 is an arithmetic sequence of the second degree if :   
   ,   

    
      

 ,      . 

3. Sequence    
      

 is an arithmetic sequence of the third degree if:   
   ,   

    
      

 ,      . 

4. Sequence    
      

 is an arithmetic sequence of the  th (     ) degree if:   
   ,   

    
      

 , 

     . 
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continued fractions and their applications (examples of teachers works related to 

Mathematics education: J. Słonimski, O ułomkach ciągłych, Kalisz, 1829; J. Piegsa, Ein 

Beitrag zur Theorie der höheren arithmetischen Reihen, Ostrowo, 1855). They published 

also school textbooks (examples of mathematical textbooks written by teachers: W. 

Karczewski, Początki  arytmetyki, Kielce, 1822; E. Fassbender, Anfangsgründe der 

beschreibenden Geometrie, der analytischen Geometrie, der Kegelschnitte und der 

einfachen Reihen, Essen, 1860). Teachers very often conducted their own scientific work 

(examples of teachers scientific works: Z. Krygowski, O pewnym zastosowaniu funkcji 

theta, Przemyśl, 1890; K. Weierstrass, Beitrag zur Theorie der Abel’schen Integrale, 

Braunsberg, 1849). Sometimes they had Ph.D. degrees. In schools with Polish language of 

instruction in the second half of the 19
th

 and at the beginning of the 20
th

 century
11

 it was 

about 7–8% of all teachers (Rakoczy-Pindor, 2012, 163). Teachers with Ph.D. degree in 

schools with German as a language of instruction can be roughly estimated at 30%
12

. 

Moreover, there were schools in which in some years the percentage of teachers with a 

doctorate was equal to 50%. For example this situation took place in Toruń Gymnasium in 

1860/1861 school year – there were 20 teachers and a half of them had a Ph.D. degree, 

among them there were three teachers of mathematics: Eduard Fassbender (1816–1892), 

Rudolf Brohm (1807–after 1864), Hermann Rietze (1831–1862) (School reports, Thorn, 

1861, 41–42). 

There was one very important difference between Polish teachers and those who 

worked at schools with German as a language of instruction. The Polish ministries of 

education sent teachers abroad on scientific trips, for example to France, England and 

Prussia. During these trips teachers had to visit local schools and learn mathematical 

sciences at local universities
13

. 

It was a way to improve Polish teachers’ education. After returning they were 

secondary school teachers during their whole educational career, for example
14

: 

Ignacy Przybylski (1770–1838) – trip around Prussia; mathematics teacher in Płock and 

Kalisz. 

Wincenty Wrześniowski (1800–1862) – trip around Europe; mathematics teacher in 

Radom and Warsaw. 

August Bernhard (1804–1861) – trip around Europe; mathematics teacher in Piotrkowo 

and Warsaw. 

Sometimes, after a few years in secondary schools, they were promoted to university 

teachers, for example
15

: 

Franciszek Armiński (1789–1848) – visit to Paris; mathematics teacher in Warsaw; 

since 1816 astronomy professor at Warsaw University.  

Adrian Krzyżanowski (1788–1852) – visit to Paris, mathematics teacher in Kielce and 

                                                            
11 At that time, the most schools with Polish language of instruction were located in the Austrian Partition. 
12 In the Gymnasium in Trzemeszno in 1856–1862 people with doctoral degree accounted for approx. 27% 

of all teachers (School reports, Trzemeszno). In the Gymnasium in Braniewo in 187–1880, 1882–1912 and 

1915, it was 27% (School reports, Braunsberg). In the Real Gymnasium in Bydgoszcz in 1888–1912 and 

1915 the percentage of teachers with a doctorate was 34% (School reports, Realgymnasium zu Bromberg). 

In the Gymnasium in Bydgoszcz in 1856–1865 and 1869, 1871, 1873–1876, this mean amounted to 23% 

(School reports, Gymnasium zu Bromberg). In the Gymnasium and Real School (Real Gymnasium) in 

Toruń in 1860–1874, 1881, 1885, 1889–1892 and 1894–1900 it was about 41% (School reports, Thorn). 
13 See: (Sprawozdanie…, 1896, 6–7) and State Archives in Łódź, sign. 39/592/0/3.2/815. 
14 State Archives in Łódź, sign. 39/592/0/2.2/762, 327–328, 356–357, 148–149. 
15 Ibidem, 125–126, 275–278. 
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Warsaw; since 1821 mathematics professor at Warsaw University. 

Kajetan Garbiński (1795–1847) – visit to Paris, since 1820 mathematics teacher at 

secondary schools in Warsaw and mathematics professor at Warsaw University.   

At schools with German as a language of instruction mathematics teachers were also 

promoted to universities. I would like to mention three widely known names: Karl 

Weierstrass (1815–1897), Wilhelm Killing (1847–1923), who were teachers in 

Gymnasium in Braniewo and Martin Ohm (1792–1872) – teacher in Gymnasium in 

Toruń.  

2.3 Conclusions 

Teachers working in secondary schools preparing for Matura exams in the 19
th

 and early 

20
th

 century had a very good professional education – university studies in the subject they 

taught. By publishing articles on didactics and preparing textbooks, the school tried to 

improve the level of teaching in secondary schools. On the other hand, they also took care 

of their scientific development. Often these were people with a PhD. In the Polish-

language schools in the second half of the 19
th

 century and at the beginning of the 20
th

 

century, people with a PhD constituted about 7-8% of all teachers, in German-language 

schools this percentage was greater – approx. 30%. Polish educational authorities, wanting 

to improve the education of teachers, decided on a solution that was not used in German-

language schools – sending teachers to foreign internships. Teachers’ scientific activity 

was often so advanced that they were appointed as academic teachers, where they also 

achieved significant successes. Mathematics teachers in schools on Polish lands during the 

partitions can be described as people who have a passion for mathematics. According to 

the statement you have to burn in order to shine, they had all predispositions to also light 

the passion for this subject in students. They were people with a predisposition to educate 

intellectual elites. 

3 Mathematics teaching in real schools with Polish and German as 

languages of instruction 

Now we are going to compare mathematics teaching in real schools on the territory of 

Poland under partitions. Real schools were those oriented on mathematics and natural 

sciences.  

3.1 First real schools in Prussian, Russian and Austrian Partitions. First Polish 

real school 

The first real schools were founded in Prussia in the 18
th

 century. The so-called real school 

established by Christoph Semler in Halle in 1709 was considered to be the first school 

with a mathematical and natural profile (Heinen, 1863, 13). 

The first Prussian ordinances regarding the organization of real schools, which were 

also valid for real schools opened in the Polish territories under the Prussian Partition, 

were issued on March 8, 1832 (Wiese, 1864, 27), but they have not yet been rigorously 

adhered to. After 1832, there are real schools in which the curricula were slightly 

different. This was the case, e.g., in the Real School in Krotoszyn (School reports, 

Krotoschin) and St. Peter School in Gdańsk (School reports, Danzig). Much influence on 

the teaching of mathematics was exerted by the Ordinance of October 6, 1859 (Der 
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Minister…, 1859) introducing the Matura exams in the selected types of real schools.  

In 1864, there were 65 real schools operating in Prussia (Wiese, 1864, 46–48), 

including 10 in the Polish lands of the Prussian Partition (Wiese, 1864, 46–48), among 

them there were: St. John School in Gdańsk (Ger. Johannisschule zu Danzig), St. Peter 

School in Gdańsk (Ger. Petrischule zu Danzig) and real school in Toruń, Elbląg, Poznań, 

Międzyrzecz, Wschowa, Rawicz, Bydgoszcz and Grudziądz. Of these, only the real school 

in Grudziądz did not have the right to conduct Matura exams. 

The first real school on the territory of Poland with Polish language of instruction was 

founded in 1840 under Russian Partition (ВЬДОМСТВО ПРОСВЬЩЕНІЯ…, 1868, 

287). It was the Real Gymnasium in Warsaw. Polish students attended this school and the 

Polish language of instruction was used there. However, it cannot be called a Polish 

school. Both Poles and Russians influenced the curriculum in this school.  

A special curriculum was prepared for the Real Gymnasium in Warsaw. It was not 

imitative in relation to curricula in other European countries. It was adapted to the local, 

Warsaw, industrial, commercial and agricultural needs (Sprawozdanie urzędowe 

Dyrektora Gimnazjum Realnego Karola Frankowskiego z upłynnionych trzech lat 

szkolnych, czytane na akcie publicznym dnia 26 czerwca 1844 roku, 391). In 1840, 

arithmetics (1
st
 grade – 6 hours a week, 2

nd
 grade – 6 hours, 3

rd
 grade – 6 hours), 

elementary geometry applied to practice (3
rd

 grade – 5 hours, 4
th

 grade – 5 hours), algebra 

(4
th

 grade – 4 hours, 5
th

 grade – 3 hours), trigonometry (5
th

 grade – 3 hours), descriptive 

geometry (5
th

 grade – 5 hours, 6
th

 grade – 4 hours) and conics (6
th

 grade – 2 hours) was 

lectured in the Real Gymnasium in Warsaw. In the seventh grade, there was no 

mathematical theory and only and applications of mathematics in chemistry, construction, 

painting and machine construction (ВЬДОМСТВО ПРОСВЬЩЕНІЯ…, 1868, 301). 

In 1845, the Russian Ministry of Public Enlightenment in Petersburg issued regulations 

concerning curricula in two types of schools in the Polish lands under Russian rule was: 

real schools (four grades) and higher real schools (six grades). (See: ВЬДОМСТВО 

ПРОСВЬЩЕНІЯ…, 1868, 343–457).  

In Austria, including the Polish territories of the Austrian Partition, real schools were 

founded since the beginning of the 19
th

 century, e.g. in 1817 there were founded Real 

School in Lviv (with German language of instruction) (Bericht der Handels-…, 1859, 

136). But the first general regulations about organisation of the real schools were issued 

there only in 1849, under the name Entwurf der Organisation der Gymnasien und 

Realschulen in Oesterreich (Sprawozdanie…, 1885, 57; Ministerium…, 1849).  

The first completely Polish real school was founded on February 19, 1856 in Lviv 

(Sprawozdanie…, 1885, 59). Initially, only the Polish rules of education were in force 

there. Since 1875 the freedom of Poles under Austrian Partition was limited and the 

curricula of this school and other Polish real schools had to be approved by occupant 

(Sprawozdanie…, 1885, 61). In 1869, two real schools functioned in the Polish territories 

under the Austrian annexation with a full seven-grade cycle of teaching: in Lviv and 

Krakow. There were also three real schools with a three-grade teaching cycle: in Tarnopol, 

Jarosław and Śniatyń (Galizisches Provinzial-Handbuch für das jahr 1869, 1869).  

We will divide the analysis of mathematics teaching in real schools in Polish territories 

during the partitions of Poland into two periods: before 1868 and after 1868, that is before 

and after obtaining autonomy in teaching by the Polish territories under the Austrian 

Partition.  
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3.2 Mathematics teaching before 1868 

Before 1868, most schools with Polish language of instruction were in the Russian 

Partition. The best real school in the Polish lands under the Russian Partition was then the 

Real Gymnasium in Warsaw. It was a school elite with an extremely wide curriculum. 

Higher real schools were schools of a more common nature. Thus, the analysis of the 

curricula in the real schools will allow to present a better, more popular image of 

mathematical education in the Polish territories under the Russian rule.  

This part of the article will compare: ordinances regarding teaching mathematics in 

higher real schools in the Russian Partition (1845) (ВЬДОМСТВО ПРОСВЬЩЕНІЯ…, 

1868, 349–457), ordinances regarding teaching mathematics in the Austrian Partition 

(1849) (Ministerium…, 1849) and mathematics curricula in two schools under Prussian 

rule – the Real School in Krotoszyn (School reports, Krotoschin) and St. Peter School in 

Gdańsk (School reports, Danzig). The analysis will cover the years 1849-1854. The 

starting data is conditioned by the issuance of Austrian ordinances regarding the 

functioning of real schools. The year 1854 was chosen as the ending date. It can be 

assumed that after 1854, the process of including Polish schools in the Russian education 

system was so advanced that there were no signs of Polishness in them anymore. 

In 1849-1854, higher real schools in the Russian Partition, real schools in the Austrian 

Partition, the Real School in Krotoszyn and St. Peter School in Gdańsk were seven-grade 

schools. In Krotoszyn and Gdańsk, learning in some classes lasted for two years. The table 

below illustrates a weekly hour timetable for mathematics. 

 

school grade number of hours in 

a week in the education 

cycle 

1
st
  2

nd
  3

rd
  4

th
  5

th
  6

th
   

Russian Partition 4 6 8 8 7 8 41 

Austrian Partition 5 4 4 5 4 4 26 

Prussian 

Partition 

Krotoszyn 4 3 3 5 4 4 5 5 33 

Gdańsk 5 5 5 6 6 6 5 38 

Table 3.1: Weekly hour timetable for mathematics in schools on the territory of Poland 

under partitions 

Over half of the time reserved for mathematics classes in all these schools involved 

discussing arithmetic-algebraic issues. Most time to discuss these issues was devoted in 

the school in Krotoszyn – 82% of time, in Gdańsk – 74%, in higher real schools in Russia 

– 56%, and in real schools in Austria – 54%. In the three lowest classes, mainly four 

arithmetic operations were discussed on concrete and non-concrete numbers, on ordinary 

and decimal fractions, and the rule of three and its application. In three higher grades, the 

following was discussed: power, elements, logarithms, 1
st
, 2

nd
, 3

rd
 and 4

th
 degree 

equations, arithmetic and geometric progressions and their applications. In schools in the 

Russian and Austrian Partitions, as well as in St. Peter School in Gdańsk, additional 

exponential equations, combinations, Newton’s binominal and probability theory and its 

application to calculating the expected life expectancy were discussed. In all schools, 

attention was paid to the use of arithmetic in everyday life – for calculating interest, 

discounts, pensions, retirement and calculations related to deposits and loans. 
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The remaining part of the curricula was filled with geometrical-trigonometric problems. 

The Austrian regulations from 1849 introduced geometry already in the lowest 1
st
 grade in 

2 hours a week. Discussing geometry started with the introduction of basic planimetric 

concepts. Stereometry appeared only in the highest 6
th

 grade. 

Regulations regarding higher real schools in the Polish territories under the Russian 

Partition introduced geometry a year later than in Austria – in the 2
nd

 grade. The students 

first learned the basic planimetric concepts, stereometry was introduced in the 4
th

 grade. 

Geometry appeared at the latest in the curricula of schools under the Prussian rule. In 

Gdańsk, planimetry was usually introduced in the 3
rd

 grade, the exception was year 

1850/1851, in which education commenced in the 4
th

 grade. Basic stereometric concepts 

appeared only in the 6
th

 grade. In Krotoszyn, planimetry was always introduced in the 4
th

 

grade, the basic stereometric concepts were discussed a year later.  

Geometry in the period under consideration was an important part of the curricula of 

schools under Austrian and Russian Partition. Almost half of all time devoted to teaching 

mathematics was devoted to discussing geometric issues. In schools under the Russian 

Partition, 18 hours week were dedicated to geometry in the education cycle, while at the 

school in Krotoszyn it was only 1/3 of that time. 

When analysing the curricula included in school reports and relevant ministerial 

ordinances, it can be seen that all schools discussed similar planimetry issues, including, 

among others: equivalent conversion of figures, division of figures into a given number of 

parts with equal areas,  similarity and congruence of figures, regular polygons, circles with 

theorems concerning chords and tangents, areas of figures, solving triangles. From the 

stereometric issues, the basic three dimensional figures were discussed with their areas 

and volumes were calculated. Conics and their properties were discussed in all schools.  

Differences in the curricula were as follows:  

1. In Krotoszyn and Gdańsk in 1850/1851 and 1852/1853 and in the Austrian Partition 

schools in 1849–1854 the spherical trigonometry was discussed. This issue was not 

present in the curricula of higher real schools under the Russian Partition. In 

addition, the applications of spherical trigonometry into the mathematical 

geography and astronomy were discussed in Krotoszyn and Gdańsk.  

In Krotoszyn in 1849–1851, gnomonics was additionally discussed – the 

construction of sundials and their setting. This issue was not found in other schools. 

2. In Austria and Russia, the geometric constructions and their applications in geodesy 

was an important part of curricula – measuring instruments such as cords and 

measuring chains, a coal-casing and a measuring table were used and tasks, such as: 

find the distance between two places on the ground between which the river flows, 

were solved.  

3. In the Russian Partition schools, 4 hours a week in the education cycle was 

exclusively devoted to the teaching of descriptive geometry. Among others, the 

tangent and normal to curved lines and curved surfaces were discussed. In 

1853/1854, descriptive geometry appeared in the curriculum of the real school in 

Krotoszyn (5
th

 grade). In the school report from Krotoszyn from this year, there was 

even an article of the teacher from this school about the need to introduce 

descriptive geometry to real schools and gymnasia. This is a preview of the 

upcoming changes in the curricula of Prussian schools – in 1859 descriptive 

geometry became an obligatory element of the teaching programs of real schools 
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conducting Matura exams (Der Minister der geistlichen, Unterrichts- und 

Medicinal-Angelegenheiten, 1859). In real schools in the Austrian Partition, 

descriptive geometry was not discussed. 

After 1854, the russification of schools on the Polish territory under the Russian 

Partition was already very advanced. Schools were included in the Russian teaching 

system and the Polish language of instruction was removed. What was it like in the 

Prussian and Austrian Partitions? In the Prussian Partition, there were school with parallel 

grades with German and Polish as languages of instruction. Polish language of instruction 

was applicable only in the lower grades. Two highest grades were German-speaking. 

However, schools with two languages of instruction were rare. One of such schools was 

the Real School in Poznań. Comparing the 1857 curricula there from both types of grades, 

it can be observed that they were almost identical the Prussian teaching system was in 

force (School reports, Posen, 1857). Polish youth, even if it was taught in Polish, it was 

done according to the Prussian rules.  

In 1856, the first completely Polish real school was created (Sprawozdanie…, 1885, 

59). It was established in Lviv – in the Austrian Partition. After acquiring autonomy in 

teaching by the lands of the Austrian Partition (1868), other Polish schools joined it. In 

1875, the freedom of Poles was limited and all decisions had to be approved by the 

invader. 

3.3 Mathematics teaching after 1868 

3.3.1 Austrian autonomy (1868–1875)  

Only a few school reports have survived from the period of “Polishness” to the present 

day. It is hard to find materials from the 1868–1875 period regarding the teaching of 

mathematics in the three types of schools that we are interested in: Austrian Partition 

schools, Austrian schools under the Austrian Partition and Prussian Partition schools 

which would survive to this day. Nevertheless, it was possible to do so. Higher Real 

School in Lviv (Austrian Partition) from 1874 (School reports, Lwów, 1874), Higher Real 

School in Bielsko (Austrian Silesia) from 1874–1877 (School programs, Bielitz, 1875, 

1877), Real School in Toruń from 1873–1874 (School reports, Thorn, 1873-1874) and 

Real School in Poznań (Prussian Partition) from 1874/1875 (School reports, Posen, 1875) 

were selected for further analysis. The table below presents the curricula implemented in 

these schools.     
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school 

grade 

Higher Real School in Lviv Higher Real School in Bielsko Real School in Toruń Real school in Poznań 

curriculum hours/week curriculum hours/week curriculum hours/week curriculum hours/week 

1st Arithmetic operations on 

integer numbers and decimal 

fractions. Divisibility and 

prime factorization. Greatest 

common divisor and least 

common multiple. Common 

fractions. 

Introduction to geometry: 

two- and three-dimensional 

figures, perspective, curves 

constructions. 

8 Decimal system.  Arithmetic 

operations on denominate and 

abstract numbers.  Divisibility.  

Greatest common divisor and 

least common multiple.  

Common fractions and decimal 

fractions. 

Introduction to geometry: basic 

planimetric figures with their 

drawings – triangle, square, 

quadrangle, regular hexagon, 

circle and their combinations. 

9 Arithmetic 

operations on  

denominate and  

abstract integers.  

6 Arithmetic operations on  

denominate numbers and  

common fractions. 

4 

2nd Ratios and proportions. The 

Rule of Three and its 

application. Percentages. 

Congruence and similarity of 

triangles. Curves: circle, 

ellipse, hiperbola, parabola, 

cykloid, and helical curves. 

Solids. 

7 Ratios and proportions.  

Percentages and their 

applications.  

Calculating the area of plane 

figures. Drawings using the 

drafting tool, protractor and set 

square. 

6 Arithmetic 

operations on 

denominate 

integers. Fractions. 

Counting in 

memory. 

4 Arithmetic operations on 

common fractions.  The 

Rule of Three and its 

application. 

Introduction to geometry:  

two- and three-

dimensional figures, 

circle, sphere, cylinder, 

cone. 

4 

3rd Percentages and their 

applications. Second powers 

and square roots. Third 

powers and cube roots. 

Congruence and similarity of 

7 Percentages and their 

applications. Second powers and 

square roots. Third powers and 

cube roots. Arithmetic operations 

on algebraic expressions. 

6 Arithmetic 

operations on 

common and 

decimal fractions. 

The Rule of Three. 

3 Arithmetic operations on 

decimal fractions.  The 

Rule of Three. 

Basic planimetric figures, 

triangles and 

3 
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polygons. Plane and three-

dimensional geometrical 

constructions. 

Basics of stereometry. Technical 

drawings. 

Counting in 

memory. 

parallelograms, 

construction tasks. 

4th Arithmetic operations on 

algebraic expressions. 

Greatest common divisor and 

least common multiple. 

Common fractions. 

Equations of the first degree 

with one and two unknowns. 

Calculating the area of 

figures and volume of solids 

(with practical application). 

Converting a given polygon 

into another one in an 

equivalent way. Curves 

constructions. Geometry 

application to geodesy, 

measuring the area of the 

ground using measuring 

instruments. Orthogonal 

projection.  

6 Arithmetic operations on 

algebraic expressions. Greatest 

common divisor and least 

common multiple. Common 

fractions. Equations of the first 

degree with one and two 

unknowns. 

Application of arithmetic 

operations on algebraic 

expressions to solving 

planimetric and stereometric 

tasks. Curves. Introduction to 

descriptive geometry. 

7 Introduction to 

planimetry up to 

parallelogram and 

trapezium. 

Compound Rule of 

Three. Percentages. 

Decimal fractions. 

Tradesmen 

calculations. 

6 Percentages and their 

applications. Powers. 

Arithmetic operations on 

algebraic expressions.  

Introduction of formulas: 

      ,       , 

          . Systems 

of equations. 

Parallelogram. Circle, 

chords and tangents.  

Tangent circles. Regular 

polygons. Equality of 

figures. Pythagorean 

theorem. 

6 

5th Arithmetic operations. 

Divisibility of numbers. 

Fractions. Proportions and 

their application to 

tradesmen calculations. 

Powers. Roots. Logarithms. 

8 Equations of the first degree with 

more than two unknowns. 

Diophantine equations. Number 

systems,  especially the decimal 

system.  Decimal fractions. 

Powers and roots.  Complex 

9 Geometry, 

especially theory of 

similarity and 

construction tasks. 

Arithmetic 

operations on 

6 Powers. First degree 

equations. Everyday 

calculations. 

Similarity of figures. 

Calculating the area of 

plane figures. Area of the 

6 
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16 Descriptive geometry in 5th  and 6th grades was taught as a separate subject within 3 hours a week. 

First and second degrees 

equations. Discussion of 

further planimetric problems.  

Descriptive geometry16: 

projections of a point, 

straight line and plane and 

their relations, projections of 

three-dimensional solids; 

sections of solids. 

numbers and four arithmetic 

operations on complex numbers.  

Ratios and proportions. 

Quadratic equations with one and 

two unknowns.  

Construction tasks. 

Descriptive geometry:  

projections of a point, straight 

line and plane; projections of 

three-dimensional solids; 

sections of solids. 

expressions using 

letters. First degree 

equations with one 

and two unknowns. 

Square and cube 

roots.  

circe. 

6th Equations of higher degrees, 

which can be reduced to the 

second degree equations. 

Continued fractions. 

Arithmetic and geometric 

progressions and their 

applications to pensions 

calculatings. Combinations, 

Newton’s Theorem. 

Descriptive geometry: Curve 

lines, i.e. an ellipse, a 

hyperbola and a parabola; 

tangent planes to surfaces; 

surfaces and planes 

intersections. 

8 Logarithms. Equations of higher 

degrees, which can be reduced to 

the second degree equations. 

Exponential equations. 

Arithmetic and geometric 

progressions and their 

applications to pensions 

calculatings. Series. 

Combinations, Newton’s 

Theorem. 

Plane trygonometry.  Calculating 

the area and volume of solids. 

Spherical trygonometry.  

Descriptive geometry: Curve 

lines; tangent planes to surfaces; 

surfaces and planes intersections;  

8 Discussion of 

further planimetric 

problems. 

Trigonometry. 

Quadratic equations. 

Powers, roots and 

logarithms. 

Arithmetic and 

geometric 

progressions, 

calculation of 

interest and 

pensions. 

 

6 Second degree equations. 

Roots. Medians and 

heights of triangles and 

their properties. Figures 

inscribed in a circle. 

Introduction to 

stereometry. 

5 
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Table 3.2: Mathematics curricula in Higher Real School in Lviv, Higher Real School in Bielsko, Real School in Toruń and Real School in Poznań

learning about shadows. 

7th Polynomial equations. 

Second and third degrees 

equations. Probability theory. 

Series. Spherical 

trigonometry and its 

applications to astronomy 

and stereometry. Analytic 

geometry. Geometric 

drawings: intersections of 

curve surfaces; tangent 

planes to curve surfaces. 

8 Probability theory with 

application to calculate the 

expected life time. Continued 

fractions.  Arithmetic sequences 

of the higher degrees. Curve 

lines, i.e. ellipse, hyperbola and 

parabola. Tangent planes to 

surfaces. Surfaces and planes 

intersections. Conics. 

Descriptive geometry:  

Perspective. Repetition of the 

material. 

8 Descriptive 

geometry. Analytic 

geometry. 

Arithmetic 

sequences of higher 

degrees. Equations 

of higher degrees. 

Permutations, 

combinations, 

variations and 

binomial theorem. 

Exponential and 

logarithmic series. 

6 Roots and powers with 

fractional exponents.  

Logarithms. First and 

second degree equations 

with one or more 

unknowns. Arithmetic and 

geometric progressions. 

Interest and pensions 

calculations. 

Calculating the area of 

plane figures. Area of the 

circe.  Spherical 

trygonometry. 

5 

8th       Equations of the second 

degree with one or more 

unknowns. Calculation of 

interest. Permutations, 

combinations, variations. 

Figural numbers. 

Arithmetic sequences of 

higher degrees. Third 

degree equations.  Plane 

and spherical 

trigonometry. Tasks in 

mathematical geography 

and astronomy. 

5 
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The comparative analysis of the above curricula allows to see the following 

differences: 

1. Certain issues in different schools were introduced at various stages of education. 

For example, the logarithms in Lviv were discussed in the 5
th

 grade, in Bielsko and 

Toruń in the 6
th

 grade, in Poznań – in the 7
th

 grade; Combinations and Newton’s 

binominal in Bielsko and in Lviv were discussed in the 6
th

 grade, in Toruń in the 

7
th

 grade, and in Poznań in the 8
th

 grade. 

2. One of the most important differences between the above curricula was the 

moment of introducing basic geometrical objects to school teaching. Basics of 

geometry in the Higher Real School in Lviv were already introduced in the lowest 

1
st
 grade and they included the simultaneous introducing planimetric and 

stereometric concepts. In Bielsko, geometric concepts were also introduced in the 

1
st
 class, with the fact that they only included planimetry. Stereometry in this 

school appeared only in the 3
rd

 grade. In Poznań, introduction to geometry was 

planned for the 2
nd

 grade and, just like in Lviv, the planimetric and stereometric 

concepts were introduced at the same time. In the Real School in Toruń, geometry 

was introduced in the 4
th

 grade and only the basic planimetric concepts were 

discussed then. Stereometry has not been included in the above curriculum of the 

Real School in Toruń, but undoubtedly it was discussed there. Most probably, 

stereometry was discussed only in the highest grade of the Real School in Toruń 

(School reports, Thorn, 1873). In schools located in Prussia, also on the territories 

of Poland under Prussian control, the introduction of geometry was moved to the 

lowest grade of secondary schools at the beginning of the 20
th

 century – as a result 

of the reform called Merano Programme (1905). Merano Programme managed the 

simultaneous introduction of planimetric and stereometric concepts. 

3. There are also issues that are found in the curricula of some schools, and not in 

others. Usually, the lack of mentioning certain issues in curricula means that they 

were not taught at school. However, this is not always the case. Let us note here 

the applications of geometry in geodesy, spherical trigonometry and construction 

tasks. 

a) In the 5
th

 grade in Lviv there are applications of geometry for solving 

measurement tasks. This issue is not in Bielsko, Toruń and Poznań. 

The application of geometry to geodesy in Higher Real School in Lviv was 

taught in such a way: teachers took students to forests or meadows and using 

measuring cords, goniometers and measuring tables, they solved tasks such as 

finding a distance between two places on the ground between which a 

mountain was. During solving tasks, they had to use theorems related to 

congruent and similar triangles. This issue wasn’t mentioned in Bielsko, Toruń 

and Poznań curricula, but it can be supposed that geometry application to 

geodesy was taught there. This application was discussed in the majority of 

Prussian and Austrian schools, for example, it was taught by Karl Weierstrass 

in the Lower Gymnasium (Ger. Progymnasium) in Wałcz in the 1840s (School 

reports, Deutsch-Crone, 1843–1848; Grunert, 1851). 

b) Spherical trigonometry in Bielsko was introduced in the 6
th

 grade, in Lviv and 

Poznań in the 7
th

 grade. While spherical trigonometry is not found in the 

curriculum of the Real School in Toruń. 
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In 1874, Eduard Fassbender was the mathematics teacher of higher grades in 

the Real School in Toruń. Fassbender published the article Die 

Kopernikanischen Sehnen- und Dreieckberechnungen in 1872 (Fassbender, 

1872). This article was a faithful representation of the three chapters of the first 

book of the Nicolai Copernici Torinensis De Revolutionibus orbium 

coelestium, Libri VI, which the astronomer devoted to the plane and spherical 

trigonometry. Fassbender, in his article, informed that students of the Toruń 

school were acquainted with the “world system” of Copernicus, and extensive 

fragments of the astronomer’s work, after adapting to the knowledge and skills 

of students, were placed in school textbooks. Due to the fact that Copernican 

plane and spherical trigonometry constituted the basis for all the considerations 

regarding the structure of the universe, the Toruń school paid attention to them. 

Fassbender’s article, constituting a compendium of Copernicus’ geometry, was 

only a form of systematizing knowledge for students. Thus, although the 1874 

curriculum did not mention spherical trigonometry, it was taught there. In the 

Real School in Toruń, spherical trigonometry was taught according to 

Copernicus, meaning solving the spherical triangles.  

c) In Lviv, Bielsko and Poznań, great attention was paid to geometric 

constructions. The curriculum implemented in Toruń does not have a clear 

emphasis on this type of tasks. However, from an article Beiträge für den 

Unterricht in der Geometrie written in 1866 by one of the teachers from Toruń, 

Otto Reichel, it is known that great importance was attached to the construction 

there (Reichel, 1866). Reichel in his article placed a list of 27 construction 

tasks found in the school register. These tasks were not in school textbooks. 

They were independently prepared by teachers to improve the level of 

geometry teaching and to prepare young people better for university studies. 

Among them was the following task: 

 

Exercise (Reichel, 1866, 14)
17

. A circle M and a curve CD are given. 

Construct a secant ABP of a given length   such that the length of the outer 

part of this secant is given and equal to d and its endpoint P is on the curve 

CD. 

Solution 

Data: 

 

                                                            
17 This exercise was not solved by Otto Reichel. Solution of this exercise was prepared by the author of 

this article.  
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Sketch of the construction:  

1. Construct an arbitrary chord    of the circle   with a length equal to 

     . 

2. Construct a circle   with the center   tangent to   . 

3. Extend the chord    by the segment of the length equal to  . As a 

result we receive the segment   . 

4. Construct a circle    with the center   and the radius   . 

5. The point of intersection of    and    is the end of secant that we are 

looking for. 

6. Construct the secant. Secant should be tangent to the circle  . 

Conditions under which the construction is possible to made: 

1.   
   

 
, 

2.                   , 

where   is the radius of the given circle  ,               is the circle with 

the center   and the radius        and    is a given curve. 

4. Descriptive geometry was one of the mathematical problems, on which very high 

emphasis was placed in some schools, and was omitted in others altogether. 

Descriptive geometry was a very important issue in Higher Real School in Bielsko 

and Higher Real School in Lviv. In Bielsko it was taught as a separate subject in 

three highest grades, within 3 hours a week. In Lviv – in two grades: 5
th

 and 6
th

, 

within 3 hours a week too. The 1874 report of the school in Toruń included 

descriptive geometry only as a slogan in the curriculum for the 7
th

 grade. There are 

no written descriptions of the descriptive geometry discussed during classes. As it 

was mentioned before, Eduard Fassbender was the teacher in Toruń at that time. 

Fassbender in 1857 wrote another article Abriss einer Einleitung in die 

beschreibende Geometrie (Fassbender, 1857), in which he mentioned that 

descriptive geometry was taught by him in Real School in Toruń since 1855 and 

the lecture in this subject contained all issues discussed in this article. This issues 

were: the slope of the line to projection planes, calculating the length of a straight 

line contained between two given points (in other words: calculating the length of 

the segment), the mutual position of two straight lines and angles between them, 

the mutual position of a straight line and a plane and the mutual position of two 

planes. We can see that the descriptive geometry lecture in Real School in Toruń at 

that time was quite basic. Probably the same issues were discussed in 1874. In 

Lviv there were taught additionally for example: projections of solids and tangents 

to curve surfaces.  

Descriptive geometry was an important part of teaching mathematics in Bielsko 

and Lviv, it was also taught in Toruń, while it was not included in the school 

curriculum in Poznań. 

5. Other issues that are included in the curricula of some schools and were omitted in 

others include: 

a) In Bielsko, in the 5
th

 grade, complex numbers and arithmetic operations on 

these numbers are discussed. This issue is not found in Lviv, Toruń and 

Poznań, but certainly complex numbers were taught there – in school teaching 
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in the 2
nd

 half of the 19
th

 century, equations were always solved in complex 

numbers. 

b) The exponential equation was discussed in Bielsko in the 6
th

 grade. This was 

not in Lviv, Toruń and Poznań. 

c) The series were discussed in Bielsko in the 6
th

 grade. In Lviv and Toruń, they 

were introduced in the 7
th

 grade. They are absent in the curriculum 

implemented in Poznań. 

d) Analytical and conical geometry are discussed in Lviv, Bielsko and Toruń. 

These issues are not in the curricula of the school in Poznań.  

The above analysis allows to note discrepancies in the teaching of mathematics carried 

out in the Polish Higher Real School in Lviv, the Austrian Higher Real School in Bielsko, 

and schools from the Prussian Partition: Real School in Toruń and Real School in Poznań. 

The method of teaching mathematics in a Polish school was not imitative in relation to the 

teaching of this subject in Austrian schools
18

 and Prussian schools. The curricula differed, 

but so did the methods and time of introducing of certain concepts, e.g. in Lviv greater 

attention was paid to teaching geometry, it was already introduced in the lowest grade, in a 

visual way – the analysis of stereometric objects enabled the introduction of planimetric 

objects. Such a solution was not observed in other schools. Although geometry was also 

introduced in Poznań in an illustrative manner, but it was done a year later – in the 2
nd

 

grade.  

3.3.2 Mathematics teaching after 1875 

After 1875, mathematics curricula in schools with the Polish language of instruction in the 

Austrian Partition did not change much. The hourly timetables and mathematics curricula 

in individual classes were almost identical. Comparing curricula from the Higher Real 

School in Lviv from 1874 (School reports, Lwów) to the curricula for teaching 

mathematics at the Higher Real School in Krakow in 1876 (School reports, Kraków, 

1876), it can be observed that the only significant difference concerned the introduction of 

geometry. The Lviv illustrative introduction to geometry in the 1
st
 grade was changed in 

Krakow to introduction of planimetry in the 1
st
 grade, and stereometry only in the 2

nd
 

grade. 

After 1875, differences between teaching mathematics in Polish-speaking schools 

under Austrian rule and Austrian German-speaking schools were already small and 

usually concerned slight shifting of certain issues to the curricula of earlier or higher 

grades. When analysing teaching mathematics in the Higher Real School in Krakow and 

Higher Real School in Bielsko to the beginning of the 20
th

 century (School reports, 

Kraków; School reports, Bielitz), it can be observed that certain issues were added to 

curricula in the school in Krakow, e.g. in 1899 rational and irrational numbers and 

exponential equations were added to the curriculum of the 5
th

 grade, and in 1904 the 

logarithmic equations. The school curriculum in Bielsko actually remained unchanged – 

                                                            
18 Bielsko, in the period under consideration, was part of the Austrian Silesia. The curriculum in the Higher 

Real School in Bielitz listed in the table was based on the Austrian regulations of July 19, 1870, August 9, 

1873 and Silesian ordinances of November 5, 1874 (these ordinances did not apply to the teaching of 

mathematics) (School reports, Bielitz, 1875). The curricula in the Real School in Lviv differed from the 

curricula implemented in Bielsko. Curricula in the Real School in Lviv were also not in accordance with the 

Austrian regulations of 1849. 
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no new issues were added to it. In 1899, in both schools the method of introduction to 

geometry was unified – geometry was introduced in the 1
st
 grade in the demonstrative 

manner: from stereometry to planimetry. 

In schools under Prussian rule, program changes were also small. In 1884/1885, 

analytical geometry, cones and series were added to the curricula of the Real School in 

Poznań (School reports, Posen). In Toruń, in 1899/1900 minima and maxima were added 

to the curriculum of the highest grade (School reports, Thorn). The remaining changes 

were cosmetic.  

The way of introducing geometry to school education and the scope of its discussion 

was still the basic difference in curricula. In schools under Prussian rule, descriptive 

geometry was discussed symbolically or was not discussed at all, whereas in schools 

under Austrian rule, descriptive geometry was taught as a separate subject 3 hours a week.  

3.4 Conclusions 

In 1849-1854, higher real schools, in which Polish youth educated, were mainly in the 

Russian Partition. 41 hours of mathematics a week was planned in them in the whole cycle 

of education. It was the largest number of math hours out of all real schools at that time in 

the Polish lands. While in the Prussian Partition schools the vast majority of time was 

devoted to discussing arithmetic-algebraic issues, in schools with the Polish language of 

instruction under Russian Partition and schools in the Austrian Partition, arithmetic-

algebraic and geometric-trigonometric issues were treated equally – almost the same 

amount of time was devoted to their discussion. In curricula of schools located in all 

partitions, a lot of attention was paid to the use of mathematics, especially to perform the 

so-called civic settlements, i.e. calculation of interest, profit, loss, pension, etc. One of the 

basic applications of geometry was to solve measurement tasks. In schools under the 

Prussian and Austrian rule, spherical trigonometry and its applications to mathematical 

geography and astronomy were discussed; in Krotoszyn, the construction of sundials was 

even performed – these issues were not in Polish-language schools under the Russian 

Partition. On the other hand, the Polish-speaking schools paid a lot of attention to the 

descriptive geometry needed by future architects and constructors. Let us recall that 

descriptive geometry was not in schools under Austrian rule at that time, it was also rate in 

schools under Prussian rule. 

The second important period from the point of view of the Polish education in Polish 

territories during the partitions was in the years 1868-1875. At that time, Polish schools 

were under the Austrian rule. Here, the difference in the teaching method is clear. In 

Polish schools, the geometric concepts in the lowest 1
st
 grade were introduced in an 

illustrative manner – the abstract planimetric concepts were introduced based on 

stereometric concepts known to students from everyday life
19

. A similar solution was used 

in Poznań, but it was not a systemic solution, but a unitary solution. In Austrian schools, 

demonstrative teaching of geometry was introduced in the 1890s. In Prussian schools – 

only at the beginning of the 20
th

 century. Polish schools paid a lot of attention to 

mathematical theory. They discussed most of these issues provided for teaching in 

                                                            
19 At the end of the 18th century, school textbooks on illustrative geometry were published. A very 

popular textbook in the Austrian Partition, used, e.g. in the Nowodworski School in Krakow, was 

the textbook: F. Močnik, Geometria poglądowa dla klas niższych szkół średnich, Lwów, 1896.  
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secondary schools in the 19
th

 century, together with analytical geometry and cones, which 

in Poznań were introduced in 1884/1885. In 1868-1875, in schools of all partitions, the 

concern to show the applications of mathematics to civic settlements continued, as well as 

to solving measurement tasks, along with the discussion of spherical trigonometry with its 

applications. A lot of attention was paid to structural tasks. In Polish and Austrian schools, 

descriptive geometry was a very important part of the curriculum. 

When analysing the teaching of mathematics in Polish territories during the partitions, 

one can assume that the success of Polish-language schools under Russian Partition, and 

then Polish schools under the Austrian Partition, paying a lot of attention to teaching 

geometry was a success (these schools were the leaders in teaching descriptive geometry). 

Looking in general terms on the 19
th

 century, schools for Polish students paid more 

attention to teaching geometry than in the German-speaking schools of the countries 

occupying Poland, that is, in Austria and Prussia.    

It is worth mentioning there that geometry was a field of mathematics, which has been 

particularly valued by didactics for centuries. Samuel Dickstein spoke about geometry as 

an indispensable part of the school and home educational system. In geometry he saw the 

science that develops the mind of a young man, forces him to look for connections 

between different geometric forms, and abstract, seemingly dry and non-absorbing 

claims, with a skilful lecture, become alive, arouse curiosity and prepare the mind for self-

use of own strength (Dickstein, 1889, 67). According to this statement, the construction 

tasks and descriptive geometry taught young people independent and logical thinking. 

Learning of mathematics by action – the self-made constructions – also arouses interest in 

the subject and helps to increase motivation for learning.  

4 Mathematics teaching in gymnasia with Polish and German as 

languages of instruction 

Now we are going to analyse mathematics teaching in gymnasia with Polish and German 

as languages of instruction.  

The best way of checking both: the level of mathematics teaching and the most 

important topics in mathematics curricula, is to analyse the then secondary school-leaving 

examinations (Matura examinations) in mathematics. For almost the entire period which is 

took into consideration in this article Matura examinations tasks were prepared by the 

teachers of the schools in which these examinations were conducted
20

. It means that each 

school had an individually prepared set of examination tasks.  

Regulations introducing the world’s first examinations at the end of secondary schools 

enabling university studies were introduced in 1788 in Prussia. According to these 

regulations, mathematics wasn’t an obligatory subject of Matura examinations 

(Domoradzki & Karpińska, 2017). 

First Polish regulations introducing Matura examinations were published on February 

17, 1812 (Potocki, 1812). A few months later, on June 25, 1812, the second Prussian 

Matura regulations were introduced. Much later, Matura exams were introduced in other 

European countries, e.g. in Austria these examinations were introduced in 1849, and in 

France in 1852 (Majchrowicz, 1869, 17). 

                                                            
20 The sets of tasks had to be approved by the Chairman of the Examining Board, who was a member of a 

national body supervising schools. 
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4.1.1 Polish and Prussian Matura regulations from 1812 

First Polish Matura regulations were introduced by the Directorate of National Education 

of the Duchy of Warsaw on February 17, 1812 (Potocki, 1812). From now on, only people 

with the Matura exam certificate could undertake studies at Polish universities. Polish 

regulations established mathematics as an obligatory subject of oral Matura examinations 

for all students. Moreover, mathematics was an obligatory subject of written Matura 

examinations in case of those students who wanted to study architecture. The introduction 

of Matura examinations required the unification of curricula in those schools in which 

Matura exams were carried. In the Polish Duchy of Warsaw, the framework curricula was 

set up in the 1812 regulations (Potocki, 1812). 

Prussian Matura regulations from 25
th

 of June 1812 established mathematics as an 

obligatory subject of every written and oral Matura examination for all students (Wiese, 

1864, 484–485). These regulations set the requirements for secondary school graduates, 

but the curricula in individual classes were done a bit later as a consequence of the 

Humboldt reform.  

It shows us that mathematics was as important a part of the Polish education as it was 

in Prussia.   

Poland  

(Potocki, 1812) 

Prussia 

(Wiese, 1864, 485) 

 first, second and higher degrees equations, 

 logarithms, powers, roots,  

 planimetry and  stereometry,  

 plane and spherical trigonometry,  

 application of mathematics to everyday life 

calculations, application of mathematics to 

physics and geography. 

 first and second degree equations,  

 logarithms, powers, roots,  

 planimetry and  stereometry, 

 plane trigonometry, math tables,  

 application of mathematics to everyday life 

calculations. 

 

Table 4.1: 1812 requirements to the mathematics Matura examination 

The scope of the material obligatory for the Matura exam in mathematics in Poland was 

broader than the scope obligatory in Prussia with the following issues: higher degrees 

equations, spherical trigonometry and application of mathematics to physics and 

geography. This allows to assume that Polish schools preparing for Matura exams have 

implemented wider curricula than in Prussian schools, including schools located in Polish 

territories under Prussian rule. 

The quoted curriculum of the two highest grades of the Polish Warsaw Secondary 

School (Pol. Liceum Warszawskie) from 1812 (this year, the first Matura exam took place 

there) (School reports, Warszawa): 

5
th

 grade: The largest common divisor and the smallest common multiple, roots of 

the second and third degree, equations higher than the 2
nd

 degree, stereometry, 

spherical trigonometry with the application to astronomy. 

6
th

 grade: Combinations, Newton’s binominal, 3
rd

 degree equations using to the 

division of the circle into 3, 5, 7 etc. equal parts, solving the 4
th

 level equations with 

the discussion of the Bombelli and Euler rules, solving equations of any degrees by 

approximation, conics and their applications in optics, astronomy, civil and military 

architecture, etc., basics of descriptive geometry according to G. Monge. 
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The mathematics curriculum at the Warsaw Secondary School was very extensive, as 

for the school with a humanistic profile. The applications of 3
rd

 degree equations to 

dividing the circle into 3, 5, 7 etc. equal parts or conics applications in optics, civil and 

military architecture, were not even discussed at the real schools established at a later 

time. Also descriptive geometry was rarely taught in humanistic schools. The 

establishment of real schools meant that in the humanistic schools, mathematics curricula 

and the scope of issues applicable at the Matura exams have been limited over the years.  

After 1812, both Polish and Prussian, new Matura regulations were issued, which did 

not change the general organization of Matura exams, but refined, among others, 

examination subjects, the scope of the Matura material and the duration of exams. The 

regulations issued in Poland in 1819 were of particular importance, under which 

mathematics became a compulsory examination subject for all students (Potocki, 1867, 

473–475). In Prussia in 1834, ordinances were issued according to which the written 

examination in mathematics was to last 4 hours and consisted of two arithmetic and two 

geometrical tasks (Wiese, 1864, 492–504). Further regulations were introduced, among 

others, in 1859, 1866, 1874. 

4.1.2 Matura examinations under Austrian Partition 

In Austria, the Matura exams were introduced in 1849. In the same year, they were 

introduced in schools located in the Polish lands under the Austrian Partition. According 

to the ordinances, mathematics was a compulsory subject of written and oral Matura 

examinations. These regulations were very generally related to the Matura requirements. 

In the case of mathematics, it was assumed that by taking part in the Matura exam, the 

student was to know all the mathematical theorems discussed at school along with their 

proofs and all the tasks that were solved during the classes. During the Matura exam, 

students were required to apply knowledge acquired at school to solve new problems or to 

prove theorems that were not discussed at school. During the written exam in 

mathematics, it was recommended to solve tasks in the field of planimetry and 

trigonometry, and in particular tasks that at the same time checked the geometric, 

arithmetic and trigonometric knowledge were recommended (Ministerium…, 1849, 195–

196). In the 1850s and 1860s, a series of successive Austrian Matura ordinances was 

issued, which, among others, increased the number of subjects of Matura examinations 

and clarified the scope of the material used during the exams (Matauschek, 1864, 125–

130). After obtaining the autonomy by the territories under the Austrian annexation, the 

Polish Ministry of Education modified the general regulations of the Matura examinations. 

At the beginning of the 80s, the number of subjects passed during the oral Matura 

examinations was limited in Polish schools to five: Latin, Greek, Polish, German and 

mathematics (Sprawozdanie…, 1885, 172). 

4.2 Matura tasks in mathematics 

In schools under the Austrian Partition, Matura exams were introduced in 1849, which is 

why further comparative analysis will cover the second half of the 19
th

 century. When 

preparing this article, it was impossible to find mathematics Matura exams conducted in 

schools with the Polish language of instruction under the Russian rule. Thus, the 

comparative analysis will cover the Matura exams from the Austrian and Prussian 

Partitions. 
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We will begin the analysis with a discussion of written mathematics Matura exams 

conducted on the Polish territory under the Austrian Partition before it was granted 

autonomy.  

In 1864, in the Gymnasium in Przemyśl, which was then a German-language school 

included in the Austrian education system, the written Matura exam was as follows
21

: 

Exercise 1. Solve the equation:                 . 

Exercise 2. Two forces P=     N and Q=      N are directed towards each other at an 

angle of             . What is their resultant force?   

Exercise 3. A certain capital bears the 4% interest. How will it increase after 20 years of 

interest capitalization?    

Examples of oral exercises were as follows
22

:  

Exercise. We know the height and the bases of a truncated pyramid, calculate the volume 

of this solid.  

Exercise. Calculate the surface of the circle. 

It can be seen that apart from the mathematical theory, much attention was paid to the 

applications of mathematics in Przemyśl. Two Matura exam tasks are related to the 

applications: one task concerns the use of trigonometry in physics, and the second the 

applications of arithmetics to the accounts related to deposits. The purely theoretical task 

of the written exam is to solve the equation. It can be said that during the written exam, 

one of the basic ministerial orders has not been implemented here – paying attention to 

geometry. This postulate was implemented only at the oral exam.  

In 1875, after 8 years of autonomy, the freedom of Poles under Austrian occupation 

was again limited, and curricula in schools with Polish language of instruction were 

similar to those implemented in Austrian schools (this was previously shown on the 

example of real schools). And what about mathematics Matura exams? It has been 

described above that in the 1880s, new Matura regulations concerning the Matura exams 

in the Polish schools under Austrian Partition were implemented. Did they introduce any 

change to the mathematics Matura exams? 

In 1889, the Gymnasium in Przemyśl was already a Polish-language school. The 

mathematics Matura exam looked as follows (School reports, Przemyśl): 

Exercise 1. Solve the equations: 

   

   
 

    

  
   

            

Exercise 2. Someone is entitled to a pension of PLN 800 annually for 20 years; however, 

he wants to convert it into another pension of PLN 1000 a year; how long will he collect 

this second pension if the rate is   . 

Exercise 3. Calculate the volume of the scalene cone which shortest side       is 

inclined to the base at an angle              and the longest side   is inclined to the 

base at an angle             . 

                                                            
21 State Archives in Przemyśl, sign. 56/387/0/1.1/19. 
22 State Archives in Przemyśl, sign. 56/387/0/1.1/19. 
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Example of tasks from the oral exam
23

:  

Exercise 1. Calculate the length of the string from the top of the major axis at an angle of 

    in the ellipsis.  

Exercise 2. Solve the triangle if there is a given circumference and two angles. 

As before 1864, there were three tasks in the written exam in the Gymnasium in 

Przemyśl. Two of them were arithmetic-algebraic, and one – geometric-trigonometric. 

During the written exam, more attention was paid to arithmetic-algebraic problems, while 

during the oral exams – to geometric-trigonometric problems. The tasks of mathematics 

applications in everyday life were still important.  

The level of difficulty of tasks, in relations to those from 1864, definitely increased. In 

1864, the Matura tasks were even at the elementary level, these were schematic tasks, 

which were certainly discussed during maths lessons at school. In 1886, the level of task 

difficulty is higher, and the tasks, especially from the oral exam, require logical, 

independent thinking and multi-stage reasoning.   

Cracow St. Anna Gymnasium
24 Inowrocław Gymnasium 

(School reports, Inowroclaw) 

Exercise 1. Solve the equation: 

 
 

 
    

 

 
 
 

 
     

 

 
        

Exercise 2. The population of the city, in which 

there were 32500 inhabitants, rose after 24 years 

by 35566 souls. What is the annual percentage of 

growth? 

Exercise 3. Find an angle between the horizontal 

ground and the road leading up, if for a length of 

10 fathoms (Pol. sążeń) on the road the height 

above the horizontal ground increases by one 

fathom. 

 

 

Exercise 1. 6 numbers are given. The first 4 numbers of 

those 6 numbers creates a geometric progression and 

the last 4 numbers creates an arithmetic progression, 

such that the common difference of arithmetic 

progression is 12 times greater than the common ratio 

of the geometric progression. Moreover, the second last 

number is 15 times bigger than the second number. Find 

these numbers. 

Exercise 2. Construct a right triangle, if the sum of the 

hypotenuse and one of its legs is given and equal to   

and the sum of the hypotenuse and the second leg of 

this triangle is given and equal to  . 

Exercise 3. Someone has a cash, which not exceed 350 

thalers. When he distributes this cash into a sequence of 

10 thalers, then he is left with 1 thaler. When he 

distributes this cash into a sequence of 15 thalers, then 

he lacks 4 thalers. Calculate how much money this 

person has, knowing that all cash can be completely 

distributed into 11 terms sequence. 

Exercise 4. Truncated cone with the radii of the bases 

equal to        and        and the side inclined to 

one of its bases at an angle               , is given. 

On this cone a sphere is described. Calculate the area of 

the sphere bounded by the peripheries of the cone bases. 

Table 4.2: Matura tasks in 1868 

In 1868, after obtaining the autonomy, the first Polish Matura exams were carried out 

                                                            
23 State Archives in Przemyśl, sygn. 56/387/0/2.1/91. 
24 National Archives in Cracow, sign. 29/482/191, 399, 402. 
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in the Austrian Partition lands. We already know that in the Polish lands before 1868 and 

after 1875 they were similar in form, only the level of difficulty of the Matura exams 

increased. Now we will check what the Polish Matura exams looked like from the period 

of the autonomy. We do this on the example of Cracow St. Anna Gymnasium conducted 

in 1868 (Table 4.2). This Matura exam will also be compared to the mathematics Matura 

exam conducted the same year in the Inowrocław Gymnasium under the Prussian 

Partition. 

When analysing the tasks from the written Matura exam conducted in Cracow St. Anna 

Gymnasium in 1868, it can be noted that it has the same form as the examinations carried 

out in the territories of the Austrian Partition before obtaining the autonomy and after its 

limitation. The Poles took over the Austrian Matura exam rules for the mathematics 

exams.   

There is a clear difference between the mathematics Matura in Cracow St. Anna 

Gymnasium and the Gymnasium in Inowrocław in 1868. Above all, Inowrocław paid 

more attention to geometric-trigonometric tasks. The Matura set included two tasks from 

this field.  

Making a broader comparative analysis of mathematics Matura exams in Polish 

territories during the partitions, it can be stated that generally, from the mid-19
th

 century, 

in schools with Polish as a language of instruction there were always three tasks in each 

written Matura examination in mathematics. The scopes of Matura tasks weren’t 

established obligatory there, but usually the Matura exam sets had two arithmetic-

algebraic tasks and one geometrical-trigonometric task. In schools with German as a 

language of instruction under Prussian Partition usually there were four tasks: one 

arithmetic or algebraic, one planimetric, one trigonometric and one stereometric task. The 

most popular tasks in both types of schools were those connected with: arithmetical and 

geometrical progressions, solving an equation or a system of equations, it was often an 

exponential, logarithmic or trigonometric equation, solving triangles, calculating the area 

and the volume of polyhedral or solids of resolution, everyday life calculations 

(calculating profits, losses, interest and the amount of pensions) and the application of 

mathematics to physics. There were two types of tasks which were only in schools with 

German as a language of instruction – construction tasks and those related to arithmetic 

sequences of the second degree.  

4.3 Conclusions 

The analysis of the form of Matura exams in mathematics conducted in classical 

gymnasium located in the Polish lands in the second half of the 19
th

 century allows to 

conclude that schools with Polish language of instruction modelled the teaching of 

mathematics at the Austrian schools. While from 1875 it was imposed by the invader, in 

1868-1875 it was a voluntary decision of the Poles. 

Although the form of Matura exams in schools with Polish language of instruction 

under Austrian Partition and schools with German language of instruction in the Prussian 

Partition was slightly different, the detailed analysis of written and oral examinations 

allows to conclude that both types of schools discussed similar issues and equal weight 

was applied to both arithmetic and algebraic issues, as well as geometric and 

trigonometric ones. An important part of teaching in both cases were the applications of 

mathematics. 
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The most significant difference between the Matura exams and, hence, the mathematics 

curriculum, was the discussion, or lack thereof, of construction tasks. In Polish-language 

gymnasia, no importance was attached to this type of tasks. Certainly it was a shortcoming 

of the curriculum, because this type of tasks, due to their multi-stage aspect, shaped the 

logical and independent reasoning, and through their applications they could arouse 

students’ interest of the subject.    

In the second half of the 19
th

 century, there is the already vivid activity of Polish 

teachers on the reform of teaching intended for Polish secondary schools. Kamil Kraft and 

Stanisław Ziobrowski from the 4
th

 Gymnasium in Krakow along with seven other 

members of the Polish Society of Teachers of Universities in 1906 announced a reform 

project entitled “Polish secondary school – criticism of its foundations and necessity of 

reform” (Dropiowski, Kraft, Łopuszański, Nitsch, Sobiński, Stein, Tołłoczko, Wasung & 

Ziobrowski, 1906a, 1906b). The basis of the project was the removal of the Austrian 

educational system from Polish schools and the introduction of a Polish system adapted to 

the needs of the Polish society. The greatest demand in the Polish nation was for people 

educated in the field of mathematical and natural sciences – experts in their application in 

everyday life, in the economy and industry. Therefore, the reform project put a special 

emphasis on the teaching of mathematics. The Austrian teaching system of this subject has 

been accused of overloading the material, that the tasks are schematic, based on standard 

algorithms, and the whole science of arithmetics is based on obtaining mechanical skill in 

the calculations. In Polish schools, the plan was to limit the scope of the discussed 

material. It was believed that the basics should be taught, but in such a way that the 

students could understand them perfectly, not only solve schematic tasks, but also those 

that go beyond the patterns – requiring logical and creative thinking. Great emphasis was 

also placed on tasks related to the needs of everyday life. An illustrative study of 

mathematics and gradual introduction of the difficulty (the principle of accessibility) were 

recommended.  

The above project has not been implemented. However, its main postulates were 

included in the reform introduced in Poland shortly after regaining independence (the 

reform introduced in 1919).   

5 Summary 

The comparison carried out in this article makes it possible to notice that Polish-language 

schools operating in Polish territories during the partitions in certain matters related to 

teaching of mathematics introduced pioneering solutions. One of these solutions was the 

issue of teacher training. Polish educational authorities have decided to improve the 

competence of secondary school teachers and send them on academic internships in 

foreign secondary schools and at universities. This solution was not used in schools under 

the authority of Prussia and Austria. 

It was Poland, Duchy of Warsaw, that was the first country in which the first Matura 

rules were introduced establishing mathematics as an obligatory subject of examination. It 

took place on February 17, 1812. In Prussia, mathematics became an obligatory Matura 

exam subject a few months later on June 25, 1812. Polish ordinances established a broader 

scope of material for the Matura exam in mathematics than in Prussia. In Poland, 

knowledge of higher degrees, spherical trigonometry and the applications of mathematics 

in physics and geography was required. These ordinances were not purely theoretical. 
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Schools had to implement them. An example here is the Warsaw Secondary School, which 

met all the curriculum requirements. Polish mathematical curricula for humanistic schools 

were wider than those in the Prussian and Austrian schools of that period. Nevertheless, 

over the years, curricula implemented in humanistic Polish-speaking schools began to 

resemble those in German-language schools. 

Mathematical education from the mid-19
th

 century was the domain of real schools. In 

these schools, the mathematics curriculum was the widest and they show the greatest 

differences when it comes to schools with Polish and German languages of instruction. In 

the 40s, Polish-language schools under the Russian Partition and German-language 

schools under the Austrian Partition put a lot of emphasis on teaching geometry. About 

half of the time reserved for mathematics classes in these schools was devoted to 

geometric issues. Polish schools were the first in which systematic emphasis was placed 

on teaching descriptive geometry, especially due to its applications. 

The period of autonomy of Polish schools, 1868-1875, brought about yet another 

systemic innovation of Polish schools – an illustrative introduction of stereometric and 

planimetric concepts in the lowest grade of real schools. 

Looking in general terms at the 19th century, the most important difference in the 

teaching of mathematics in Polish and German-speaking schools in the Polish lands is the 

method of teaching geometry. 

It is difficult to talk about the national characteristics of teaching mathematics in 

Polish-speaking schools. There are few sources to assess whether the special needs of 

Polish society have been taken into account in the teaching of mathematics. Clear 

information on this subject was found only in the case of the Real Gymnasium in Warsaw. 

The nationalist movement in the teaching of mathematics in the Polish lands can be seen 

only at the end of the 19
th

 century thanks to the efforts of Kraft, Ziobrowski and others. 

The effects of their work were implemented in school education only after Poland 

regained its independence. 

In all schools functioning on the Polish territory during the partitions, comparable 

importance was attached to the applications of mathematics (the exception was the 

descriptive geometry, which in schools under Prussian rule was treated negligibly). The 

applications of geometry were particularly important, e.g. in geodesy, architecture or 

astronomy. Geometry was taught in context. This is an indication for modern educational 

practice. The benefits of teaching geometry in this way are currently described by, among 

others, Bartolini Bussi & Boero (1998). Malkevitch (1998, 23) draws attention to the need 

to improve the quality of education in the United States, and among the councils indicates 

that it is necessary to show the increasingly powerful new applications of geometry in the 

world that surrounds the young man. Mammana &Villani (1998a, 4) say that in modern 

schools, the geometry curriculum should be prepared very carefully, which will show a 

balance between teaching contents, methods and motivations for learning. It is important 

to combine new and old ideas in new curricula (Mammana & Viliani, 1998b, 9–28). This 

article identifies issues from the history of teaching, which show the applications of 

geometry in the world that surrounds a modern man, e.g. gnomonics – sundials are an 

element of modern architecture. The history of teaching mathematics in the Polish lands 

provides new fields of experience, which can help develop students’ activity, i.e. 

discussing descriptive geometry or measuring tasks. 
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ABSTRACT 

This paper presents a short overview of the history of mathematics education in Poland prior to the 

nineteenth century, discussing a number of examples of old mathematical works and problems, and pointing 

out the main milestones in historical development of mathematics and educational transformations 

accompanying them. 

1 Introduction  

The main aim of this article is to present a short overview of mathematics education in 

Poland prior to the nineteenth century, in the context of educational transformations in that 

times. The knowledge about mathematics in the past, which I will discuss, was taken from 

the old mathematical works – their original or reconstructed forms available today, by 

considering them from two main perspectives: as the result of learning and, on the other 

side, as the subject to learn. These considerations are immersed in the context of the 

history of the ways of acquiring an education at different levels, which were practiced by 

people in the past. 

2 Elementary Education in Poland in the Middle Ages – From the 

Perspective of Mathematical Knowledge 

It can be assumed that the history of mathematics education in Poland dates back to the 

tenth century, the origins of the Polish statehood, connected with an acceptance of 

Christianity. However, we are able to identify even earlier origins of Polish mathematics, 

the first mathematical issues, on the grounds of prehistoric or early medieval artefacts, 

mainly paintings, patterns, which present the sense of symmetry and reveal an interest of 

their authors in astronomy, astrology or geometry. Unfortunately, other testimonies of 

mathematical knowledge have not survived to the present day. It is certain however that 

people living in the territory, later belonging to Poland as a state, possessed elementary 

knowledge of quantitative and geometric relationships, connected with everyday life, such 

as counting and measuring. Even if today there are no artefacts confirming an awareness 

of those relationships, it is possible to recognize some traces of this knowledge when 

exploring etymology of the Polish language – as words, phrases used to describe numbers, 

measurement, payment etc. 

The adoption of Christianity in the tenth century in Poland resulted in the development 

of feudal culture and facilitated the permeation of cultural heritage from Western Europe 

(Høyrup, 2014). The first schools in Poland were founded in the eleventh century at the 
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cathedrals. Their aim was to educate young boys to become clergymen. Latin was the 

language of the church, feudal administration and science, thus it was also a teaching 

language at school. The range of knowledge that could be obtained in the cathedral school 

was very limited. Teaching methods were based on memory training. Even the skill of 

writing was founded on memorizing the shapes of letters. The content of knowledge 

available for students depended on how well the teacher – a clergyman – who led the 

school – was educated himself. 

In the later period of Middle Ages, when parish administration was developed in the 

territory of Poland, parish schools were founded, in addition to cathedral schools. In both 

those types of schools it was possible to obtain education, typical in Europe of that time: at 

the first degree – usually to parish schools – Trivium of ‘liberal sciences’, that is: 

grammar, dialectic (in sense of logic) and rhetoric (the art of arranging talks and letters), 

and at the second degree – usually in the cathedral or collegiate schools – Quadrivium, 

that is: singing (music), calculus (arithmetic), geometry (including geography) and 

astronomy. Parish schools were rather popular and also available for young people - 

without becoming clergymen. Young people attending parish schools did not gain much 

general knowledge and almost no mathematics; however some teachers taught pupils 

elements of counting. Cathedral schools were much less popular than parish schools thus 

the number of young people who learned arithmetic and geometry in the frame of 

Quadrivium, was small. One of the main reasons for such a limited level of education was 

that the teaching sources of that time – manuscripts – were almost inaccessible because of 

a very high price of paper, so it was common use Latin manuscripts belonging to churches 

as ‘school textbooks’. For example, the Cracow cathedral library at the beginning of the 

twelfth century did not contain any work with strictly mathematical content. Later, in the 

cathedral libraries, it was possible to read works – appreciated and known in Western 

Europe of that time – which contained mathematics and astronomical knowledge, such as 

the treatise of Isidorus of Sevilla ‘Libri etymologiarum origines’, the work of English 

monk Bedy, and writings of Boethius on arithmetic and Euclid’s Elements (Dianni & 

Wachułka, 1957, Gloger, 1900-1903, Wroczyński, 1996). 

Although mathematical knowledge available in the frame of the medieval educational 

system in Poland was rather poor, in the thirteenth century, some young people, usually 

coming from rich families, after completing elementary schools and getting acquainted 

with first sources of mathematical knowledge at that level, felt the need to continue 

learning mathematics either under the care of individual teachers or at universities abroad 

– especially in France or Italy. That time can be considered as the beginning of a new 

period in the history of mathematics education of young Polish people: the smartest and 

wealthy enough students, after finishing elementary schools were pursuing their 

mathematics education in universities of Western Europe. 

3 Mathematics Higher Education in the Middle Ages – Polish Students’ 

Experience in Studies Abroad 

Before the foundation of the Cracow Academy in 1364, there was no other academic 

centre in Poland. Despite of it mathematical thought developed, as witnessed by the works 

of Polish scholars who had been educated in the major European academic centres. 
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In the thirteenth and fourteenth century young men who were interested in furthering 

their education at a higher level, travelled abroad to study at universities in France (Paris, 

Montpellier, Avignon), Italy (Padua, Rome, Bologna) or Bohemia (Prague). One of those 

medieval students interested in developing mathematical knowledge after completing 

elementary schools was Vitellon (1220?-1280?). After graduating from elementary 

schools, he studied at the universities in Paris, Padua and Rome.  

On the basis of the knowledge about his works as a scholar, it is possible to discern the 

content of his studies in mathematics and physics (Vitellon, 1535, Birkenmajer, 1936, 

Trzynadlowski, 1979, Dianni & Wachułka, 1963).   

As a student, he explored and mastered his knowledge of geometry, by getting 

acquainted with the most important works on the subject of that time, especially by 

exploring the fundamentals of ancient geometry. He presented the results of those studies 

in his own work titled: “De Elementis conclusionibus” – “On conclusions from Euclid’s 

Elements”, written in Latin. That work has not survived to our times. It seems that 

Vitellon understood geometry as a science that grew out of the needs of everyday life in 

connection with the phenomena of the surrounding world. Thus, as a scholar, he tried to 

develop that science, to be used as an aid to solve world problems. His second work, 

written in Latin, was devoted to optics and titled: “Vitellonis Mathematics Doctissimi Peri 

Optikis, id est de natura, ratione & proiectione radiourum uisus, luminum, colorum, 

atq[ue] formarum, quam uulgo, Perspectiuam uocant, Libri X [...]”. the as: “On Optics: it 

is about the essence, the cause of the incidence of rays, sight, lights, colours and shapes 

that are commonly called the Perspective, ten books” (ca 1270). It seems that the work of 

the Arabic scholar Ibn al-Haytham (965-1040), titled: “The Book of Optics” (1011-1021) 

was the ‘point of departure’ for the Vitellon’s work, which was known under its short 

name: “Perspectiva”. 

The work consists of ten books, the first of which is devoted to geometry and consists 

of 137 theorems with the proofs that are used in the next books on optics. 

The book contains the author’s knowledge about proportions, the theorems about 

parallel straight lines on the plane or in the three-dimensional space, the knowledge of 

angles and triangles, properties of a circle, a sphere and conical sections, and finally 

conclusions on the harmonic division of a segment. In order to show the author’s style of 

work, two examples of propositions taken from this book are quoted below: 

Proposition 53: 

The arcs contained between the straight parallel lines on the plane of the circle are equal 

regardless of whether the straight lines are secant or tangent, or whether one is tangent and 

the other is secant. 

Proposition 98: 

There is no such a cross-section of a circular cone by a plane, that does not pass through 

its top, which is a triangle. (Vitellon, 1535, Dianni & Wachułka, 1963). 

In order to prove these propositions Vitellon used his knowledge of ancient geometry, 

known from Arabic works, applying in the proof Arabic term of the notion of hyperbole 

(Vitellon, 1535, Dianni & Wachułka, 1963). 

Among the theorems included in the book it is possible to find propositions which were 

originally formulated by Euclid and Apollonius and also some theorems which came from 

works of Arab and Greek scholars living after Apollonius. 
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It is worth noticing that European scholars began to study the works of Apollonius 

more thoroughly much later than Vitellon did it – only in the sixteenth century. 

The work “On Optics [...]” has had a great impact on the development of mathematics 

and physics for the next generations of university students and scientists in Europe. The 

manuscript was repeatedly transcribed and then issued in print many times, especially in 

the sixteenth century (1535, 1551, 1572), so it must have served as an academic textbook 

for many generations of university students (Vitellon, 1572). Not only French, German 

and Italian scholars have referred to the scientific achievements of Vitellon: Nicoalus 

d’Oresmus (1320-1282), Regiomontanus (1346-1476), Luca Pacioli (1445-1517), 

Leonardo da Vinci (1452-1519) and Johann Kepler (1571-1630) – in his work titled “Ad 

Vitelloni paralipomena, quibus astronomiae pars optica traditur” (1604), but also Polish 

scholars such as Martinus Rex de Peremislia (1422-1460?)  or Nicolaus Copernicus 

(1473-1543). 

4 Development of Mathematics Education in Poland in the Fifteenth 

Century – the Cracow Academy as an Educational and Scientific Centre  

In the second half of the fourteenth century, the need to establish an academic centre in 

Poland seemed to result from significant development in the area of social, political, 

economic and cultural transformations which took place in Poland of that time. The 

quality of education in the cathedral schools became higher, mainly because of better 

teachers’ competencies, and the number of young people, who travelled abroad to study in 

foreign universities, after graduating from elementary education, was growing.  

The first academic centre – the Cracow Academy – was founded in 1364. Early at the 

beginning of the fifteenth century it became an important European educational and 

scientific centre. Preliminary level studies at the Cracow Academy covered the 

programme of Trivium and Quadrivium which was also taught in the best cathedral 

schools. Students, after graduating from this level of studies, were able to continue their 

higher education studying such scientific disciplines as law or theology, but also 

astronomy and astrology, which were connected with mathematics. Although all these 

disciplines were called ‘mathematical sciences’, mathematical knowledge was considered 

as the basis necessary for investigations in astronomy (Gloger, 1901-1903, Karbowiak, 

1923, Wroczyński, 1996). 

‘International exchange’ of students and scholars between the Cracow Academy and 

many European universities was popular: after graduating from the Cracow Academy 

scholars often moved to some foreign universities for further studies and then, after 

getting deeper scientific experience, they returned to their alma mater as professors. On 

the other hand, foreign students or scholars came to Poland for their studies or to develop 

scientific research, especially combining mathematical knowledge with the secrets of 

astronomy. International contacts made mathematics knowledge known to scholars, 

irrespective of their nationality. 

In order to understand what the subject of mathematical studies at the end of the 

fourteenth century was, one should get acquainted with the content of manuscripts which 

were used as ‘academic textbooks’ at that time. Some of them were just direct notes 

written by students or scholars when studying in foreign universities or in the Cracow 

Academy, some were the scholars’ own treatises. One of those manuscripts was the work 
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titled: ‘Algorismus Anno 1397’, written in Latin by an unknown author. That manuscript 

contained arithmetic of the whole numbers, in particular: a knowledge about series of 

numbers, squaring, cubing and taking square roots of numbers. All that knowledge was 

necessary to consider problems in the area of astronomy. Except for arithmetic, Euclid’s 

plane geometry was also the basis of mathematics at that time (Dianni & Wachułka, 

1957).  

Among other manuscripts used for studying mathematics in the fifteenth century there 

are works of Martinus Rex de Peremislia (1422-1460?), one of the members of the 

Cracow Academy community. Martinus Rex studied at the Cracow Academy and after 

graduation he became a scholar at the Academy and began to develop his own scientific 

research. One of his most important works written in Latin: “Algorismus minutiarum” 

(ca.1445) was devoted to arithmetic of fractions (Dianni & Wachułka, 1963). It is 

worthwhile to consider the content of this work more carefully. In that extensive lecture 

on fractions, the author introduced modern notation of fractions using the fractional bar, 

the numerator and the denominator. Moreover, he discussed basic arithmetic operations on 

fractions, and illustrated with drawings his method of reasoning. Martinus Rex considered 

not only the ordinary fractions – ‘fractiones vulgares’, but also the sexagesimal positional 

fractions, which were characterized by a different notation system, similar to today’s 

decimal number system; he called them: ‘fractiones physicae’ – ‘physical fractions’. He 

investigated the relationship between these two types of fractions, but also explained the 

principles of taking the square root or the cubic root of a fraction, removing an 

immeasurability of the denominator of a fraction, multiplying and dividing the fractions. 

The style of that work was modern, in comparison to the old medieval style of presenting 

mathematical arguments. It differed in its methodology from the dogmatic lecture of 

canons supported by the authority of the ancient sages, and took into account the 

usefulness of mathematics. The content of this treatise became the subject of the main 

systematic university courses in the Cracow Academy. 

After elaborating the course of arithmetic of fractions, Martinus Rex went abroad, 

maintaining a contact with his alma mater, and studied in Padua, where he became 

acquainted with the practical geometry of Prosdocimus de Beldomandis (?-1428). The 

second important treatise of Martinus Rex was devoted to geometry: ‘Geometria Regis’ 

(ca 1450) and –similarly to the previous one – became a basic ‘academic textbook’ for 

students and scholars (Birkenmajer, 1895, Dianni & Wachułka, 1957). That work begins 

with the statement: ‘Geometry has two main parts: the theory and the practice.’ It seems 

that Martinus Rex understood this statement according to his general philosophical 

attitude that ‘the theory’ – mathematics – and ‘the practice’ – nature – are in fundamental 

relation: ‘the theory’ should be convincingly argued by ‘the practice’. The ‘Geometria 

Regis’ is considered to be the first work on so called practical geometry in Poland. In this 

work, the author provides solutions to practical issues, practical measurements, which are 

an introduction to theoretical considerations and research. Issues discussed in the treatise 

dealt with the following mathematical concepts: proportions, similarity of triangles, 

measurement on the circle, the sphere, cylinders, cones, barrels – here the author used the 

approximate method of ‘smoothing the cross-sections’, provided the rules for calculating 

the area of plane figures and the volume of geometrical solids and illustrated them with 

examples. The lists of measures used for length measurements as well as the relationship 

between them are included in the treatise. The work ‘Geometria Regis’ became the basis 
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for further studies and investigations in geometry in Poland (Birkenmajer, 1895, Dianni & 

Wachułka, 1957). 

When we analyse the area of Martinus Rex’s mathematical research we can easily 

deduce that he also dealt with astronomy. He noticed the shortcomings of the Ptolemaic 

system and tried to make corrections to the calculations of quantities in the Toledan 

Tables. Martinus Rex, in his astronomical considerations, investigated trigonometric 

relationships in a modern form –he used in his calculations the half-chords (sinus) instead 

of the whole chords (chord), which were the basis of Greek calculus. His research on the 

Toledan Tables, which he initiated, was continued by consecutive scholars of the Cracow 

Academy, including Wojciech (Adalbert) from Brudzewo (1446-1495). Adalbert from 

Brudzewo noticed the defects of the Toledan Tables and the need to improve them, but it 

was Nicolaus Copernicus who posited the hypothesis that the ambiguities in the 

calculations might have come from the faulty construction of the entire system, not from 

the incorrect construction of the Toledan Tables. 

To summarize, Martinus Rex’s works served as the basis of studies and research for 

subsequent generations of students and scholars of the Cracow Academy in the 

Renaissance period (Birkenmajer, 1895). 

5 Mathematics Education in Renaissance Era in Poland  

The end of the fifteenth century as well as the sixteenth century is recognized as ‘the 

golden age’ of Renaissance era in Poland. In the field of mathematics, the wide spectrum 

of sophistication levels in mathematical investigations can be observed: on the one side – 

further development of scientific research, especially connected with astronomy and its 

necessary mathematical tool, trigonometry, and on the other – new tendency to make 

elementary mathematics more available for wider groups of people, by writing textbooks 

in the Polish language, which was connected with creating mathematical terminology in 

the Polish language. 

The most important representative of Renaissance science was Nicolaus Copernicus 

(1473-1543), who studied at the Cracow Academy from1491-1494, probably as a student 

of Adalbert from Brudzewo. He was especially interested in astronomy – its phenomena, 

and their mathematical tables. That knowledge and the strong confidence that the 

Ptolemaic system could not be correct, led him continuing his research, on the scientific 

verification of his hypothesis on the Earth motion as profoundly as possible. During his 

lifelong research, hecreated the scientific justification of his hypothesis on the 

construction of the world, and based hisarguments on mathematical considerations 

(Baranowski, 1854). 

The most important mathematical basis for his astronomical arguments he gathered into 

a separate part of his treatise titled ‘De Revolutionibus Orbium Coelestium’ (1943, printed 

edition1543), (Birkenmajer (1920, 2004). That is the First Book: ‘Trigonometry’, devoted 

to considerations regarding the solution of triangles.  

Chapters 12, 13 and 14 of that book were acknowledged as a kind of complementary 

part to Euclid’s Elements. They were focused on spherical triangles and linear triangles 

and gave rules for calculating chords and halves of chords for given angles. Among 

theorems presented in those chapters there are two – the Second Theorem and the Third 

Theorem – which were used by Copernicus to elaborate the table of chords. 
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The Second Theorem: “In a quadrangle inscribed in a circle, a rectangle consisting of 

two diagonals [of the quadrangle] is equal to the sum of rectangles consisting of opposite 

sides [of the quadrangle].” (Fig. 5.1) 

 

Figure 5.1: The Second Theorem 

The Third Theorem: “If in a semicircle the chords of two unequal arcs are given, the 

chord of the difference of these arcs will also be known.” 

The last theorem of the book: “The ratio of two arcs: larger and smaller – is greater 

than the ratio of chords” indicates that Copernicus had the knowledge of the fact that the 

chords are not directly proportional to the angles. 

The First Book includes also theorems concerning the problems of solution of triangles 

(chapter 13) and spherical trigonometry – spherical triangles and their congruence (chapter 

14), (Copernicus, 1543, Birkenmajer, 1920, Dianni & Wachułka, 1963). This book 

afterwards was a research inspiration for Francois Viete (1540-1603) and John Napier 

(1550-1617). 

The main aim of Copernicus’s mathematical research was to find the appropriate 

models for astronomical phenomena. In the seventeenth century, even after 1616, the work 

of Copernicus was the main subject of scientific studies at the Cracow Academy. 

The sixteenth century – the period of the Renaissance – is also characterized by the 

development of humanistic thought; Polish mathematical treatises were written not only in 

Latin, but also in mother tongues. The group of recipients of scientific knowledge was 

growing, the methods of teaching mathematics were changed, the scholars more often 

took up issues arising from everyday life and presented their solutions in a more 

accessible and clear way. The basis of Polish mathematical terminology was then created. 

Among those works, which contain straightforward and visual methods used to solve 

problems as simply as possible, two textbooks can be distinguished.  

The first textbook titled: ‘Algoritmus’ (1538), written in the Polish language by 

Tomasz Kłos, is addressed to wide group of people who must have used the science of 

arithmetic, merchant bills, and accounting in their daily work (Baraniecki, 1889, Wydra, 

2015, Dianni & Wachułka, 1963). In order to make those calculations easy for readers, the 

author introduced the so-called ‘Calculus on lines’ – a specific abacus in the form of a 
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board. Parallel lines drawn on the board indicated the places of units, tens, hundreds etc. 

The fields between the lines indicate the half of the higher order unit. Calculations were 

based on the appropriate placement and shifting of pebbles on the board. The operations of 

addition and subtraction, as well as the application of the ‘rule of three’ – ‘regula detri’ 

were presented and explained in the textbook. The same textbook included the 

presentation of calculations on fractions, and numerous solutions to specific problems, 

encountered in the reader’s everyday life. The main aim of the author, as seen in this 

textbook, was to give to the reader the simple methods of obtaining a solution to a 

problem, but without justifying its correctness. The only reader’s task was just to gain a 

mechanical skill in applying the given rule.  

The author’s intention for writing that book was also to address it to young people. For 

many years to come, despite the development in arithmetic later on in publications in 

Latin which used digital notation of numbers, his method of ‘calculus on line’ was widely 

known and practiced in people’s everyday life. 

Apart from the textbook about arithmetic and accounting, which was described above, 

the second important textbook written in Polish in the sixteenth century was devoted to 

geometry. The author of that textbook titled ‘Geometry’ (1566), Stanisław Grzepski 

(1526-1570), was a professor at the Cracow Academy (Grzepski, 1929, Dianni & 

Wachułka, 1957, 1963). He was interested in Euclidean geometry and its practical 

applications, especially in metrology. His textbook was addressed to a wide variety of 

people, especially to farmers, who needed to have an elementary knowledge of the plane 

geometry and its applications. The contents of the textbook include problems known from 

the first four books of the Euclid’s Elements, as well as Books 5 and 6. Geometric 

concepts and their applications, presented in the textbook, were connected only with plane 

geometry. The solutions were illustrated by drawings. The author introduced not only 

Polish terminology for geometric concepts, but also as the first scientist in European 

geometry, gave the name for the concept of parallel lines: ‘aequidistantes’ (Grzepski, 

1929, Dianni &Wachułka, 1957, 1963). 

The first part of the textbook presented to a reader the axioms of Euclidean geometry, 

the classification of polygons, the measure of inner angles of the triangle and the area of a 

triangle. The author presented also the calculation of the area of a circle by considering its 

approximation. The second part of the textbook includes defining units of measurement of 

the length and the area of plane figures and applying this knowledge to solving practical 

problems connected with agriculture and building construction. Although many examples 

in the textbook are taken from Euclid’s Elements and from Archimedes’s works, i.e. the 

problem of the height of the tower or the problem of the depth of the well, their solutions 

gave readers a chance to become acquainted with these fundamental geometric works in a 

simple and mathematically accessible way. 

6 Mathematics in the Seventeenth-century Educational Centres in 

Poland  

The seventeenth century brought further development in Polish mathematics and 

mathematics education – the achievements of Polish scientists were known in the 

European scientific centres not only because of leading their research at European 

universities but also through giving academic lectures and writing works in Latin. 
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One of the most important representatives of Polish mathematics of that time was Jan 

Brożek (1585-1652). After completing his studies at the Cracow Academy he was a 

lecturer of mathematics and astrology, then he studied in Padua and after some years he 

became a professor in the Cracow Academy. His work titled ‘Arithmetica integrorum’ 

(1620), written in Latin, is considered as the first modern – at that time – academic 

textbook in Poland, addressed directly to the university students (Franke, 1884, Dianni, 

1956). The book presented the complete academic knowledge of arithmetic (at that time), 

that means: arithmetic operations on integers, especially multiplying numbers illustrated 

by the method called ‘the calculus on fingers’, the calculus using exponents, roots of 

numbers, introduction to arithmetic and geometric series. One of the most interesting parts 

of that textbook was discussing the calculus using the exponents of the power of number 

2, in which multiplication and division of powers consisted in adding and subtracting 

exponents. In this way calculations on numbers came down to calculating on exponents. It 

seems that this idea was inspired by the concept of logarithm introduced in 1614 by John 

Napier. 

Another important academic textbook, published in the seventeenth century, was the 

work titled ‘Arithmetica vulgaris’ (1640), written by Jan Toński (?-1664), who was also a 

student and later a professor of the Cracow Academy (Toński, 1640, Dianni & Wachułka, 

1957). That book included calculations on integers and fractions as well as on decimal 

fractions. The author introduced the notation of decimal fractions with a decimal colon, 

used in Poland even today. The second part of the book was devoted to plane and 

spherical trigonometry. The rules of calculations were described by the author in a general 

manner, without using algebraic formulas. That part of the book could be compared with 

Copernicus’s treatise ‘Trigonometry’. Although the spherical trigonometry was considered 

in the book as a part of the theory of mathematics rather than merely an aid in astronomy, 

the last part of the book included examples of applications of trigonometry in metrology 

and astronomy. 

It can be concluded that both academic courses indicated a tendency to develop 

mathematics as a scientific theory rather than a tool used for solving practical problems. 

Both books were very popular in the academic community and were included in the 

supplementary list of academic textbooks for many years, even at the end of the eighteenth 

century. 

The seventeenth century also brought a modern textbook for geometry written in Polish 

by Stanisław Solski (1622-1701): ‘The Polish User of Geometry – learning to draw, 

divide, measure lines, angles, figures and solids’ (1683) (Fig. 6.1 and Fig. 6.2).  

This work consists of 14 chapters called ‘plays’, in which the author presented 

descriptions of geometrical figures, their properties and applications of geometry for 

solving practical problems (Solski, 1683-1684). The last chapters included arithmetic and 

combinatorics. The names of mathematical concepts introduced in that work indicated 

great progress in the Polish mathematical terminology. 
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Figure 6.1: Cover of the book             Figure 6.2: Definitions of lines 

 

The development of mathematics can also be inferred by studying certain scientific 

manuscripts written in the seventeenth century. One of the most interesting examples of 

mathematical investigations was the scientific achievements of Stanislaw Pudłowski 

(1597-1645). Many of his notices indicate his profound knowledge of mathematics, 

including some interesting proposals of solutions to problems of descriptive geometry, 

formulated later by Desargues and Monge (Dianni & Wachułka, 1963). 

Adam Adamandus Kochański (1631-1700) was a student and later a professor of the 

Vilnius Academy. He was in correspondence with many outstanding European scientists 

of his time, such as Gottfried Leibniz (1646-1716) and Johannes Hevelius (1611-1687), 

thus he understood the need of sharing scientific experiences among scientists and its great 

impact on development of science. His works, mainly on mechanics and statics, as well as 

a very interesting and ‘elegant’ method of the approximate construction of rectification of 

the circle (1685),  were published in thescientific journal ‘Acta Eruditorium’ edited in 

Leipzig (Barycz, 1935, Dianni & Wachułka,1963).  

The Cracow Academy was not the only important scientific centre in Poland in the 

seventeenth century. There was also the Vilnius University founded in 1578. Apart from 

those universities there were academies, in which young people were educated: the 

Academy of Lubrański (1519-1780), the Academy of Zamoyski (1594-1784), and the 

Academy in Raków (1602-1638), where Jan Amos Komenski (1592-1670) was a 

professor (Gloger, 1900-1903). The education system included also the centres of – as we 

call it today –secondary education: there were colleges, especially Piarist colleges and 

schools (1642-) and Jesuit colleges (the period of the existence of Jesuit colleges in 

Poland: 1534-1773). Parish schools educated pupils at the lowest level; the teaching 

methods and educational programmes were rather similar to these applied in previous 

times. Young people belonging to nobility or rich townsmen families were educated 

individually by private teachers, often professors of academic centres, in order to be 

prepared to continue studies at the European universities (Gloger, 1900-1903, 
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Suchodolski, 1972). The content of an education programme depended very much on the 

school staff. However, at the beginning of the seventeenth century, the parish schools 

introduced a common educational programme framework, elaborated by scholars of the 

Cracow Academy after analysis of educational programmes of the Italian, German and 

French elementary schools. The great impact which was felt with the development of 

teaching methods and contents was connected with the emergence of schools which were 

led by teachers belonging to protestant communities. In those schools it was important to 

educate pupils in developing humanistic thinking and learning based on understanding, 

gathering one’s own experience rather than memorizing knowledge taken from a teacher. 

That style of teaching also helped students in learning school mathematics. Although Latin 

was still the teaching language in schools, mathematics textbooks written in the Polish 

language became popular among wide groups of people, especially those (i.e. merchants, 

farmers etc.) who had to apply mathematics to their professional activities (Gloger, 1900-

1903, Suchodolski, 1972). 

7 Mathematics Education in the Eighteenth Century – the Age of 

Modern Reforms of the Educational System in Poland  

The first half of the eighteenth century was characterized by a gradual decrease in the 

level of Polish education. The need for reform in the whole education system as well in 

the political and social areas of the state was evident. 

The education system of that time was dominated by the structure of parish schools and 

secondary schools – mainly Jesuit colleges. The old-fashioned school programmes were 

focused mainly on preparing students to lead philosophical disputes, thus rhetoric was still 

the subject of great importance and memorizing knowledge was the main teaching 

method. Latin was the teaching language. That style of teaching was not sufficient in the 

age of new European tendencies to develop humanistic thinking and gain the knowledge 

of natural sciences (Gloger, 1900-1903, Suchodolski, 1972, Wroczyński, 1996). 

The first step towards reform was made by Piarist Stanislaw Konarski (1700-1773), 

who created an eight-year modern school – the Collegium Nobilium (1740). The 

programme of education included mathematics: algebraic expressions, proportions, 

algebraic fractions, roots, solving equations, geometry – plane figures, solids, and conics. 

Besides mathematics, economics, natural sciences, practical knowledge, foreign 

languages: French and German, and the Polish language as separate subjects were the 

components of the education programme (Gloger, 1900-1903, Suchodolski, 1972). That 

trend of modern reforms was expanding in a short time; other educational centers 

modernized their educational programmes, in which mathematics played an important 

role. 

At the same time, in order to modernize the area of higher education, it involved 

Andrzej Załuski, the professor of the Cracow Academy, introducing on the basis of new 

foreign academic ideas, the three-year course titled  ‘Cursus mathematicus dogmativo-

experimentalis’ (1750). It consisted of three parts: the first part of the course was focused 

on studying arithmetic, theoretical geometry, plane and spherical trigonometry, and also 

algebra; the second part of the course was devoted to study mathematics applications, that 

is: lectures in mechanics, hydrostatics, aerometry, civil and military architectures.  In the 
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last part, at the third year of the course, students studied physics (Suchodolski, 1972, 

Dianni & Wachułka, 1963, Pawlikowska-Bożek, 1982). 

In 1773 the Jesuit colleges were closed and that was the appropriate moment in Poland 

to introduce the institutional reforms concerning the system of education and the content 

of the teaching programmes. In the same year the Commission of National Education was 

established and officially took a care of all schools in Poland. The Commision of National 

Education was the first secular institution in Europe, similar to a modern ministry of 

public education. The group of modern scientists and educators, known as the “Society of 

Elementary Books’, was responsible for drawing up modern programmes for school 

education and modern school textbooks.  They decided to elaborate Polish translations of 

the best foreign textbooks of that time. These translations were published and used as the 

school textbooks in the Knight’s School in Warsaw, founded in 1768 by Adam 

Czartoryski. In that school physics was taught on the basis of George Luis de Sage’s and 

Christoph Pfleiderer’s textbooks, and mathematics – on the basis of Simone L’Huillier’s 

(1750-1840) textbook (L’Huillier, 1809). The translations of those textbooks into Polish as 

well as the Etienne Bezout (1730-1783) textbook’s translation: ‘Mathematics Education 

for the use of French Artillery’ (1781), gave the basis for modern Polish terminology in 

mathematics and physics (Bezout, 1808). The textbook for mathematics included: 

arithmetic, geometry and algebra. It was addressed to the teachers, not to the learners, thus 

it included many methodical guidelines. 

The Commission of National Education, working under the guidance of Hugo Kołłątaj 

(1750-1812), elaborated the complex and modern system of education in Poland, 

consisting of a three-level education.  New curricula for primary and secondary schools 

were elaborated. The system assumed equal access to education for girls and boys. 

Although the idea of modern transformation of the education system was elaborated in 

detail, it did not gain the formal approval of the parliament. Despite that failure, the 

reform of higher education was carried out (1781-1788), the supervision of higher 

education institutions over secondary schools was introduced, and universities gained a 

modern organization. Also, vocational education was introduced (Gloger, 1900-1903, 

Suchodolski, 1972). 

Although the period 1789-1794 brought a gradual loss of influence of those reforms, 

modern ideas in universities survived and gave the basis for developing modern branches 

of science, such as chemistry (i.e. works of Jędrzej Śniadecki, 1768-1838) and 

mathematics (i.e. works of Jan Śniadecki, 1765-1830) in the field of differential calculus, 

analytic geometry, and probability calculus) (Więsław, 2012-2013). 

The reforms in the Polish education system and in mathematics and natural sciences 

that took place prior to the nineteenth century, gave the basis for development of modern 

mathematics and science in the nineteenth and twentieth century, becoming well known as 

the Polish School of Mathematics developed by the mathematicians atthe Lviv University 

and at the Warsaw University. 

8 Final Remarks 

Knowledge on the history of mathematics education provides many possibilities to apply 

it in today’s school practice. 

From the point of view of teachers the history of mathematics education is a rich source 

of information on the epistemology of mathematical concepts and possible 
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epistemological obstacles which can be observed when teaching contemporary students. It 

is also an interesting area of mathematical problems which can be discussed with students 

and solved by them. 

From the point of view of students some chosen old mathematical problems and their 

solutions can be interesting and may be helpful in understanding today’s school 

mathematics. 

The historical mathematical problems presented in original texts can also be helpful in 

studies of the language – Polish or Latin – for students who are interested in learning Latin 

or studying mother tongue, its grammar or etymology. For example, the textbook of 

Tomasz Kłos, Algorismus (1538), written in the Polish language, can be interesting for 

students because of the ‘Calculus on lines’ method of adding and subtracting numbers, 

presented and explained in the textbook. Another such example is the proof of the Second 

Theorem (Fig. 5.1) of the First Book of Copernicus treatise, which was included to the 

mathematics textbook addressed to students studying Latin (Lakoma, 2000).Also the 

textbook of Stanisław Solski (Fig. 6.1, Fig. 6.2), can serve as a source of old Polish 

geometrical terms which can be a good point of departure to study the history of the Polish 

language. Studying grammar and etymology of the Polish language can be also good 

motivation for students to learn mathematics and to find enjoyment in following historical 

ways of mathematical reasoning, comparing historical ones with contemporary ones, and 

searching for one’s own solutions.  
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ABSTRACT 

The notion of didactical contract was introduced by Guy Brousseau in the field of research 

in didactics of mathematics since 1978, as a resource to study the selective failure in 

mathematics. This idea was not only received by the research community with great 

acceptance, but also was quickly validated. The didactical contract, once theorized, 

allowed understanding many phenomena in the field of didactics of mathematics and in 

other disciplines, where it has been introduced successfully. The celebrity of the concept 

and the apparent simplicity of its definition, have generated the emergence of multiple and 

diverse interpretations during these last 40 years, which are now part of the literature. The 

multiplicity of uses and interpretations has led to a broad semantic slippage of the term. 

As a result, the concept of the didactical contract has weakened and is at risk of losing its 

usefulness and concrete meaning, which is problematic given its character of fundamental 

concept for the discipline. On the other hand, the low level of production of empirical data 

to validate hypotheses about the explanatory power that has the construct in real situations 

of the teaching-learning process, and the limited exploration on the heuristic value that the 

concept may have to improve the practices of the teachers generate a problematic situation 

whose approach is considered necessary. 

To address this problem, we propose a qualitative study, which will be addressed 

through three questions: 1. What aspects characterize the original idea of the didactical 

contract, its conceptualization process and its subsequent interpretations?, 2. Which are 

the tools required to observe the didactical contract in the classroom and what kind of 

information do they contribute to the study of the didactic situations?, and 3. What new 

examples of the effects and the clauses of the didactical contract can be reported through 

observation in different mathematics classrooms? 

Methodologically, we propose to develop this research in two phases: 1) A study 

historical-critical-analytical about the original idea of the didactical contract and of the 

reported studies around this concept. The findings in this phase will lead to the 

characterization of two tools: the effects and the clauses of the didactical contract. Such 

characterizations will contribute to the study of the manifestations of the didactical 

contract in authentic situations of classroom and will allow understanding the heuristic 

and explanatory power of this key concept of the fundamental didactic. 2) A qualitative 

study with an ethnographic approach based on the search of empirical data on Colombian 

classrooms of different educational levels. In these classrooms, we will examine examples 

of the occurrence of the effects and the manifestation of behaviors associated to clauses of 

the didactical contract by a non-participant observation. The findings will demonstrate the 
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explanatory power of the notion of the contract on the sociology of mathematics 

classroom. 

Here we will show only results of the first phase, it’s historical phase, which are: the 

genesis of the didactical contract concept, its predecessor ideas, its conceptualization 

process, the connections with other concepts, as well as its subsequent interpretations. 

Also, we will present a bibliographic history of the concept, in order to document several 

interpretations that have emerged in the literature and we present the great differences 

between the approaches associated with the same name. Mainly we will demonstrate that 

the didactical contract not only is it a founding concept of the discipline but it is a source 

of current research problems and that the history of the research groups practices allows us 

to study the original concepts of the didactic of mathematics and preserve its original and 

concrete meaning. 
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ABSTRACT 

Born in 1627, Joseph Zaragoza joined the Society of Jesus in 1651, and the same year he 

began to teach arts and theology at the Society’s schools in several Spanish cities, 

including in Valencia where he lived from 1660 to 1670. There he also taught 

mathematics and astronomy privately, and published in 1669 his book Arithmetica 

Universalis, just a year before he moved to Madrid to become a full professor of 

mathematics at the Colegio Imperial (Imperial College), an institution of the Society of 

Jesus. Starting in 1625, the Imperial College was funded by Felipe IV, King of Spain, 

Naples, Sicily and Sardinia and Duke of Milan, with the main purpose of becoming the 

place to educate the nobility’s children. Felipe IV established and funded two Chairs of 

mathematics, thus turning the Imperial College into a very important centre of study and 

development of mathematics throughout the 17
th

 century in Spain. Joseph Zaragoza taught 

there until the end of his life in 1679, publishing a number of other books. 

The full title of Zaragoza’s Arithmetica Universalis is Arithmetica Universalis, que 

comprehende el arte menor, y maior, algebra vulgar, y especiosa [which includes the 

minor and the great art, the common and the specious algebra], showing, by the inclusion 

of the “specious algebra” or “algebra of species”, Zaragoza’s knowledge of Viète’s new 

algebra. Furthermore, Zaragoza’s Arithmetica Universalis is the first book published in 

Spain in which one can find Viète’s influence.  

In this talk, we will present a study of the way in which Zaragoza, having adopted 

Viète’s ideas, reorganised the teaching of algebra in the Arithmetica Universalis. We will 

focus on the characteristics of the symbolic system of signs that he uses (closer to 

Descartes’ than to Viète’s), the way he introduces the concept of exponent, the canonical 

forms of equations that he establishes and studies, the algebraic and numerical procedures 

to solve equations that he explains and proves, the type of problems he deals with, and the 

way he presents the Cartesian method to solve problems. 

In addition, we will compare Zaragoza’s book with other textbooks that are 

contemporary or follow it in the immediate decades, including Andrés Puig’s Arithmetica 

especulativa, y practica y arte del algebra, published in 1672 in Barcelona, Spain, the part 

on “specious algebra” of Escuela de Palas, o sea Curso Mathematico, attributed to Joseph 

Chafrion, published in 1693 in Milan, Italy, and the part on algebra of Pedro de Ulloa’s 

Elementos Mathematicos, published in 1706 in Madrid, Spain. 
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ABSTRACT 

In a rather broad sense, mathematics deals with the solving of equations, different sorts of equations which 

help us to handle problems and to understand the world around us. It is therefore natural that the art of 

solving equations was developed in very early time, from the days of ancient Egypt, Babylonia, India and 

China. This paper tells (part of) the story of the art of solving equations in China as recorded in 

mathematical texts from ancient to medieval times, reaching a “golden age” in the thirteenth century, 

followed by a period of stagnation or even becoming a lost art until the study was revived during the 

eighteenth/nineteenth centuries when European mathematics was transmitted into China, first through the 

Jesuits since the beginning of the seventeenth century and later through the Protestant missionaries in the 

nineteenth century. It is hoped that this story may enrich the pedagogical aspect of learning the topic of 

equations in a modern day classroom. 

1 Introduction 

In a video made on the occasion of the award of the Abel Prize in 2018 the recipient, 

Robert Langlands, said, “What is called, not by me, “Langlands Program”, is about 

various things. Among other things it is about the solution of equations.”  

In a rather broad sense, mathematics deals with the solving of equations, different sorts 

of equations which help us to handle problems and to understand the world around us. It is 

therefore natural that the art of solving equations was developed in very early time, from 

the days of ancient Egypt, Babylonia, India and China. In those early days such problems 

invariably appeared as word problems for a natural reason (Swetz, 2012). Symbolic 

language and manipulation in dealing with equations took a few thousand years more to 

materialize. 

In China, the art of solving different types of equations appeared in various 

mathematical texts from ancient to medieval times, reaching a “golden age” in the 

thirteenth century, followed by a period of stagnation or even becoming a lost art until the 

study was revived during the eighteenth/nineteenth centuries when European mathematics 

was transmitted into China, first through the Jesuits since the beginning of the seventeenth 

century and later through the Protestant missionaries in the nineteenth century. 

Before the era of transmission of European mathematics into China, another kind of 

transmission of learning took place through the famous Silk Road. As the main trade route 

in Central Asia that established links between a cross-cultural mix of religions, 

civilizations and people of many different regions, it also naturally enabled exchanges of 

learning and cultures of people of different races. Transmission of mathematical 

knowledge, either directly or indirectly, between China and regions in Central Asia and 

the Middle East, India, the Islamic Empire and even Europe further to the West went on 

for many centuries from the Han Dynasty to the Yuan Dynasty throughout fifteen 

centuries. A well-known example often referred to is the Method of Double False Position, 
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originated from the method of ying buzu [盈不足 excess and deficit] explained in Chapter 

7 of Jiuzhang Suanshu [九章算術 The Nine Chapters on the Mathematical Art], the 

prototype Chinese mathematical classics that is believed to have been compiled between 

the second century BCE and the first century CE (Siu, 2016).  

2 A general account on solving equations in ancient and medieval China 

The art of solving equations has a long history in China. Despite what the title may have 

suggested this paper will not give a detailed account of this history, which has been so far 

covered in a large collection of books and papers, some in the nature of scholarly research 

in history of mathematics and some in the nature of general exposition for a wider 

readership. Thus, there is no dearth of reading material on this topic. Primary sources are 

not hard to locate either, for example, see (Guo, 1993). Instead of offering a long list of 

references, which definitely cannot cover even a fraction of the relevant literature, I will 

just give some references which I frequently consult, and among that only those written in 

a Western language, leaving out a rich repertoire of the literature written in the Chinese 

language (Chemla & Guo, 2004; Hoe, 1977; Lam, 1977, Lam & Ang, 1992/2004; 

Libbrecht, 1973; Shen, Crossley & Lun, 1999). Readers who can read Chinese can begin 

with the encyclopaedic series on the historical development of mathematics in China in a 

span of four millennia from the very early time to the Qing Dynasty (Wu, 1982-2004). 

If this topic has been so extensively studied, what is it that this paper wishes to 

contribute? As will become apparent in the next three sections we have the pedagogical 

aspect in mind. However, it is helpful to still give a brief account of the general 

background. 

The art of solving equations was recorded and explained (in later commentaries) 

throughout the different chapters of Jiuzhang Suanshu. This book was woven around the 

main notion of ratio and proportion which already appeared in Chapter 1 and was much 

expanded and elaborated in the next five chapters, evolving into the method of excess and 

deficit of Chapter 7 and systems of linear equations of Chapter 8, then on to geometric 

interpretation and applications in the method of gou-gu [勾股 right triangles] of the final 

Chapter 9. Problems in ratio and proportion involve linear equations, but problems in area 

and volume of geometric figures and problems in right triangles invariably involve simple 

quadratic and cubic equations of the type x
2
 = A or x

3
 = V, for which the methods of 

extracting square roots and cube roots were developed. In Chinese mathematics, the 

method of extracting square roots, called kaifangshu [開方術] and explained in Chapter 4 

of Jiuzhang Suanshu, is a crucial discovery that led to highly elaborated methods in stages 

in subsequent dynasties, reaching a high point in the thirteenth century when it developed 

into an algorithmic procedure for solving polynomial equations of any degree. By that 

time the art of solving equations of any degree was known as the tianyuanshu [天元術 

celestial source procedure] and was extended to solving a system of polynomial equations 

in four unknowns known as the siyuanshu [四元術 four sources procedure] propounded 

by the mathematician ZHU Shi-jie [朱世傑 1249-1314] in his treatise Siyuan Yujian [四元

玉鑑 Precious Mirror of the Four Sources] of 1303. 

In another direction the art of solving a system of linear congruence equations was 

developed originating from the famous Problem 26 of Book 3 of Sunzi Suanjing [孫子算

經 Master Sun’s Mathematical Manual] of the third century: “There are an unknown 
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number of things. Counting by threes we leave two; counting by fives we leave three; 

counting by sevens we leave two. Find the number of things.” This was further elaborated 

into a general method known as the dayan qiuyi shu [大衍求一術 great extension art of 

searching for unity] propounded by the mathematician Qin Jiu-shao [秦九韶 ca. 1202-

1261] in his treatise Shushu Jiuzhang [數書九章 Mathematical Treatise in Nine Sections] 

of 1247. This significant achievement gains recognition in the naming of an important 

result in abstract algebra of the modern era that is called the “Chinese Remainder 

Theorem”. 

In yet another direction the art of solving indeterminate equations was developed in the 

text Zhangqiujian Suanjing [張丘建算經 Mathematical Manual of Zhang Qiu-jian] of the 

fifth century with the famous “problem of the hundred coins and hundred fowls” which 

seems to have transmitted through the Silk Road to become part of the folklore of different 

mathematical cultures in the Islamic world and later in the Western world. This problem 

was re-transmitted into China during the seventeenth to eighteenth centuries, a period of 

transition between traditional Chinese mathematics and modern mathematics learnt from 

the Westerners. This particular type of problem aroused the interest of a group of Qing 

mathematicians who thereby contributed to the investigation of solving indeterminate 

equations. 

In 1613 LI Zhi-zao [李之藻 1565-1630], a scholar-official in the Ming Court, 

collaborated with the Italian Jesuit Matteo Ricci [利瑪竇 1552-1610] to compile the 

treatise Tongwen Suanzhi [同文算指, literally meaning “rules of arithmetic common to 

cultures”] based on the 1583 European text Epitome Arithmeticae Practicae (literally 

meaning “abridgement of arithmetic in practice”) of Christopher Clavius (1538-1612) and 

the 1592 Chinese mathematical classic Suanfa Tongzong [算法統宗, literally meaning 

“unified source of computational methods”] of CHENG Da-wei [程大位 1533-1606]. 

Besides being an attempt of LI Zhi-zao to synthesize European mathematics with 

traditional Chinese mathematics this is also the first book which transmitted into China in 

a systematic and comprehensive way the art of written calculation that had been in 

common practice in Europe since the sixteenth century (Siu, 2015). With this the road was 

well paved for the ensuing transmission of the art of solving equations from the Western 

world.  

3 Solving problems not by solving equations 

Many problems in ancient Chinese mathematical texts involve solving equations, such as 

“Chasing after the visitor to return his coat” (Problem 16 in Chapter 6 of Jiuzhang 

Suanshu), “Broken bamboo“(Problem 13 in Chapter 9 of Jiuzhang Suanshu), “Two mice 

drilling a wall” (Problem 12 of Chapter 7 of Jiuzhang Suanshu), “Inscribed circle in a 

right triangle” (Problem 16 in Chapter 9 of Jiuzhang Suanshu), “Pheasants and rabbits in a 

cage” (Problem 31 in Book 3 of Sunzi Suanjing). For each such problem a school pupil of 

today will no doubt set up an equation and solve it. But in those days methods for solving 

equations (other than that of solving a system of linear equations using a systematic 

algorithm employing counting rods on the board that is equivalent to the Gaussian 

Elimination Method, which is explained in detail in Chapter 8 of Jiuzhang Suanshu) were 

not yet developed either in the East or in the West, so these problems were solved by other 

clever means, sometimes even relying on geometric explanation. 
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In the same manner, similar problems come up in primary school classrooms that are 

amenable to mathematical reasoning without relying on the knowledge of solving 

equations, and they serve a pedagogical purpose. This leads one to ask, “What advantage 

do we gain by learning to solve equations, if we can do without it but by some other 

means? Why do we need to learn the topic of solving equations?” I shall get back to this 

point at the end of this section. To keep this paper within the preferred length, among the 

batch of five problems mentioned in the beginning of this section let us only look at two 

examples, taken from ancient Chinese mathematical texts, in more detail. 

(1) In Book 3 of Sunzi Suanjing we find the famous problem about pheasants and 

rabbits: “Now there are pheasants and rabbits in the same cage. The top [of the cage] has 

35 heads and the bottom has 94 legs. Find the number of pheasants and rabbits.” (Lam & 

Ang, 1992/2004, p. 180). 

A school pupil of today would probably see it as a problem in solving a pair of 

simultaneous linear equations by putting r as the number of rabbits and p as the number of 

pheasants. If H and L are respectively the number of heads and legs, then 

r + p = H, 4r + 2p = L. Hence, we eliminate p to obtain  

r = (L – 2H) / 2 = L/2 – H, 

that is, the number of rabbits r is equal to half the number of legs minus that of heads. In 

the text of Sunzi Suanjing the explanation is given exactly as what the last sentence says. 

Even though ancient Chinese mathematicians several centuries before were already well 

versed in solving a system of linear equations as explained in Chapter 8 of Jiuzhang 

Suanshu, apparently that is not how the problem was solved in Sunzi Suanjing. 

From the text of Sunzi Suanjing it appears that the author was thinking along the line of 

tying up the legs two by two so that each pheasant has one head and one pair of legs, 

while each rabbit has one head and two pairs of legs. Among these L/2 pairs of legs we 

can take off H pairs, one from a pheasant and one from a rabbit, leaving behind L/2 – H 

pairs, one for each rabbit. Thus, r = L/2 – H.  

As a pedagogical means one can let students make up more funny and imaginative 

stories to explain the same formula. For instance, suppose we ask the pheasants and 

rabbits to each raise two legs. After doing that all the pheasants fall flat on the ground, 

while all the rabbits can each still stand on both legs. Count the heads (only of the rabbits) 

still held up, which is half of the L – 2H legs standing on the ground, so r = L/2 – H. Or, 

for a more gruesome story, first cut off all legs, then distribute back to each pheasant and 

each rabbit a pair of legs. A pheasant can go away with a pair of legs, while a poor rabbit 

cannot move with only two legs. So, L - 2H legs stay put, two for each rabbit, hence r = 

(L – 2H) / 2 = L/2 – H. Instead of eliminating p we can eliminate r to arrive at 

p = (4H – L) / 2 = 2H – L/2. 

Again, as a pedagogical means one can let students make up a story to explain this 

formula. 

(2) Problem 13 in Chapter 9 of Jiuzhang Suanshu has a rich heritage, for it also 

appeared (with different data) in Lilavati written by the Indian mathematician Bhāskara II 

(1114-1185) in the twelfth century as well as in a European text written by the Italian 

mathematician Filippo Calandri in the fifteenth century. The problem asks: “Now given a 

bamboo 1 zhang high, which is broken so that its tip touches the ground 3 chi away from 

the base. Tell: What is the height of the break?” (Shen, Crossley & Lun, 1999, p.485). In 
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modern day mathematical language it means that we want to calculate the side b of a right 

triangle given a and c + b, where c is the hypotenuse. The answer given in Jiuzhang 

Suanshu, expressed in modern day mathematical language, is given by the formula 

 

A school pupil of today would probably arrive at this answer by invoking Pythagoras’ 

Theorem and solving a certain equation. However, how was it done more than two 

thousand years ago, when the Chinese did not yet have the facility afforded by symbolic 

manipulation at their disposal? 

Both LIU Hui [劉徽 ca. 225-295] and YANG Hui [楊輝 1238-1298], who were noted 

Chinese mathematicians more than a thousand years apart, explained in their 

commentaries how the answer is obtained. Their ingenious method is an excellent 

example to illustrate how shapes and numbers, or geometry and arithmetic/algebra, go 

hand in hand in traditional Chinese mathematics. By using Pythagoras’ Theorem (known 

as gou-gu [勾股] in the Chinese context) we see that the gnomon formed by the larger 

square of side c minus the smaller square of side b has area a
2
. Fold down the gnomon to 

form a rectangle of side c + b = L and c – b, and complete this rectangle to a square of side 

L (See Figure 3.1a, 3.1b, 3.1c). Subtracting this rectangle from the square of side L we 

obtain a rectangle of area L
2
 – a

2
, which is also equal to the product of the two sides L and 

L – (c – b) = 2b, that is, 2bL. Therefore, 2bL = L
2
 – a

2
, thence the answer for b (See Figure 

3.1d). For an animated demonstration of this process (credited to assistance from Anthony 

C. M. OR) readers are invited to go to a Geogebra applet at the link 

https://ggbm.at/2772025. 

 
 

Figure 3.1a: Broken Bamboo Problem Figure 3.1b: Broken Bamboo Problem 

 

 
Figure  3.1c: Broken Bamboo Problem Figure 3.1d: Broken Bamboo Problem 

Both examples convey the point I wish to make, namely, it may be possible to solve a 

problem without setting up an equation then solve it, but it may require to some extent a 

clever idea. Not everybody can be a clever craftsman full of bright ideas as such, but most 
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people can become skilful workers once they have learnt the methods of setting up and 

solving equations reasonably well enough. In history these methods were developed since 

the sixteenth century and matured during the next three centuries. Today a school pupil 

learns it in class and can thereby solve various problems by setting up and solving 

equations, be they linear or quadratic or of higher degree, while in the old days only 

masters could accomplish the same. 

4 The Tianyuan procedure 

In the book Yigu Yanduan[益古演段 Development of Pieces of Area Augmenting the 

Ancient Knowledge] of 1259 written by LI Ye [李冶 1192-1279] Problem 8 asks: “A 

square field has a circular pond in the middle. The area of land off the pond is 13 mu and 7 

plus a half fen. We only know that the sum of the perimeters of the square and the circle is 

300 bu. What are the perimeter of the square and that of the circle?” The method says: 

“Set tianyuan yi as the diameter [立天元一為圓徑].” In a language familiar to a school 

pupil of today, this means “let x be the diameter”. The solution follows (if expressed in 

today’s language): The circumference is 3x (the value of π is taken to be 3), so the 

perimeter of the square is 300 – 3x. Sixteen times the area of the square is equal to 9x
2
 – 

1800x + 90000, while sixteen times the area of the circle is equal to 12x
2
. Hence, sixteen 

times the area of the square minus sixteen times the area of the circle is equal to – 3x
2
 – 

1800x + 90000, which, according to the given data (knowing the conversion of units in 

measurement), comes out to be 52800. Thus, we have set up the equation – 3x
2
 – 1800x + 

37200 = 0. Solving it, we obtain x = 20, and so the circumference of the circle is 60 bu and 

the perimeter of the square is 240 bu. To solve such an equation the Chinese 

mathematicians developed a method called zengcheng kaifangfa [增乘開方法 method of 

extraction of roots by successive addition and multiplication], which was the same as what 

is known in the Western world as Horner’s method, devised by William George Horner 

(1788-1837) in 1819. 

This method of setting up and solving a polynomial equation was a significant 

achievement in Chinese mathematics of the thirteenth century. As early as in the Qin-Han 

period ( third century BCE to second century CE ) the famous mathematical classics 

Jiuzhang Suanshu explained the method called daicong kaifangshu [帶從開方術 

procedure of extraction of square root with accompanying number], which, as an 

extension of kaifangshu, calculated a root of a quadratic equation to any degree of 

accuracy. This method was extended by later mathematicians of the twelfth/thirteenth 

centuries during the Song-Yuan period to solve a polynomial equation of higher degree, 

known by the name of tianyuanshu [天元術 celestial source procedure]. For instance, in 

the mathematical classics Shushu Jiuzhang of 1247 QIN Jiu-shao treated an equation of 

degree ten in Problem 2 (measuring a circular castle from the distance) of Chapter 8 as an 

illustration on how one could solve a polynomial equation of any degree by finding a root 

to any degree of accuracy (Siu,1995; Siu, 2009). 

Ironically, this high-point of Chinese mathematics was also the beginning of its 

stagnation! One reason is that there was no need at the time to solve an equation of such 

high degree in practice. When the technical capability far exceeded the demand imposed 

by practical matters, motivation otherwise arising from an inner curiosity would not attract 

those with mainly a pragmatic attitude. For instance, the pragmatic attitude would not 
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induce Chinese mathematicians in those days to think about existence of a root of an 

equation, not to mention solvability by radical, because they were sufficiently satisfied 

with an algorithm that could obtain a root to any degree of accuracy in terms of decimal 

places (Siu, 1995; Siu, 2009). One mathematician in the early Qing period, namely, 

WANG Lai [汪萊 1768-1813], was a rare exception. He was not satisfied with the work 

of mathematicians in the Song-Yuan period and wished to surpass it by posing questions 

such as deciding whether a quadratic equation has a real root or an imaginary root, thus 

touching on the theory of equations. However, he was so much ahead of his time that he 

was regarded at the time as a “maverick”! 

Therefore, this tianyuan procedure was unfortunately almost lost, at best vaguely 

known but not well understood, after the thirteenth century owing to the turbulent era 

which lasted until the Ming Dynasty was established by the mid-fourteenth century. In the 

next section we will see the tianyuan procedure mentioned by Chinese mathematicians of 

the eighteenth century but in a different light. 

5 Emperor Kangxi’s study on solving equations 

The story starts with the first period of transmission of European learning into China 

during the reign of Emperor Kangxi [康熙帝 1654-1722], which spanned the 1660s and 

1670s. For a much more detailed account and discussion, interested readers are invited to 

read (Jami, 2011). 

Following the practice of the Ming Court the Qing Court employed the service of 

foreign missionaries as official astronomers to make an accurate calendar, which was held 

by many as a major tool of legitimization of the Imperial rule in traditional Chinese 

thinking. The German Jesuit Johann Adam Schall von Bell [ 湯若望  1591-1666] 

convinced Emperor Shunzhi [順治帝 1638-1661] to adopt a new calendar, which was 

actually the fruition of a huge programme accomplished by XU Guang-qi [徐光啟 1562-

1633] and his team in the Ming Dynasty but could not be implemented because of the 

collapse of the Ming Dynasty in 1644. When Emperor Kangxi succeeded to the throne in 

1661 as a boy not yet seven-year-old, Schall lost the support of the late emperor and was 

accused of treason by the conservative ministers backed up by the powerful regents of the 

boy-emperor. Along with some other Chinese Catholic converts he was sentenced to death 

and would have met his tragic ending were it not for a strong earthquake that shook the 

capital for several days in 1665. People took this to be a warning from heaven that told 

them it was wrong to accuse Schall of treason. Furthermore, the Grand Empress Dowager 

(grandmother of Emperor Kangxi) intervened so that Schall was spared the death sentence 

but was expelled to Macao instead, where he died there soon afterwards in 1666. This 

event, known as the “calendar case”, was rehabilitated in 1669 at the initiation of another 

foreign missionary, the Belgian Jesuit Ferdinand Verbiest [南懷仁 1623-1688]. 

Verbiest, who spent two years at the famous University of Coimbra before he was sent 

to China for missionary work, succeeded Adam Schall von Bell as the Head of the 

Imperial Astronomical Bureau, serving from 1669 to 1688. The way Verbiest managed to 

turn the tide was to challenge his opponent, the conservative minister YANG Guang-xian 

[楊光先 1597-1669], to compete in measuring the shadow of the sun on one December 

day of 1668. This event left a deep impression on the young Kangxi, as he later recounted 

the story: 
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You all know that I am good at mathematics but do not know the reason why I study 

it. When I was very young there were frequent disputes between Han officials and 

Westerners in the Imperial Astronomical Bureau. They accused each other so badly 

that somebody might get beheaded! Yang Guangxian and Tang Ruowang [Adam 

Schall von Bell ― apparently Kangxi’s memory did not serve him well here!] 

competed in predicting the sun shadow at the Wu Gate in the presence of the nine 

chief ministers. However, none of them knew what the astronomers were doing. In 

my opinion, how can a person who lacks knowledge judge who is right or wrong? 

Hence I determined to study with all my might and main the subject of mathematics. 

Now that the methods were compiled and explained clearly in books, learners find it 

easy. Heaven knows how difficult it was for me to learn it in those days! (Wang, 

1978, p. 69.) 

Verbiest was very much respected as the teacher of Emperor Kangxi in mathematics, 

astronomy and science. Realizing that he was himself getting old, Verbiest wrote and 

asked the Society of Jesus to send more younger missionaries learned in mathematics and 

astronomy to China. His call was answered by King Louis XIV of France (1638-1715), 

who sent a group of French Jesuits to China in 1685. For a political reason of not causing 

problems with the Portuguese authority this group of French Jesuits was sent under a sort 

of disguise as the “King’s Mathematicians”. By the time the five French Jesuits settled in 

the Imperial Court in 1688, Verbiest had passed away, so Emperor Kangxi continued to 

learn assiduously Western mathematics and astronomy from these “King’s 

Mathematicians” in the second period. 

Two of the French Jesuits, Joachim Bouvet [白晉  1656-1730] and Jean-François 

Gerbillon [張誠 1654-1707], left us with their diaries which gave a detailed account of 

their days spent in the Imperial Court. Bouvet wrote in his diary, published in France in 

1697 and soon translated into English in 1699 [Portrait histoirique de l’empereur de la 

Chine: presentée au Roy (The history of Cang-hy, the present emperour of China: 

presented[sic] to the most Christian King)] (Bouvet, 1697): 

His natural genius is such as can be parallel’d but by few, being endow’d with a 

quick and piercing Wit, a vast memory, and great Understanding; His constancy is 

never to be shaken by any sinister Event, which makes him the fittest Person in the 

World, not only to undertake, but also to accomplish Great designs.[…] But, what 

may seem most surprising, is, that so great a Monarch, who bears upon his shoulders 

the weight of so vast an Empire, should apply himself with a great deal of Assiduity 

to, and have a true relish of all Sorts of useful Arts and Sciences. 

[…] so there is not any Science in Europe that ever came to his Knowledge, but he 

showed a great Inclination to be instructed in it. The first Occasion which had a 

more than ordinary Influence upon his Mind, happened (as he was pleased to tell us 

himself) upon a Difference arisen betwixt Yang quansien [Yang Guang-xian], the 

Famous Author of the last Persecution in China, and father Ferdinand Verbiest, of 

the Society of Iseus. 

[…] As this Tryal of Skill in the Mathematiks was the first Occasion that introduced 

the Father Missionaries into the Emperor’s acquaintance; so from that time, he 

always shew’d a great inclination to be instructed in the Mathematical Sciences, 

which in effect, are in great Esteem among the Chineses. During the space of two 

Years, Father Verbiest instructed him in the Usefulness of the best of the 
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Mathematical Instruments, and in what else was most Curious in Geometry, the 

Statique, and Astronomy; for which purpose he wrote several Treatises.[…]  

He did the Honour to us four Iesuits, Missionaries then at Peking, to receive our 

Instructions, sometimes in the Chinese, sometimes in the Tartarian Language; […] 

Much about the same time, Father Anthony Thomas, did give him further Instruction 

concerning the Use of the best Mathematical Instruments, in the Chinese language, 

and the Practical part of Geometry and Arithmatik, the principles of which he had 

formerly been taught by Father Verbiest. He would also have us explain him the 

Elements of Euclid in the Tartarian Language, being desirous to be well instructed in 

them, as looking upon them to be the Foundation, upon which to build the rest. 

After he was sufficiently instructed in the Elements of geometry, he ordered us to 

compile a whole System of both the Theorick and Practick of Geometry, in the 

Tartarian Language, which we afterwards explain’d to him in the same manner as 

we had done with the Elements of Euclid. At the same time, Father Thomas made a 

Collection of all the Calculations of geometry and Arithmaticks (in the Chinese 

language) containing most of the Curious Problems extant, both in the European and 

Chinese Books, that treat this matter. He was so much delighted in the pursuit of 

these Sciences, that besides betwixt two and three Hours, which were set aside every 

day on purpose to be spent in our Company, he bestowed most of his leisure time, 

both in the day and at night in his Studies. (Bouvet, 1699, p.2, 3, 47, 50, 51, 52, 55.) 

The third period of transmission began with the establishment of the Office of 

Mathematics in Mengyangzhai [蒙養齋 Studio for the Cultivation of the Youth], a place 

situated in the garden inside the Imperial Palace. Prince Yinzhi [胤祉 1677-1732], third 

son of Emperor Kangxi, was made the Head of Office of Mathematics. Besides serving as 

a school for taking lessons in mathematics, astronomy and science, the main task of this 

Office was to compile the monumental treatise Lüli Yuanyuan [律曆淵源  Origin of 

Mathematical Harmonics and Astronomy], comprising three parts: Lixiang kaocheng [曆

象考成 Compendium of Observational Computational Astronomy] in forty-two volumes, 

Shuli Jingyun [數理精藴  Collected Basic Principles of Mathematics] in fifty-three 

volumes, and Lülü Zhengyi [律呂正義 Exact Meaning of Pitchpipes] in five volumes. The 

compilers were all Chinese officials and scholars, but the book mentioned the contribution 

of foreign missionaries at the beginning of Shuli Jingyun. The treatise Shuli Jingyun 

includes both traditional Chinese mathematics, the part that was still in extant and was 

understood at the time, as well as Western mathematics, highly likely from the “lecture 

notes” prepared by the missionaries for Emperor Kangxi during his first period of ardent 

study in the 1670s. 

6 Method of Borrowed Root and Powers 

Another teacher who taught Emperor Kangxi the art of solving equations was the Belgian 

Jesuit Antoine Thomas [安多 1644-1709], who studied at University of Coimbra from 

1678 to 1680 and was ordered to go to Peking in 1685. By the time Thomas came to China 

he had compiled Synopsis mathematica, which was based on the book De numerosa 

potestatum ad exegesim resolution (On the numerical resolution of powers by exegetics) 

written by François Viète (1540-1603) in 1600. Thomas later revised it as Suanfa Zuanyao 

Zonggang [算法纂要總綱 Outline of the Essential Calculations] and Jiegenfang Suanfa [
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借根方算法 Method of Borrowed Root and Powers], to be used as lecture notes for the 

mathematics lessons in the Imperial Court and later incorporated into Books 31-36 of 

Shuli Jingyun. 

For the purpose of illustration let us look at an example in the book of Viète, namely, to 

solve the equation “x squared plus A times x equals B”. Let x1 be a first approximation of a 

root, which is x1 + x2. Substitute into the equation and neglect the comparatively much 

smaller term x2 squared. We obtain x2 in terms of x1, A and B. So we have a better 

approximation x1 + x2. Keep reiterating the process to obtain a better and better 

approximation. Let us look at a similar problem in Book 33 of Shuli Jingyun: “If the cube 

[of root] and eight roots are equal to 1824 che, how much is one root?” In modern day 

mathematical language we want to solve x
3
 + 8x = 1824, which is accomplished by a 

method called “extraction of cube root with accompanying number”. The basic idea is the 

same as that in the previous example.  If the answer is not exact, the process will give a 

better and better approximation to any number of decimal places. Emperor Kangxi not 

only studied the method in earnest but even did homework assignments which can still be 

read in the archive today! 

The Chinese mathematician MEI Jue-cheng [梅瑴成 1681-1763] told the story on how 

he learnt this new method in his book Chishui Yizhen [赤水遺珍 Pearls Remaining in the 

Red River] of 1761: 

While I was serving in the Imperial Court of the late Emperor canonized as Shengzu 

Humane [Kangxi], I was instructed on the method of jiegenfang [借根方 borrowed 

root and powers] by the late Emperor. He issued an edict to say that the Westerners 

called the book aerrebala [阿爾熱巴拉  algebra] that means “Method from the 

East”. I respectfully learnt the method, which is really marvellous and is the guide to 

mathematics. I suspected that the method resembles that of tianyuan [天元 celestial 

source], so I took up the book Shoushi Licao [授時曆草 Calculation Draft of the 

Shoushi Calendar] and studied it, thereby clarifying the matter. Though the 

terminologies are different the two methods are the same, not just a mere 

resemblance. 

Scholars in the Yuan period wrote on calendar reckoning using this method, which 

became a lost art for some unknown reason. It was fortunate that those [foreigners] 

who resided afar admired our culture and sent it back so that we retrieved it. From 

their naming it “Method from the East” we see that they did not forget from whom 

they learnt this method. (Mei, 1761/1877, p.7; Han, 2010, p.473.) 

This is an indication of how the slogan of the time, “Western learning has its origin in 

Chinese learning”, got promulgated. In making his subjects believe that Western learning 

originated in older Chinese learning, Emperor Kangxi knew that the Chinese would be 

more than willing to learn it and would not regard it as something opposing traditional 

value. Or, maybe he really thought that the method originated in older Chinese learning. 

Indeed, similar methods were explained in mathematical classics of earlier days, most of 

which became less known by the Ming and early Qing period. However, it is grossly 

wrong to say that aerrebala (algebra) means “Method from the East”. For the Europeans 

the method was transmitted to them from the Islamic world ― indeed “east” to them, but 

not from China! The word “algebra” itself does not connote anything about “Method from 

the East” but comes from the Arabic word al-jabr, meaning “restoration”, which is to be 
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understood together with another Arabic word al-muqābala, meaning “reduction”. These 

two words appear in the title of a famous Arabic treatise of the ninth century from the pen 

of Muhammad ibn Mūsā al-Khwārizmī (ca. 780-850). The two words together describe 

the method in solving an algebraic equation by transposing terms and simplifying the 

expression, something a school pupil of today would be quite familiar with. 

Catherine Jami once made a very pertinent remark: 

[…] the cross-cultural transmission of scientific learning cannot be read in a single 

way, as the transmission of immutable objects between two monolithic cultural 

entities. Quite the contrary: the stakes in this transmission, and the continuous 

reshaping of what was transmitted, can be brought to light only by situating the 

actors within the society in which they lived, by retrieving their motivations, 

strategies, and rationales within this context. (Jami, 1999, p.430.) 

In the process of transmission, sometimes between several different cultures thousands 

of miles apart in a span of hundreds of years, the reshaping would be intricate and hard to 

trace. Nevertheless, what finally evolved is the result of collective wisdom that became 

part of human heritage for which it is actually quite unnecessary to ascertain who the 

originator was. I subscribe to what Joseph Needham says in the preface of his monumental 

treatise: 

The citizen of the world has to live with his fellow-citizens […]. He can only give 

them the understanding and appreciation which they deserve if he knows the 

achievements of the sages and precursors of their culture as well as of his own. […] 

Certain it is that no people or group of peoples has had a monopoly in contributing 

to the development of Science. Their achievements should be mutually recognized 

and freely celebrated with the joined hands of universal brotherhood.” (Needham, 

1954, p.9.) 

7 New Method of aerrebala 

Viète wrote another book in 1591 with more important influence, namely, In Artem 

Analyticem Isagoge [Introduction to the Analytical Art]. In his book he introduced what 

he called “logistica numerosa” and “logistica speciosa”, that is, numerical calculation and 

symbolic calculation. Viète was so pleased with his idea that he concluded his book by the 

exclamation: “Quod est, nullum non problema solver [There is no problem that cannot be 

solved]”! It led to subsequent work of René Descartes (1596-1650), La géométrie 

[Geometry] of 1637, and that of Isaac Newton (1642-1726), Arithmetica Universalis 

[Universal Arithmetic] of 1707 (with the work actually done about forty years earlier), by 

which time mathematicians in Europe were familiar with the use of symbolic calculation. 

Again, a school pupil of today would be quite familiar with that too, but when Viète first 

introduced it in his book, it was a very novel idea. Let us see how Emperor Kangxi reacted 

to it when another French Jesuit, Jean-François Foucquet [傅聖澤 1665-1741] taught him 

this new method, which Foucquet called the “new method of aerrebala”. 

In an Imperial Edict issued by Kangxi Emperor between 1712 and 1713 he said: 

Every day soon after getting up I study with the Princes the method of aerrebala 

[algebra] and find it most difficult. He [J.-F. Foucquet] says that it is easier than the 

old method, but it looks more difficult than the old method and has more errors as 
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well as many awkward features. […] Copy this Imperial Edict and issue the book in 

the capital to the Westerners for them to study it in details, and to delete those parts 

that do not make sense. It says something like Jia multiplies Jia, and Yi multiplies 

Yi, without any concrete number appearing. One never knows what the result of the 

multiplication is. It seems that this man [J.-F. Foucquet] is only mediocre in 

mathematical skill! (Zhongguo diyi lishi dangan guan, 2003, p.52; Han, 2010, p.468.) 

 

In defence Foucquet said in his book Aerrebala Xinfa [阿爾熱巴拉新法 New Method 

of Aerrebala], the only existing copy now kept at the Biblioteca Apostolica Vaticana as 

document Borgia Cinese 319: 

The old method uses numerical values, while the new method uses symbols that are 

accommodating [通融記號  tongrong jihao] […] Using this accommodating 

notation, it is easy to perform calculation, and it enables one to see the situation 

clearly so that one can focus on the method and understand the underlying rationale 

of the calculation. The use of numerical value works only for a particular value, 

while the use of accommodating notation encompasses all values in general. (Han, 

1991, pp. 24-25; Han, 2010, p. 467.) 

The frustration expressed by Emperor Kangxi reminds us of the joke in the classroom 

in which a teacher announces routinely, “Let x be the age of the boy, then…” only to 

receive a matter-of-fact protest from a pupil, “What happens if it is not?” The explanation 

given by Foucquet reminds us of an important underlying message, which is however 

seldom made apparent to school pupils, namely, that we treat numerical quantities as 

general objects, and manipulate such general objects as if they were numerical quantities. 

Although we do not know (prior to solving the equation) what they are, we know that they 

stand for certain numbers and, as such, obey general rules. For instance we do not know 

what A and B are, but we know that A × B = B × A. We can therefore apply these general 

rules systematically to solve problems which can be formulated in terms of equations. 

This is in fact the underlying essence of modern day abstract algebra in which the study 

and vista broaden from the familiar number systems to various algebraic structures of 

interest. 

For a teacher this phenomenon should not be unfamiliar. Many students who face some 

difficulty in learning a new subject, instead of putting in more effort, choose the easier 

way out by blaming the teacher for poor teaching and telling everybody that the teacher is 

incapable! In some sense, the episode between Emperor Kangxi and Father Foucquet was 

like that! It is important for a teacher to try to convince the pupil why symbolic 

manipulation is needed, why the effort to understand it is worthwhile, and to explain the 

meaning behind those symbols. 

Of the several methods of solving algebraic equations, the “new method” gradually 

replaced the other methods by the eighteenth century and was further developed. 

However, because of this personal dislike of the subject by Emperor Kangxi, probably 

resulting from reluctance to admit his own inadequacy in learning it coupled with 

arrogance, the transmission into China of the powerful method of symbolic calculation 

was delayed for nearly one-and-half century! China had to wait until in 1859 LI Shan-lan [

李善蘭 1811-1882] and the British missionary Alexander Wylie [偉烈亞力 1815-1887] 

collaborated to translate the treatise Elements of Algebra written by Augustus De Morgan 
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(1806-1871) in 1835, which was given the title Daishuxue [代數學 The Study of Daishu] 

(Chan & Siu, 2012). Thirteen years later HUA Heng-fang [華蘅芳  1833-1902] and 

another British missionary John Fryer [傅蘭雅 1839-1928] translated the book Algebra 

William Wallace (1768-1843) wrote for the Encyclopaedia Britannica between 1801 and 

1810, which was given the title Daishushu [代數術 The Method of Daishu], in 1872. In 

both translated text, the term daishu literally means “the study of numbers represented by 

a character”, which is no doubt motivated by what De Morgan wrote in his book:  

A letter denotes a number, which may be, according to circumstances, as will 

hereafter appear, either any number we please; or some particular number which is 

not known, and which, therefore, has a sign to represent it till it is known. (De 

Morgan, 1835/1837, p. vi.) 

8 Conclusion 

When we were in school we all learnt to solve equations. Did it ever occur to you at the 

time how miraculous the phrase “let x be …” is? Without knowing what this magic x 

stands for a priori, somehow at the end after certain symbolic manipulations the value for 

x falls out as an answer! Or, at the other extreme, did you find the routine working of 

solving an equation step by step boring at the time? Now that we have become teachers 

ourselves do we realize the difficulty most students have in understanding what the phrase 

“let x be …” means? Indeed, what is this x? Is it an unknown (in an equation)? Is it a 

variable (in a function)? Or, is it an indeterminate (in a polynomial)? 

Although the Chinese had built up a rather refined kind of machinery in solving 

different types of equations from the ancient to medieval times, what is learnt in school 

today basically follows what was developed in the Islamic world since the eighth century 

and subsequently in Europe from the sixteenth century to the nineteenth century. This was 

transmitted into China in the Ming Dynasty and the Qing Dynasty. In some sense, a school 

pupil of today, when first encountered the topic of solving equations, might feel the same 

as what a Chinese in those days first encountered Western ways of solving equations. In 

this paper we attempted to look at the pedagogical issue from this viewpoint and hope that 

learners can benefit from the discussion.  
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ABSTRACT 

In late nineteenth century England the Association for Promoting the Higher Education of Women in 

Cambridge began sponsoring a series of correspondence classes for women vying for certificates on the 

Cambridge Higher Local Examinations. These courses were designed for women who lived in remote areas 

devoid of suitable teachers and for governesses who did not have sufficient control over their time to permit 

them to attend classes or to receive oral instruction. The instructor of the arithmetic class sent candidates a 

set of mathematical problems at fortnight intervals. After forwarding their answers, students read related 

material and prepared for the next problem set. The teacher read over their work and returned it with 

comments. The teacher’s correspondence illustrating his educational philosophy and tips on how to prepare 

for the examination is highlighted. 

 

In November 1867, at a time when women could not earn a degree at any university in 

Great Britain
1
, Anne Clough and Josephine Butler, both prominent in the Victorian 

women’s suffragist movement and each with a keen interest in woman’s education, 

founded the North of England Council for Promoting the Higher Education for Women. 

The organization, originally representing associations of school mistresses from several 

large northern English towns, established a program of lectures and courses for women. In 

an attempt to improve the intellectual standards prevalent in girls’ schools, they petitioned 

Oxford and Cambridge Universities to offer an examination for women of sufficiently 

high standard that would serve as a test for those who wished to enter the teaching 

profession. Accordingly, Cambridge University initiated the Higher Local Examinations 

for Women in 1869 aimed at those over eighteen who wanted to be teachers, which upon 

completion would provide them admission to higher education.
2
 

Henry Sidgwick, fellow of Trinity College Cambridge, and activist Millicent Garrett 

Fawcett formed a committee, which segued into the Association for the Promotion of the 

Higher Education of Women in Cambridge. In 1870, Henry’s future wife Eleanor
3
was 

instrumental in establishing a series of “Lecture for Ladies” that covered a number of 

relevant academic topics including practical arithmetic, algebra, and geometry.
4
Cambridge 

at the time was a small market town with limited housing. Nevertheless, Sedgwick 

managed to secure lodgings, under the supervision of Anne Clough, for five women 

                                                           
1
 In 1878, the University of London became the first academic institution in the United Kingdom to offer 

post-secondary degrees to women.  
2
 In 1858, the Cambridge University had initiated Local Examinations with the aim of raising the standards 

of education.  
3
 Nora, as she was known to her friends, studied at Newnham Hall, precursor to Newnham College. Albeit 

coached by M.N. Ferrers of Christ College for the Mathematical Tripos, she declined to sit for the 

examination. She served as a physics researcher for her brother-in-law Lord Rayleigh. Her brother Arthur 

served as Prime Minister from 1902 to 1905.In 1902 she succeeded Anne Clough as Principle of Newnham 

College.  
4
 Other topics include: mechanics, astronomy, geology, chemistry, physical geography, English and modern 

history, English literature, logic, political economy, moral and mental philosophy, Latin, Greek, French, 

German, and harmony. 
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interested in attending the lectures. Demand for the lectures escalated. As a result, larger 

accommodations and a lecture hall were procured by Sidgwick near St. John’s College. In 

addition, a lending library was made available to women who attended the lectures. 

In the fall of 1872, to alleviate the pressure to find adequate housing and for the women 

who were not able to reside in Cambridge to attend the lectures, the committee initiated a 

series of correspondence classes under the supervision of Mrs. Annette Peile that was 

supported by faculty from several Cambridge colleges. Walter William Skeat offered a 

class in English literature, Greek by John Peile, geometry and algebra by James Stuart, 

logic by John Venn, and political economy by Henry Sidgwick.
5
 A fee of £2 was 

implemented,
6
sufficient to make the courses self-sufficient, high enough to keep off 

people who are not seriously about work, and sufficient to ensure that those who join the 

classes will be anxious to get an adequate return for their money. 

General instructions for those interested in enrolling in a correspondence course 

stressed that the program was not much more than an assistance in self-education, and 

therefore should in no sense be taken when efficient oral teaching could be obtained. 

Students should be prepared to carry out honestly and perseveringly the directions of their 

teachers and must be capable of taking hints, for detailed explanation would be 

impossible. As a consequence, they should have an acquaintance that they can consult 

who understands the rudiments of the subject. While an examination is perhaps not to best 

way to identify a good teacher, correspondence courses were felt to be a novel approach to 

pedagogical training. Whereas in classrooms students merely listen and seldom ask 

questions, in correspondence courses students must answer and ask questions. In order to 

encourage such communication students were provided with prepaid half penny post cards 

(Hudson 1872a). 

Thirty students enrolled in the first correspondence course in arithmetic offered by 

William Henry Hoar Hudson, a mathematical lecturer at St. John’s and St. Catherine’s 

Colleges, Cambridge, covering topics such as measurement, vulgar fractions, ratio, 

proportion, decimal fractions, and interest. In order to access their potential and avoid 

unintended consequences, he asked them, in an introductory letter, to send him answers to 

the following questions (Hudson 1872b): 

• For what object are you studying arithmetic? 

• Have you access to a library? 

• What time do you have available for study? 

• To what extent is your time occupied in teaching or otherwise? 

• Can you devote 2 ½ hours at one sitting, once a fortnight, to answer a set of questions? 

• Can you devote one hour a day to reading arithmetic? 

• From what book or books have you learnt arithmetic? 

• What books on arithmetic can you consult? 

                                                           
5
 Skeat was a philologist and later cofounder of Newnham College. Peile, also a philologist and Annette’s 

husband, became master of Christ’s College, Cambridge. Stuart was professor of mechanism and mechanics 

at Cambridge before becoming Lord Rector of St. Andrews University. The logician Venn, from Gonville 

and Caius College, Cambridge, compiled the Alumni Cantabrigienses, a biographical record of members of 

the university from earliest times to 1900. Nevertheless, he is best known for his set theoretic diagrams. 

Sidgwick was a philosopher and economist. The Sidgwick Site, now home to a number of arts and 

humanities faculties at the university, is named for him. 
6
 Equivalent in purchasing power in 2017 of about $200 (Measuring worth, n.d.). Governesses were eligible 

for a discount. 
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• Enumerate parts of arithmetic you have learnt  

• Have you any knowledge of algebra? 

Students were advised that they must be accustomed to and be prepared for serious 

work, for a problem set will be sent every fortnight, usually on alternate Thursdays. A 

stated time, not to be exceeded, will be given at one sitting to each set, with no help from 

books, tables, or any source whatsoever. When done, they should send their answers with 

questions on any difficulties and a report of their progress stated in a clear, concise, and 

definite manner. Sometime during the next week, he will look over the papers and return 

them with comments. In the meanwhile, they should be reading and preparing for the next 

paper.  

In his first circular letter (Hudson 1872-73), he reminded participants to be punctual in 

sending in their papers and letters and, at this stage, not to attach too much importance in 

merely answering the problems posed for their progress will depend much more on their 

reading, thought, and practice. They should read in the ‘Cambridge sense’, which entails 

lots of writing, per using sources critically with an aim of looking for mistakes, and read 

with pencil in hand.  He cautioned them to aim first at understanding each problem. Never 

try to reproduce the words of a book in answering questions, but to give their own 

explanations in their own language. 

He admitted that the class will, in all probability, contain members of varied degrees of 

knowledge and ability. Hence, his problems will usually be general ones. Nevertheless, 

they may contain questions that are beyond their reading. As their reading advances, more 

and more of the questions will come within their reach. He hoped that their reading will 

advance regularly and steadily, but not necessarily rapidly. Thorough understanding takes 

reading, practice, and thought. Through practice the basic arithmetic operations of 

addition and multiplication will become ‘almost instinctive’ for failure to implement them 

will be an impediment to further progress.  He advised them to write clearly, never try to 

conceal ignorance by obscurity, and not to use rules or symbols that they do not 

understand. At any time, however, he would be willing to give a brief answer to a question 

that he can answer on a post card.  

In his second letter, he discussed possible textbooks they might consult.
7
He warned 

students that many arithmetic books may contain valuable methods and useful examples, 

but lay too much stress on ‘rules’, neglecting to explain principles and on this account 

they are bad for educational purposes. They should become imbued with the principles, 

and familiar with the facts of arithmetic, for then they will be free from slavery to rules. 

On no account are they to learn or practice a ‘rule,’ the reason of which they do not 

thoroughly comprehend. He urged students to, 

Take nothing on trust. It will be far better to solve a question by a method of your 

own, which you do understand, even if it be a long way of arriving at the answer, 

                                                           
7
 Although there was no one book on arithmetic that he could give a qualified approval, Augustus De 

Morgan’s Elements of Arithmetic (5
th

 ed., London, Walton, 1969) was very good but contained too few 

examples. James Harris’s Graduated Exercises in Arithmetic and Mensuration with Key (London, 

Longmans, 1872) has a good collection of examples but no bookwork. The Science and Art of Arithmetic 

(London, Whittaker, 1970) by Adolf Sonnenschein and Henry Arthur Nesbitt was somewhat awkwardly 

arranged, but contained some excellent hints for teaching. Since several of the class are actually engaged, or 

are about to be engaged in teaching, he felt that it will be the most convenient book on the whole. 
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than to allow yourself to be led blindfold by a ‘rule,’ by a short cut, over steps which 

you cannot see. 

 

He offered them one more piece of general advice:  

Acquire the habit of concentration. In reading, especially a new part of the subject, 

never allow your thoughts to wander. Try and arrange to be free from interruptions, 

and in a silent room. If you are new to intellectual works, and find such close 

attention difficult, do not, at first attempt to read for too long.  

In his third letter, he urged students in explaining their answers: 

To imagine that you are addressing an intelligent child, ignorant say of arithmetic, 

except that which comes earlier in the point in question … Never use words that you 

do not understand … such a child would be sure to ask you the meaning of them. 

Never use symbols that you do not understand …Learn the exact meaning of 

symbols and never use them in any other sense … Never use arithmetical terms in 

any other than their technical sense. 

He stressed that they read each question carefully and understand it. Do not ask 

themselves ‘what rule should I use?’ Use only the rule of common sense. Attend to the 

logic of their work and let their solution ‘tell its story.’ Let the argument be clearly 

indicated and take care to copy down figures correctly. 

In his fourth letter, he stressed the primary importance of doing their own work. He 

noted that it appears that some of them have not understood his directions and letters. If 

that be the case, they should ask him at once for explanations. He lamented that he is not 

getting enough questions from them, nor of the right kind. He wanted questions 

concerning some actual difficulty that they have felt in thinking over what they have read, 

and these questions must be stated so definitely that he can see how much is clear to them, 

and when the difficulty began. He noted that several of his students have discontinued the 

practice of leaving a margin by the side of their answers, and consequently he cannot 

criticize their solutions.  

In the fifth letter, he expressed concern that some students still work by rules and not 

by common sense. He warned them that the mechanical rule of three does not apply to all 

problems. The bulk of the rest of the letter contains study hints for those taking 

examinations as would a Cambridge coach preparing men for a tripos examination. In 

particular, 

• Don’t omit the names of concrete quantities.  

• Never use an approximation without stating that it is so.  

• Don’t use incomplete sentences.  

• Make a clear distinction between scratching out and cancelling.  

• Show clearly what you mean for the answer.  

• Use words and symbols accurately. 

• Nothing but practice will give you the tact to discern when it is most convenient to use 

vulgar and when decimal fractions. 

His sixth letter (Hudson 1873), was addressed only to candidates for the Higher Local 

Examination in June. He stressed that any examination is a physical strain and they should 

prepare themselves for it by being particularly careful to be regular in sleep, exercise, and 

meals for some time before it.  It is important that they should not do any work, either in 
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the day, or after active exercise. It would be good, however, for them to take a short walk 

in the fresh air before beginning, but they should go on no account into the examination 

room hungry or tired. 

If they have a morning paper they should take care to be up in good time, and to have 

their breakfast over comfortably without hurry. They shouldn’t work late at night, nor for 

more an hour in the evening altogether and give themselves a full rather than a short 

allowance of sleep. They should be in good time at their place, not too early least they 

should become nervous by waiting, nor too late for the fear of being flustered at the start. 

From three to five minutes before the time is sufficient to see that they have two or three 

good pens and to take their own if there is any fear that defective ones will be supplied. 

They should arrange their seat, inkstand, blotting paper, and watch conveniently for work. 

They should go over again their table of weights and measures just before going in. Above 

all things they should keep cool, read every question completely through before 

commencing to answer it, for the second part of the question often throw light upon the 

first. They should not crowd their work or be afraid of wasting paper.  

If they aim at answering every question, they should divide the time by the number of 

questions and try to get each question done in its portion of time, saving time on the easier 

questions. In the early part of the paper they should not spend more than the proper time 

puzzling over a doubtful question unless they have already gained some time. They should 

not however, let this advice prevent them from going on with a solution they are in a fair 

way to finish. 

If they come across a question which they know they cannot answer, they should not 

loose time in attempting it in vain, while there are other questions in the paper which they 

believe that they can do. They should not refrain however from answering a part of a 

question because they cannot answer the whole, for sometimes the second part is easier 

than the first. They should be accurate and careful in their work the first time in doing it, 

and have confidence in their own result.  

After they have done all the straight-forward questions, they should look carefully at 

the rest of the paper, and select the easiest remaining question for trial. They should 

consider how they mean to attack it, write enough to indicate the method, briefly but 

clearly, and send this up at all events. Imperfect solutions often get considerable credit. It 

is a mistake to suppose that questions are arranged according to the order of the subject 

and a question on an advanced part of the subject may well be easier than one on the 

elementary part.  

They should not be deterred from trying a question because it is a long one, for it is not 

always difficult on that account. The length of the question gives no hint as to the length 

of the answer. It is a pity to neglect an easy question though not reading it through. They 

should not think of leaving the room until time is called; so long as there is anything on 

the paper that they can possibly do, do not give in. If they have finished the paper, read 

over their work carefully, correct and supplement it.  

In writing out proofs of rules and explanations of theory, they should remember that 

diffuseness wastes time and omission loses marks; the point to be aimed at is to put in 

everything essential as briefly as possible. In revising their work just before an 

examination, it is seldom wise to learn anything new; it is better to make sure of whatever 

they have known before.  
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HIGHER LOCAL EXAMINATION 

Tuesday, June 17, 1873, 9 to 11 P.M. 

1. Multiply three hundred and seventy-two million four hundred thousand and forty-six by 

itself and express the results in words. 

2. Reduce to tenths of a penny the difference between five guineas and eighty-nine half 

crowns. 

3. If 17 acres 3 roods and 33 poles cost £1236. 6s., how much will 50 acres 2 roods 21 

poles cast at the same rate? 

4. Find, by practice, the cost of 94 lbs 10 oz. 18 cwts. 6 grs. at £3 6s. 8d. per ounce. 

5. Multiply together the sum and difference of 
11

18
 and 

5

27
 and divide the result by the 

product of 
1

5 
7

 and 
31

1 
84

. 

6. Reduce 
5

256
 to a decimal. What decimal of £5 is £12. 16s.? Find the value of 0.01625 

of a ton, and shew that when divided by 0.0175 it becomes 18 cwts. 2 qrs. 8 lbs. 

7. Find the interest on £875. 10s. for 3 ½ years at 5 per cent. 

8. A cubic inch of gold is made to cover an acre of metal. Find the thickness of the 

gilding, and the weight of one square yard of it, assuming that gold is nineteen times as 

heavy as water, and that a cubic foot of water weights 1000 oz. Avoirdupois. 

9. Reduce 
11

56
 to a circulating decimal and 0.6318  to a vulgar fraction. 

10. Extract the square root of 88.604569 and of 
1 1

1
19

4
10

 



. 

11. There are three speculations which bring in respectively 5, 7, and 9 percent on the 

money invested. Compare the average interest on their capitals obtained by two 

speculators, one of whom invests and equal sum in each, and the other invests such sums 

that he obtains equal income from each. 

12. A person buys an article and sells it at a profit of 2s. 7d. On calculating his profit he 

finds that if he estimates it as a percentage on his outlay, it is one-fifth as great again as it 

would be if he estimated it as a percentage on the selling price. What did he give for the 

article? 

13. The cost of a ton of coal in London is four times the cost at the pit’s mouth, and half of 

the latter goes in the miners’ wages. If a rise of 20 per cent in miners’ wages be 

accompanied by a rise of 20 per cent of coals in London, what proportion of the cost of 

coals must have been due to carriage that the profits of those engaged in the coal trade 

may be only three times as great as before? (The cost of carriage is supposed to be 

unchanged), (University of Cambridge Higher Local Examination 1874). 

In a speech given before the College of Preceptors on February 8, 1893, Hudson 

remarked that in teaching the fundamental law of pedagogy was “The understanding of the 
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pupil was to be employed throughout.” (Hudson 1893). The correspondence to his 

arithmetic students illustrates his sound educational philosophy. Much of his pedagogical 

advice could well apply to other disciplines and many of his suggestions about preparing 

for exams are relevant today as they were then. It is not evident how many of his 

correspondence students passed the arithmetic examination, but thanks in part to Hudson 

and others like him, almost 70% of the women who took the Cambridge Higher Local 

Examination that June passed (University of Cambridge Higher Local Examination 1874). 

Hudson belonged to a talented mathematical family. He was Third Wrangler on the 

1861 Cambridge Mathematical Tripos. In 1882, he was appointed professor of 

mathematics at King’s College London. A position he held until 1903. His wife Mary 

Watson (née Turnbull) matriculated at Newnham Hall in 1873 but did not sit for a tripos. 

Their son Ronald William Henry Turnbull Hudson of St. John’s College was Senior 

Wrangler
8
on the 1898 Mathematical Tripos.

9
 After a short career as a lecturer at 

University College, London, he died in a climbing accident in North Wales. Their eldest 

daughter, Winifred Mary, attended Clapham High School and was a Winkworth Scholar at 

Newnham College. She was bracketed with the Eighth Wrangler on the 1900 

Mathematical Tripos. For most of her life, she worked part time for the Charity 

Organization Society. Hilda Phoebe attended Newnham College, and was bracketed with 

the Seventh Wrangler on the 1903 Mathematical Tripos. She spent a year at the University 

of Berlin and another at Bryn Mawr, before returning to Newnham as a lecturer. She was 

the only woman to give a communication at the 1912 International Congress of 

Mathematicians. In Cambridge, England. (Semple, 1969) During WWI, She worked on 

stress calculations for airplane structures for the Admiralty Air Department (Barrow-

Green, 2014). 

Newnham College was first established as a house in which women could reside while 

attending the Cambridge lectures. Hudson and other supporters of the enterprise formed a 

limited company to raise funds, lease land, and set a course of study in preparation for 

examinations. In 1875, the first buildings were constructed. The Newnham Hall Company 

and the Newnham College Association joined in 1880 to form Newnham College. 

Girton College had opened its doors in 1873, providing women two opportunities for 

undergraduate education in Cambridge. The lectures for ladies were subsumed by the 

colleges while the correspondence courses continued until the 1890s. 
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ABSTRACT 

The New Math Reform of the 1960s is commonly regarded as an international movement, in which common 

arguments bound together the participants of the reform. However, some authors have challenged this view, 

arguing instead for parallel reform movements, linked to different national school systems and different 

background motives. In this paper, we review some of the arguments proposed and trace the main currents 

which defined the New Math in Europe and the US. We conclude that European debates were mainly related 

to a structural Bourbakist view on mathematics. The American reform movement was stronger rooted in 

socio-economic and political motives and from the start driven by the Government. The European and 

American points of view, which originated largely independent from each other, briefly came together at the 

Royaumont Seminar (1959) and subsequent OECD conferences, but remained quite unrelated. 

1 Introduction 

One of the most striking features of the New Math Reform of the 1960s, was its 

widespread and international character. In many countries around the globe, from the 

Americas to Europe, from the Soviet Union to Nigeria and New Guinea, efforts at 

curriculum reform of school mathematics showed a remarkable tendency to converge on a 

new conception of what mathematics education should be, replacing the traditional 

emphasis on computational techniques and Euclidean style of reasoning with a more 

formal and abstract approach, based on set theory, algebraic structures and topology 

(Begle, 1968; Ohuche, 1978; Swetz, 1975). All of this occurred in not more than two 

decades. This was only possible through the orchestrated collaboration of scores of 

mathematicians, teachers, governments, school boards and publishers. Although 

comparable initiatives can be found in the reform of school physics, chemistry and 

biology, the revolutionary aspects of the New Math reform, its internal coherence and its 

public reception, including the highly mediatized controversies it raised, make it into an 

exceptional example of a truly international phenomenon. 

This international dimension of the New Math Reform did not go unnoticed. In his 

book, The “New Maths” curriculum controversy: An international story, educationist Bob 

Moon observed that the New Math, “perhaps more than any other curriculum reform, 

caught the imagination of the world at large” (Moon, 1986, p. 8). Moon did not regard this 

feature of the reform as evident, and offered some explanations. Focusing on a comparison 

between the reform as it took shape in some selected European countries (The 

Netherlands, France, England & Wales, West Germany and Denmark), Moon drew 

attention to the role of the new information technology and the ease of international travel 

in furthering contacts between national educational systems. He also pointed to the 

influence of the media that quickly publicized the promises and successes of the New 

Math across national borders – reversing the trend when in the 1970s “more negative 

reports on the reform experience came to attract media interest” (p. 222). 
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More recently, Jeremy Kilpatrick has again raised the question whether the New Math 

reform can be regarded as an international phenomenon (Kilpatrick, 2012).Interestingly, 

he included in his overview the introduction of the New Math reform into non-OECD 

countries but this was mainly restricted to the local adoption of teaching materials 

imported from the US or the United Kingdom. Although the widespread dissemination of 

these textbooks and methods suggests some degree of international coherence in the 

reform movement, Kilpatrick also concedes that “the well-intentioned efforts of reformers 

in OECD countries to transfer their efforts to non-OECD countries did not work out as 

planned” (p. 567). Furthermore, he observes that “some countries seem to have missed 

much of the new math movement even as international contacts increased between 

countries” (p. 568) citing Japan and The Netherlands. The international character of the 

reform should therefore not hide the fact that the local appropriation of the curriculum 

reform could be and often was very different from the experiences in other countries. 

Kilpatrick even concludes his paper with the observation that “the more school 

mathematics is internationalized, the more clearly its national character is revealed” (p. 

570). So was there indeed an international movement in the sense that it was conceived 

and promoted by a coherent community of scholars, following the same guidelines and 

discussing the same arguments at about the same time? 

Once one starts to question the international coherence of the New Math reform, it also 

becomes possible to wonder how any form of international alignment between national 

reform movements could emerge. Any widespread cultural phenomenon of the extent of 

the New Math reform movement begs for further explanation. How did it happen that so 

many communities in so different political and cultural environments almost at the same 

moment and apparently almost in unison (or at least in close harmony) proposed similar 

ideas and similar actions? How did the movement spread from one place to another? And 

what can the New Math teach us about the identity, the structure and the politics of the 

mathematics community at large? Christopher Phillips has examined the New Math 

reform in the United States as a reflection both of the political and social environment 

generated by the Cold War as well as of the different views on the nature of mathematics 

and mathematics education among leading mathematicians (Phillips, 2015). This approach 

is very illuminating for understanding the strategies and ambitions of the New Math in the 

US, but it also tends to isolate the American reform movement from a more global 

understanding of what the New Math represented in other countries. Similarly, in her 

dissertation on precollege mathematics education reform in the United States, Emily 

Redman has shown that the swift and determined actions of the American mathematical 

community in preparing a new curriculum, can only be understood by looking at the 

strong “coagulation” of that community in the previous decades and at “the conscious 

relationship between a small, determined, and relatively coherent community of reformers 

with the federal structures and resources that support reform”(Redman, 2013, p. 

3).Implementing a successful reform was more than engaging in intellectual debate and 

writing up curriculum proposals. Reformers needed funding, professional authority, 

government support and commercial connections in order to be able to bring their ideas 

into practice. But if such opportunities can be expected to exist within national 

communities, it is not obvious that similar resources and networks are available and 

effective in other countries or on an international level. Again, as it becomes clear that the 

American reform has to be firmly situated in the local context of American society, the 
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analysis of the reform in other countries cannot be expected to fit into that same 

framework. 

In this paper, we will first focus on the early development of the reform movement 

when contemporary curriculum drawbacks were discussed and new goals were being set. 

We will show that American and European debates were fundamentally different and that 

there was almost no contact between the two communities of reformers. Then we pay 

attention to the actual implementation of the reform, the dissemination of teaching plans 

and textbooks around the world. Here also, the available historical material suggests that 

each country produced material adapted to its local needs, and that there was little 

correlation between what happened in different countries. Finally, we will propose our 

own understanding of the international character of the New Math reform and its 

implications for its local implementation. 

2 Two parallel reform movements 

According to many popular accounts, the New Math reform started early in 1958, when in 

the wake of the Sputnik scare that captivated the American public, a School Mathematics 

Study Group was created that set out to produce a new mathematics curriculum for 

American students. The story is, however, more complicated. The New Math that emerged 

at the end of the decade cannot be understood without taking into account the ongoing 

reform efforts that had already prepared the mindset of mathematicians and teachers. 

Debates about the sorry state of mathematics education in the United States had started 

much earlier. Already in 1952, the University of Illinois Committee on School 

Mathematics had started to work out a new school mathematics curriculum, and in 1955 

the US College Entrance Examination Board appointed a special Committee on 

Mathematics, headed by Albert Tucker, to propose new standards for the school 

mathematics curriculum in order to prepare high school graduates for university. In these 

early years, New Math as it came to be understood after 1960, was not on the agenda. 

There was a general concern for the lack of rigor in high school mathematics, and more 

generally for the “low levels of mathematical understanding and poor attitudes toward 

mathematics” among high school graduates (Kilpatrick, 2012, p. 564). One of the causes 

for this situation, according to some reformers, was the lack of attention for the 

mathematically gifted student, a concern that fitted well with the preoccupation of the 

American government during the Cold War with a possible shortage in scientific 

manpower. The aim of the early reform proposals was to make sure that high schools 

would be stimulated to offer high quality mathematical education that would increase 

student enrollments in university mathematics courses.  

When in 1958 Edward Begle was appointed as director of the School Mathematics 

Study Group (SMSG), he conceded that “there is little agreement about what should be 

done” (Phillips, 2015, p. 44). With the support from massive funding from the National 

Science Foundation, Begle organized a nation-wide network of authors to write textbooks 

for each grade of high school. According to Christopher Phillips, SMSG took the occasion 

to redirect not only the rigor and scope of the mathematics curriculum, but also its general 

approach.  

SMSG’s mathematicians took the charge to make the intellectual habits of American 

students more rigorous as an opportunity to introduce “modern” mathematics into 
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the curriculum. They argued that developments over the first half of the century had 

fundamentally reformulated what it meant to do mathematics. […] The curriculum 

project was their opportunity to inscribe this view of mathematics in millions of 

textbooks.(Phillips, 2015, p. 47)  

This new image of mathematics, one that would lead towards the New Math, was 

inspired by the work of the Bourbaki group in France, advocated in the US by such 

mathematicians as Albert Tucker from Princeton, and Marshall Stone from Chicago. To 

the mathematicians in SMSG, “structure, not technique, characterized the discipline” (p. 

59). It was emphasized that mathematicians did not calculate, they rather pondered on 

logic puzzles, “that required not counting, nor measuring, but careful reasoning about 

particular sets of information” (p. 54). The most telling example was the “modern” 

treatment of arithmetic, not as a tool for calculation, but as an object to investigate the 

properties of numbers and operations, where the choice of notation or representation was 

of secondary importance. 

The first SMSG textbooks were ready by September 1960. The following years SMSG 

would prepare similar course materials for elementary schools (1962) and kindergarten 

(1964). Apart from that, SMSG would write monographs to supplement the usual high 

school curriculum and to awaken interest in gifted students. It also prepared teacher-

training materials, a series of thirty educational films, and revised texts for the “less able 

students”. In 1968, Begle estimated that about four million texts of SMSG had been sold, 

although it was impossible to say how many students and teachers actually had used the 

textbooks (Begle, 1968). 

This chronology of events suggests an early and dynamic start for the New Math in the 

United States. In reality, New Math was less well defined and less influential than it 

appears from the writings of some participants. From the start, the SMSG curriculum was 

contested by leading members of the academic mathematical community. Furthermore, 

apart from the SMSG group, other initiatives formulated different approaches. It led 

Robert Davis, a collaborator in the Madison Project of Syracuse University (one of many 

alternative reform groups), to conclude that:“There was no single thing, no single 

alternative to existing school programs, no agreement on how things needed to change. 

Indeed, the only thing these diverse projects shared in common was the firm conviction 

that the ‘traditional’ mathematics curriculum needed to be replaced by something 

different. Any claim that there was a well-defined ‘new math’ is entirely unfounded” 

(Davis, 2003, p. 625). Davis also contended that most schools in the US were hardly 

affected by the New Math reform. The fact that New Math was perceived as the major 

thrust of the reform may have been caused more by the public controversies it raised 

among mathematicians, than by its real impact on mathematics teaching in US schools. 

At the same time, a similar reform movement was underway in Europe. As in the US, 

early initiatives dated back to the beginning of the 1950s. In April 1950 Caleb Gattegno 

(1911-1988), an Egyptian born mathematician and psychologist, organized the first of a 

series of international meetings with leading scholars in the fields of mathematics, 

psychology, philosophy and education (as well as teachers) to discuss the state of 

mathematical education. At the fourth meeting, in April 1952 the Commission 

Internationale pour l’Étude et l’Amélioration de l’Enseignement des Mathématiques 

(CIEAEM) / International Commission for the Study and Improvement of Mathematics 

Teaching was officially founded with an executive committee consisting of the 
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mathematician Gustave Choquet (University of Paris) as president, the cognitive 

psychologist Jean Piaget (Universities of Genève and Paris) as vice-president and 

Gattegno (University of London) as secretary (Bernet & Jaquet, 1998). From the outset, 

the CIEAEM meetings had an international character with participants from eight 

European countries. The main goal of CIEAEM was not the actual preparation of a 

curriculum reform, but rather the study of learning processes, as a necessary step before 

any improvement in teaching methods or curriculum could be proposed. A recurrent topic 

of debate and investigation within the CIEAEM community during the 1950s was the use 

of concrete models, teaching materials and teaching aids. The work of CIEAEM did not 

originate in a concern for the bad state of mathematics education. Rather it focused on the 

improvement of the content of mathematics education, and to bring it more in line with 

current mathematical thinking as applied in many ways in modern science. The proposals 

were made with the most gifted mathematics students in mind. In this perspective the 

CIEAEM sought the collaboration from members of the Bourbaki group (Dieudonné, 

Choquet and Lichnerowicz) who directed their attention to the world of school 

mathematics. During the 1952 meeting at La Rochette par Melun, the Bourbakists set forth 

their views on the origin, meaning and “utility for discovery” of structures in modern 

mathematical science. Piaget, who participated in the meeting, explicitly related these 

mathematical structures to the mental operations through which a child interacts with the 

world. It is therefore within the CIEAEM community that the first conceptions of “modern 

mathematics” were thought through and formulated. The theoretical debates also led to 

practical reform strategies. In August 1958, in the margin of the 12th CIEAEM meeting in 

Saint Andrews (Scotland, UK), the Belgians Frédérique Lenger and Willy Servais 

compiled the draft of a concrete program for the teaching of modern mathematics, that 

was subsequently tested in two schools during the following school year, arguably the first 

attempt to teach “modern mathematics” in Europe (De Bock & Vanpaemel, 2018). 

Compared to the American SMSG, CIEAEM was active on a much smaller scale, was 

not funded and not linked to any official body or government, and had no interest in 

implementing a grand scale reform. In spite of its impressive name, CIEAEM was and 

always remained a small informal group, an inside group with little outreach. Some of its 

members would take on leading roles in the subsequent New Math reform, but before 

1958 this was not visible to outside observers. It is not likely that many American 

reformers were aware of CIEAEM during the 1950s. When in 1954 Howard Fehr and his 

colleague Myron F. Rosskopf, both from Teachers College, Columbia University New 

York, attended the International Congress of Mathematicians in Amsterdam, they urged 

their American colleagues to take notice of the reform movements going on in Europe. 

But at the same time they noticed the large differences in school systems. 

Naturally, European countries face in education many of the problems that we face. 

However, their attempted solutions are different. The problem of differences in 

ability and objective is met by having several types of schools rather than by having 

several programs in the same school, particularly at the secondary school level. At 

sessions of Section VII, on philosophy, history, and education, there were presented 

a series of papers on trends in mathematics education for students from age sixteen 

to twenty. It was apparent from these reports that the mathematics curriculum in the 

United States and the organization of the courses is quite different from any that 

exists in Europe. Part of the difference is due to a difference in philosophy 
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concerning education. We try to carry as many students as we can and as far as 

possible into mathematics. The Europeans try to separate by application of rigorous 

standards those who can do mathematics from those who cannot. (Rosskopf, 1955, 

p. 114) 

In 1960 Fehr again observed that although “the subject matter covered [in European 

schools] is not vastly different from that in our schools”, it is “in no case […] modern in 

the sense of the fine materials written by the School Mathematics Study Group and the 

University of Illinois School Mathematics Committee, or the program advocated by the 

Commission on Mathematics” (Fehr, 1960, p. 799). To Fehr, the European program of 

school mathematics appeared “relatively static”. In all probability, Fehr did not know 

about CIEAEM or at least considered it of no importance. Conversely, there are little or no 

indications that European reformers were aware of what happened in the United States. 

Probably, CIEAEM did not feel the need to inquire about American developments, as they 

could build directly on the personal involvement of several Bourbaki mathematicians and 

representatives of so many European states. Georges Papy later wrote that the Lenger-

Servais program “was certainly influenced by the work of the International Commission 

for the Improvement of Mathematical Instruction and by the work of Northrop and others 

at the University of Chicago” (Papy, 1966, p. 180).The statement is misleading. Papy 

probably hints at the Chicago mathematician Eugene Northrop, but in a later article (in 

which the same sentence is included) Frédérique Lenger – then Mrs. Papy – refers in a 

footnote to the Yale philosopher F. R. S. Northrop and his book The logic of the sciences 

and the humanities (New York, 1948) (Papy, 1968, p. 26). As the statement is published 

in papers by both Georges Papy and Frédérique Lenger, there may have been some truth in 

pointing to the American influence. On the other hand, Papyand Lenger may well have 

exaggerated the influence of the Americans. In 1966 Papy had taken a leading position in 

the European New Math reform and he may have wished to emphasize the international 

nature of the reform. As it stands, Papy’sand Lenger’s statement is about the only 

evidence we found on any American influence on the European mathematicians and 

teachers working out the New Math curriculum in CIEAEM. We tend to believe that the 

interaction between American and European actors in the field of school mathematics was 

limited before the famous Royaumont Seminar of 1959. 

3 International dissemination 

The first real contact between European and American reformers was the Royaumont 

Seminar on New Thinking in School Mathematics, organized from November 23 to 

December 5, 1959 by the OEEC, as part of a larger series of similar seminars for all the 

sciences. The Seminar was attended by 46 participants from 18 countries, including the 

United States and Canada. The American delegation, consisting of Marshall Stone, Albert 

Tucker, Howard Fehr and Edward Begle – all of them actively involved in the ongoing 

New Math reform in the US –, did make a great impression on the European audience. 

Europeans noted the differences of the American school system with the situation in their 

own country, which made the American experience less relevant to their own concerns, 

but they were also impressed by the strong financial support of the reform movement, the 

widespread media campaign and even the choice of a catchy slogan, the “New Math”, to 

further the case of reform. To underscore this point symbolically, the proceedings of the 
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Seminar with the official title New thinking in school mathematics, were translated in 

French with the “American” title Mathématiques nouvelles. But in general, the differences 

between the European and American reform efforts were often more obvious than the 

similarities.  

After Royaumont, Americans, in particular Stone and Fehr, with the support from 

organizations as OECD, UNESCO and ICMI, started to dominate international 

conferences on school mathematics. It is doubtful, however, whether this had any 

influence on the New Math reform in terms of bringing the two traditions closer together. 

For all their international exposure, Stone and Fehr seem to have played only minor roles 

in the American New Math reform. Fehr repeatedly reported on international 

developments to his American fellowmen, as he was aware that American teachers had 

little idea of what was going on in Europe. “It is the hope of the writer”, he wrote in 1965, 

“that the survey presented herein will serve to make the teachers in the US aware of the 

fact that their colleagues in foreign lands are just as concerned as they are with 

modernizing the mathematics curriculum” (Fehr, 1965, p. 44). None of the standard 

monographs on the history of New Math in the US make more than passing mention of 

events in Europe. Some minor reform programs may have been influenced by European 

ideas, such as the Secondary School Mathematics Study Group of Howard Fehr, who 

always remained critical towards the SMSG approach, the Madison Project of Robert 

Davis, which focused on the use of concrete teaching materials, and the Comprehensive 

School Mathematics Program of Burt Kaufman, who solicited the assistance of several 

European experts (Choquet, Steiner, Råde), and also convinced Frédérique Lenger to join 

his team in 1974 (Hayden, 1981; Phillips, 2015). For both Davis and Kaufman it can be 

said that they came to know European colleagues through Howard Fehr’s network. 

Outside of this network the US-Europe connection seems to have been weak. 

From the perspective of Europe, the situation looks different. Without the benefit of 

well-established international collaborations, the conferences sponsored by OECD, 

UNESCO and ICMI retained all their importance. The presence of some American 

researchers on these occasions added credibility and authority to the meetings. But even 

then, specific references to American researchers or reform groups remained vague. The 

main ideas of New Math in Europe were either borrowed from the Bourbaki program, or 

based on the Klein paradigm of transformation geometries. All of this had been 

convincingly prepared and disseminated by members of CIEAEM. European reformers 

had no need for American ideas.  Possibly, the US had a lead over Europe in the early 

production of textbooks but European textbooks were not lagging far behind. As most 

European countries only implemented the reform in the second half of the 1960s, there 

was enough time to write textbooks adapted to the local school system. In her dissertation, 

Nadimi Amiri (2017) has argued that New Math was imported to Luxembourg from the 

US, but the textbook made available to Luxembourg schools was the French manual 

published already in 1960 by Camille Bréard, with a preface by Lichnerowicz. In 

Belgium, Georges Papy and Frédérique Lenger started their series Mathématique moderne 

in 1963. Also in Spain, original Spanish manuals were published from 1962 onwards by a 

Commission for the Experiments on Teaching Modern Mathematics appointed by the 

Ministry of Education (Ausejo, 2010). In Iceland, an American textbook was used for a 

pilot project in the leading school of Reykjavik, but in 1966 an Icelandic textbook was 

written and adopted for the whole education system (Bjarnadóttir, 2006). Begle (1968) 
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states that SMSG materials were translated and/or adapted in many countries, including 

Sweden, Turkey, Taiwan, Australia, Brazil and India. But on the whole, American 

textbooks were not very successful on the European market, and conversely, as far as we 

have been able to find out, there are no examples of European textbooks introduced on the 

American market. 

The dissemination of the New Math on other continents calls for a different 

interpretation. Here many local reform movements took inspiration from either the US or 

the United Kingdom. Best known is the African Mathematics Program (AMP), commonly 

known as the Entebbe Project. Headed by W. T. Martin, chairman of the Department of 

Mathematics at M.I.T., the AMP organized in 1962 a mathematics workshop at Entebbe, 

Uganda, which hosted 54 participants representing 13 countries, including 24 educators 

from 11 English speaking African nations. The ensuing project, financed by the Ford 

Foundation and the US Agency for International Development, produced over 60 

volumes, which were tried in Ethiopia, Ghana, Kenya, Liberia, Malawi, Nigeria, Sierra 

Leone, Tanzania, Uganda, and Zambia. According to Frank Swetz (1975), the whole 

project “was American dominated with the writing strongly influenced by advocates of 

SMSG. […] The result was a black faced version of SMSG mathematics” (p. 6). Yet, he 

continues, “to challenge the American ‘menace,’ two competing British-oriented writing 

groups were formed. The Joint Mathematics Project was begun in West Africa and the 

East African School Mathematics Project in East Africa; both projects emulated the 

British counterpart of SMSG, i.e., the School Mathematics Project (SMP)” (pp. 6–7).  In a 

footnote, he adds, “Unfortunately, such an argument is common between British and 

American educators. Much to my later embarrassment, I found myself engulfed in such a 

controversy while teaching in Malaysia” (p. 6). 

In 1978, Hans Freudenthal edited two issues of Educations Studies in Mathematics on 

the changes in mathematics education since the 1950s. Contributions to these issues 

included not only papers on countries like the Netherlands, France, Great Britain and the 

US, but also on less publicized countries such as Sri Lanka, the West Indies, Iran and 

Nigeria. No countries from South America were represented. The picture that emerges 

from these contributions is one of local appropriations of American or European (mostly 

British) examples, adapted to the national school systems and to the demand for 

mathematically trained professionals. Local mathematicians not only studied the New 

Math; they were also very aware of the criticism that the New Math reform had generated 

in the United States and Europe. In the case of India, the criticism led to a nuanced 

evaluation of the advantages and disadvantages of the New Math, e.g. the “fetish of set 

theory”. The Association of Mathematics Teachers of India adopted the position that 

“there is no one New Mathematics but there are many versions of it. Some features of 

these are desirable e.g. emphasis on concepts, discovery approach, transformation 

geometry approach, programming, matrices etc. and use of modern teaching aids. These 

must be retained. Some other feature[s] of New Mathematics are undesirable. […] These 

must be given up” (Kapur, 1978). 

Criticism of the Western New Math had surfaced already in the early years of the 

reform. M. A. B. Deakin from the Papua and New Guinea Institute of Technology wrote a 

scathing critique of the New Math reform in his country. 

American mathematics syllabuses are exported, particularly to developing countries. 

In some cases this is a conscious process, in that American consultants are called in, 
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or in that a university in a developing country may enter a formal relationship with 

an American college or university. In other cases, the export is unconscious. An 

overworked and underqualified administrator in an emerging nation feels impelled 

to “keep up with modern developments overseas”, and copies almost verbatim a 

course designed for (say) high schools in upper New York State. […] It is therefore 

disconcerting to administrators of tertiary mathematics here to find that the 

secondary schools have adopted a rather faddish “New Math” syllabus, loaded with 

set theory and its associated jargon. (Deakin, 1971, pp. 1017–1018) 

In general, it is difficult to find a united, coherent view of New Math. D’Ambrosio 

(1991) observed that “the basis of the movement in Brazil can be described as a 

concoction of ideas from around the world, a synthesis of which was done by Brazilian 

mathematics educators themselves. […] The ideas having most impact on the Brazilian 

curriculum were those of the School Mathematics Study Group, George and Frédérique 

Papy, Zoltan Dienes, Lucienne Félix and Caleb Gattegno. Each of the programs developed 

by them were based on different premises and assumptions as well as having very 

different focuses. The fact that these programs were combined, with little or no critical 

analysis, was quite detrimental to the Brazilian curriculum, for it generated a curriculum 

based on inconsistencies of various kinds” (p. 71). De Carvalho (2014) suggests that the 

strong investment of the United States in Latin America for political reasons, was 

responsible for a preponderant American influence in mathematics education reform.  

The fear that Latin America would “go communist” had, as a result, considerable 

American investments in the region. As part of the “Alliance for Progress” 

(launched by President John F. Kennedy in 1961) or direct foreign aid programs, 

several cooperation agreements in the educational area were signed between the 

United States and specific Latin American countries. This helps to explain why, in 

Latin America, even though the European contribution to the new math movement 

was known, the major influence was American. For example, many publications of 

the School Mathematics Study Group (SMSG) were translated into Portuguese, 

including its complete secondary school mathematics textbooks, while non-

American teaching materials were much less used. Exceptions were the use of 

Papy’s textbooks in a very prestigious school in Rio de Janeiro and the translation of 

a textbook of the School Mathematics Project – from England – into Spanish in 

Venezuela. This textbook did not follow Venezuela’s official mathematics 

curriculum, however, and had scant influence. (de Carvalho, 2014, p. 353) 

From the examples to be found in the literature, it becomes clear that, although many 

countries indicate the great influence of the American textbooks and teaching material, the 

New Math movement was not regarded as unified or unequivocal. There was a healthy 

amount of criticism and a large measure of freedom to adapt the New Math message to 

local requirements. Many features were held in common between the main protagonists, 

but most of the actors were well aware of the differences between the various reform 

traditions. So to what extent can the New Math reform be regarded as an international 

phenomenon?  
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4 An international phenomenon? 

The foregoing analysis testifies to the conclusion made by J. Kilpatrick (1997) that “all 

educational reform is local” (n.p.). On a more sophisticated analysis, however, the 

international dimension of the reform movement, which established itself after 

Royaumont, had important and perhaps unanticipated consequences for the 

implementation of the reform, and in particular for the actors involved. According to Bob 

Moon, the many conferences implementing, discussing and criticizing the Royaumont 

Seminar produced a professionalization of experts on school mathematics. This in turn, 

legitimized and strengthened the position of reformers in their own country. “Being 

international” had a positive impact on the status of national experts. Although Moon 

based his analysis on the implementation of New Math in primary education, his 

observations may have a more general validity. In the face of an international consensus 

(or so it was construed), governments left the details of the reform and its critical 

evaluation to the new group of experts, who could boast international experience. This 

resulted in a rapid institutional development of research institutes, teacher training 

programs and mathematics education centers, fostered by a general feeling in many 

countries “not to be left behind”. From the middle of the 1960s, Bob Moon concludes, 

“reform became, and was initiated through, an international rather than national debate” 

(Moon, 1986, p. 199).If this is indeed so, one may wonder at who benefited most: 

University mathematicians who were already well organized on an international level, or 

mathematics teachers who were bound to local school systems with little chance of being 

heard in international conferences? Moon observes that “one interest group appears to 

have been particularly influential, in the early years of reform. The impact of university 

mathematicians, notably these advocating a “Bourbakist” reform of the school curriculum, 

is demonstrated in each country” (Moon, 1986, p. 216). He adds, however, that “despite 

all the investment of time and energy and political activity, many of the ideas advanced by 

those from the university world failed to become established and […] a markedly different 

climate existed two decades after Royaumont”. 

As indicated by many authors, the New Math reform was not a single, well-oriented 

and coherent movement but rather an amalgam of proposals and projects. Before the 

Royaumont Seminar, there was little interaction on an international scale. Both in the US 

and in Europe small, informal groups were working on some ideas of curriculum reform 

(often called “curriculum improvement”), but from different angles and with varying 

degrees of success. After Royaumont, some international collaboration between Europe 

and the US took shape, but its direct influence was limited. On a symbolic level, however, 

the international dimension (at least in Europe) favored those mathematicians who had 

access to the network of European and American reformers. This may have been 

particularly important in smaller countries, whereas it did not make so much difference in 

countries like the US, the UK and France. As de Carvalho (2014) concludes for Latin 

America: “The modern math movement had varying degrees of success in Latin American 

countries. Perhaps its most important result was fostering the creation and development of 

the community of Latin American mathematics educators” (p. 355). 

The New Math reform proved to be a failure in the US. It did not survive the 1970s. 

Also in European countries, many of the new elements that had been introduced were 

either abolished or adapted. Yet, the institutional basis of mathematics education studies 

seemed to have survived the storm of criticism in most countries. Could it be that the same 
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international dimension which was responsible for the amount of independence that 

mathematics reformers obtained in the 1960s was also instrumental in establishing 

mathematics education studies as an independent field? 
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ABSTRACT

Norway got its Constitution in 1814 after being subject to Denmark for 400 years. As a result of the
Napoleonic wars, we had to go into a union with Sweden that lasted until 1905. However, the years
after 1814 were a time for national awakening, where Norway had to rely on its own resources.

The first Norwegian university was functional from 1813, and there were learned schools that
prepared students for the university. These schools had mostly been using Danish textbooks, but in
1825, Bernt Michael Holmboe wrote the first Norwegian textbook in mathematics for the learned
schools. Holmboe wrote textbooks in arithmetic, geometry, stereometry and trigonometry, and
most of them came in several editions.

Holmboe became a very influential person in the development of school policy in Norway, and

he was a close friend of the mathematician Niels Henrik Abel. The learned community was small in

Norway in the beginning of the 19th century, but that did not prevent Holmboe’s textbooks from

meeting opposition. His textbook in geometry caused a long and bitter controversy with the only

other Norwegian professor in mathematics at that time.

1 Introduction

Towards the end of the 18th century, a great effort was done to establish mathematics as a
school subject in the higher education in Norway, and a school reform that was introduced
around year 1800 lead to proper teaching in mathematics. The mathematical community in
Norway at that time was small, and all the participants did necessarily become significant
members of the society. This was a time of considerable development in the subject of
mathematics, and this also influenced the debate about mathematics education.

My focus in this paper is the textbooks in mathematics written by Bernt Michael Holm-
boe (1795–1850), and my motivation is to look at the development of mathematics edu-
cation and the didactic debate in the early 19th century, and what significance Holmboe
played. The topics in school textbooks for the learned schools during this period were
arithmetic and algebra, geometry, trigonometry and stereometry, and there was a growing
demand for rigour in mathematics. An intuitive understanding of numbers was, as an
example, not sufficient anymore, and this reflected on the textbooks. The teaching of
mathematics was also a motivation for this demand for rigour.

I will in this paper try to understand these textbooks based on the historical period, and
the political and social conditions in which they were written. I will describe the content
of the textbooks, I will illuminate issues like how updated they where with regards to the
development of mathematics, where the inspiration came from, and a relevant question
will be what we may learn today from these textbooks and the didactical debate in early
19th century.
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Issues addressed in this paper, and earlier research about the textbooks of Bernt Michael
Holmboe, may be found in Christiansen (2009, 2010, 2012a,b, 2015b,a) and in Bjarnadóttir
et al. (2013). All translations from Norwegian and Danish-Norwegian to English are made
by the author.

1.1 The demand for rigour – an example

An intuitive and geometrical interpretation of real numbers did not satisfy the 19th century
mathematicians’ demand for purity in methodology, and the need for a new understanding
of real numbers did arise in connection with the proof of the intermediate value theorem.
This theorem was proven by Bolzano (1817), and both continuity of functions and conver-
gence of infinite series are defined and used correctly in this paper, as it is understood in
a modern sense. Bolzano’s comprehensive paper was later translated into English (Russ
1980, 2004), and the latest of these two translations forms the basis of the following short
description.

According to Russ (1980: 157), Bolzano’s paper includes "the criterion for the (pointwise)
convergence of an infinite series, although the proof of its sufficiency, prior to any definition
or construction of the real numbers, is inevitably inadequate". This criterion is, however,
not concerning the definition of convergence, but the Bolzano-Weierstrass theorem, which
states that every bounded sequence has a convergent subsequence.

Bolzano’s only strict requirement is "that examples never be put forward instead of
proofs and that the essence [Wesenheit] of a deduction never be based on the merely figurative
use of phrases or on associated ideas, so that the deduction itself becomes void as soon as
these are changed"1 (Russ 2004: 256).

6
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In modern words, Bolzano’s explains his point by consider-
ing two formulations. First we have a geometric theorem in
intuitive form, which states that if a continuous line, where
the ordinates are first negative and then positive – or con-
versely – then this line must necessarily intersect the axis
of abscissas somewhere between those ordinates. Next we
have a purely analytical formula – the intermediate value theorem – which states that if
we have a function f , continuous on [a,b] such that f (a) < 0, f (b) > 0 then it follows that
∃c ∈ (a,b) such that f (c) = 0. Bolzano then states that we cannot conclude the intermediate
value theorem from the geometric theorem in intuitive form. We may, on the contrary,
conclude the mentioned geometric theorem from the intermediate value theorem. (Russ
2004: 254–255)

2 A short historical background

Some historical events had a significant impact on how Norway developed as a nation.
The black plague played a very significant role in the development of the Norwegian

society. It reached Norway in the summer of 1349, and it is believed that it killed 2/3 of the
country’s population. This was one of several reasons why Norway entered a union with
Denmark in 1380, a union that throughout the ages had many different forms. The Danish
era lasted 434 years, until 1814.

1Bolzano also criticised Gauss’s original proof of the fundamental theorem of algebra of 1799, because
Gauss here used geometrical considerations to prove an algebraic theorem (Otte 2009: 53). Bolzano did not
doubt the validity of the theorem, but he criticised the "impurity" of the method.
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The Reformation started in Germany in 1517, and was literally forced on Norway by
the Danish King in 1536. Norway had been in a union with Denmark, sharing the same
king, but in 1536 the Norwegian National Council [Riksråd] was dissolved. This meant that
Norway was no longer a nation, but became a part of Denmark, and this had of course a
profound importance on the development of the country. The reformation had, however, a
positive effect on the development of the educational system in Norway.

Much happened in Norway in and around 1814. Denmark-Norway was on the losing
side of the Napoleonic Wars, and at the peace treaty in Kiel in January 1814, it was agreed
between the Danish King and the Swedish Crown Prince that Norway should enter into a
union with Sweden. In Norway there was great dissatisfaction with this agreement, and
representatives of the Norwegian elite gathered at Eidsvoll in February in an attempt to take
control of country’s own destiny. It was agreed that the provision in Kiel should be rejected
and that Norway should be declared an independent state. The Norwegian Constitution
was drafted and was signed on May 17, 1814. On the same day, a Danish Prince, Christian
Fredrik, was chosen as king. As a reaction to this, the Swedish Crown Prince went to war
against Norway in the summer of 1814, a war that lasted no more than three weeks. The new
king had to abdicate and left the country in October. Norway had to adjust the Constitution,
and went into a union with Sweden that lasted till 1905.
(Kunnskapsforlaget 2006)

3 Educational system

Since the Middle Ages, there have been schools for the children of the elite. There was a
growing religious pietism in Norway after the Reformation, and in the 18th century there
was a demand to educate children of common people, mainly to make them able to read
the Bible.

3.1 Schools for regular people

In the 1730s there were several laws that regulated children’s confirmation in the church,
and the teaching that led to it. Schools for common people were introduced where children
could learn Christianity, reading, writing and calculations. Schools were established in
cities and towns, but in the rural areas the situation was a bit different.

The system that developed in rural areas is something we call "omgangsskole", where
the teacher moved from area to area, stayed at one farm, and taught all the children in
the neighbourhood. After a while, the teacher moved on. In a year, the children could get
around two months of schooling.
(Kunnskapsforlaget 2006)

3.2 Learned schools

Cathedral schools [Kathedralskoler] were schools from the medieval time that were con-
nected to cathedrals, and were meant to give a theologic education to the future priests.
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Table 1: Some Cathedral schools from the Middle Ages

SCHOOL ESTABLISHED REMARKS

Oslo 1152
Bergen 1152
Trondhjem 1152
Hamar 1152 Merged with Oslo Kathedralskole in

1602. Re-esablished in Hamar in 1876

Stavanger 13th century Moved to Christiansand in 1686. Sta-
vanger had a smaller latin school that
was closed in 1739, and re-established
in 1824

Christiansand 1686

All cathedral schools were turned into Latin schools, or grammar schools [latinskoler],
when the reformation was introduced in Norway in 1536, and it was mandatory for every
town to have a one. The Latin schools, together with the old cathedral schools, constituted
the so-called learned schools. Some of the schools did, however, keep their old names. Many
of these Latin schools were of a poor quality, so in reality, the higher education preceding
the university in 1814 was only four cathedral schools.

Table 2: Some learned schools after 1814

SCHOOL ESTABLISHED

Christiania Cathedralskole 1152
Bergens Cathedralskole 1152
Trondhjems Cathedralskole 1152
Christiansands Cathedralskole 1686

Drammens Latinskole 1817
Fredrikshalds Latinskole 1822
Skiens Latinskole 1822
Stavangers Latinskole 1824

By a governmental decree in 1809, the pupils started at the learned schools at the age of
9 or 10 years, and the duration was normally eight years consisting of four two-year grades,
and each day at school was seven hours – four before noon and three after. The university
qualifying examination [examen artium] were arranged by the university.

The learned schools gave a classic education, and a higher education in scientific
subjects at the same standard as the learned schools could be achieved at the Military
Academy.2 This school admitted pupils from the age of 12–14.

Several intermediate schools [middelskoler] were established in smaller towns after 1814,
and they were learned schools without the upper two-year grade.
(Andersen 1914; Kunnskapsforlaget 2006)

2Den frie mathematiske Skole (1750–1798), Det norske militære Institut(1798–1804), Det kongelige Norske
Landcadetcorps’ skole (1804–1820) and Den Kongelige Norske Krigsskole after 1820.
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The kingdom Denmark-Norway introduced a new school reform around the year 1800
which in many ways strengthened the position of the discipline of mathematics, and from
now on may we talk about proper teaching in mathematics in the higher education (Piene
1937). There was much work done in the last decades of the 18th century to reintroduce
mathematics as a subject in school.

3.3 University

The first Norwegian University was established in Christiania in 1811, and came into
function in 1813. The name was The Royal Fredriks University [Det Kongelige Frederiks
Universitet (Universitas Regia Fredericiana)], named after the Danish King Fredrik the 6th,
and it was changed to The University of Oslo [Universitetet i Oslo] in 1939. The only use of
mathematics the first years was for the examen philologico-philosophicum – a preparatory
exam for other subjects. The lectures in mathematics were on trigonometry, stereometry,
basic algebra, and later applied mathematics after Christopher Hansteen’s appointment.
(Holst 1911; Kunnskapsforlaget 2006)

3.4 Niels Treschow (1751–1833)

The philosopher and politician Niels Treschow was an important person in the learned
society of Norway, and he was professor in philosophy at the new university at the time
when Holmboe was a student. Treschow published several books, among them a textbook
in Common Logic (Treschow 1813), clearly influenced by Immanuel Kant. Treschow has
a rigorous classification of statements – in direct and indirect statements, and in analytic
and synthetic statements – based on the relation between subject and predicate in the
statements, and on the nature of the statements (Treschow 1813: 161–162). Exactly the
same classification is described in the introduction chapter of Holmboe’s textbook in
arithmetic (Holmboe 1825: 1–3).

A statement [sætning] is connection of two concepts. The first thought of, in the con-
nected concepts in a statement is called subject [Subject], and the second is called predicate
[Prædicat]. Statements are called direct [umiddelbar] if one perceives the subject’s connec-
tion to the predicate without regarding other statements, and indirect [middelbar] if one
uses other statements when considering the connection between subject and predicate. In
the latter case, the indirect statement will then be a consequence of the statements used to
elucidate it. The presentation of the conclusions used to elucidate the subject’s connection
to the predicate in indirect statements is called a proof [Beviis] (Holmboe 1825: 1–2).

The statements are divided in synthetic or practical statements, expressing that a con-
nection between concepts shall be made, and analytic or theoretic statements, expressing
a connection between concepts that already exists. Both synthetic and analytic state-
ments may be direct as well as indirect, and Holmboe is therefore introducing four types of
statements (Holmboe 1825: 2–3):3

Direct synthetic statements which he calls Postulates [Fordringssætninger]. A postu-
late expresses that two concepts shall be connected.

Direct analytic statements which he calls Fundamental Statements [Grundsætninger]
or Axioms. An axiom expresses the relations between two connected concepts.

3All these definitions are derived from Treschow (1813: 161pp), but it seems like Holmboe has introduced
the synonyms practical for synthetic, and theoretic for analytic.
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Indirect synthetic statements which he calls Problems [Opgaver]. A problem ex-
presses that two concepts shall be connected using already existing connections.

Indirect analytical statements which he calls Theorems [Læresætninger]. A theorem
expresses a connection between two concepts which is proven to be a conse-
quence of preceding connections.

There are in Holmboe’s textbook in arithmetic 10 direct statements called Fundamen-
tal Statements, there are 27 indirect synthetic statements, or problems, and there are 30
theorems and 163 corollaries. The preface of Holmboe (1825) may seem unnecessarily
complicated and difficult for a textbook meant for young students, but Holmboe clearly
states that his textbook is not meant for self-study, but requires a skilled teacher.

4 Bernt Michael Holmboe (1795–1850)

Bernt Michael Holmboe was born on the 23rd of March 1795 in Vang in Valdres, centrally
situated in Southern Norway, and he died on the 28th of March 1850, at the age of 55 years
and 5 days. Holmboe was a teacher at Christiania Kathedralskole from 1818 till 1826, and
after that he was lecturer at the university until 1834, when he was appointed professor
in mathematics, a position he had until his untimely death. Holmboe’s home burnt down
shortly after his death, and some of his works and letters were lost, in addition to some of
the works and letters from Niels Henrik Abel (1802–1829). (Bjerknes 1925: 56,79)

Among Holmboe’s students we find mathematicians like Niels Henrik Abel, Ole Jacob
Broch and Carl Anton Bjerknes. Holmboe proclaimed that in no other subject did novices
complain more than in mathematics (Piene 1937), and his aim was to make the students
familiar with mathematical signs before a more methodical study. He further stated that
unless pupils engaged in "uninterrupted practice" ["idelig øvelse"] even persons with
several years of education would find that mathematics is "something of a mind consuming
and boring matter" ["noget åndsfortærende og kjedsommelig tøi"]. The lecture notes of Carl
Anton Bjerknes shows, however, that Holmboe’s teaching was characterized by pre-abelian
times, in spite of his knowledge of Abel and his works (Bjerknes 1925).

Holmboe wrote in a letter to the then 24 years old Carl Anton Bjerknes (Holmboe 1849)
that he is inspired by the great French mathematician Joseph-Louis Lagrange (1736–1813).
Bjerknes had asked Holmboe to advise him about studies in mathematics, and Holmboe
wrote "The best I have to state in this respect is to inform you about some notes from Lagrange
and some rules and remarks by him regarding the study of mathematics, which I found in
Lindemanns and Bohnebergers Zeitschrift für Astronomie about 30 years ago . . . Those who
really want, should read Euler, because in his works all is clear, well said, well calculated,
because there is an abundance of good examples, and because one should always study the
sources".

4.1 Holmboe’s textbooks

The following table shows an overview over Holmboe’s textbooks, their Norwegian titles
and their various editions.
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Table 3: An Overview over Holmboe’s textbooks

TITLE EDITION YEAR EDITED BY PUBLISHER

Lærebog i Mathematiken
Første Deel, Inneholdende Indledning
til Mathematiken samt Begyndelses-
grundene til Arithmetiken

1st 1825 Jacob Lehmann
2nd 1844 J. Lehmanns Enke
3rd 1850 J. Chr. Abelsted
4th 1855 R. Hviids Enke
5th 1860 R. Hviids Enke

Lærebog i Mathematiken
Anden Deel, Inneholdende
Begyndelsesgrundene til Geometrien

1st 1827 Jacob Lehmann
2nd 1833 Jacob C. Abelsted
3rd 1851 Jens Odén R. Hviids Enke
4th 1857 Jens Odén J. W. Cappelen

Stereometrie 1st 1833 C. L. Rosbaum
2nd 1859 C. A. Bjerknes J. Chr. Abelsted

Plan og sphærisk Trigonometrie 1st 1834 C. L. Rosbaum

Lærebog i den høiere Mathematik
Første Deel

1st 1849 Chr. Grøndahl

As a general rule throughout the first four textbooks, theorems and proofs have this
structure, as described in Holmboe (1825: 3):

Theorem [Læresætning or Theorem] — A verbal description without any mathemati-
cal notation.

Condition [Betingelse or Hypothesis] — A small number of theorems have condi-
tions set in algebraic notation. The condition is a theorem showing a preceding
connection.

Algebraic statement [Sats or Thesis] — The theorem represented in pure algebraic
notation.

Proof [Beviis] — A regular proof of the theorem using algebraic notation and/or
written text.

A theorem that is a direct consequence of a preceding theorem, is called a Corollary
[Tillæg], or a supplement. Some of the corollaries are followed by a proof, but I have not
found any instances where a corollary is written as an algebraic statement.

4.2 Arithmetic

Volume one of Holmboe’s textbook in mathematics contains the introduction to arithmetic
and algebra. The book came in a total of five editions from 1825 through 1860, but only the
first three (1825; 1844; 1850) were published in Holmboe’s lifetime, and these three editions
are the attention of this description.

In the first three editions, there is an interesting development in the definition and
use of irrational numbers, which is in accordance with the development of mathematical
analysis.
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Table 4: Definitions of irrational numbers

EDITION DEFINITION

1825 Any number, that cannot be expressed either as a whole number or as a
fraction, whose numerator and denominator are whole and finite numbers,
is called an irrational number.

1844 Any magnitude, that cannot be expressed either as a whole number or as a
fraction, whose numerator and denominator are whole and finite numbers,
but whose value always falls between two fractions t

n and t+1
n , where t and n

are whole numbers, and where one can make n larger than any given
number, is called an irrational number.

1850

The definition from 1825 tells us what an irrational number isn’t, it doesn’t tell us what it
is. Opposed to irrational numbers, all whole numbers and fractions, whose numerator and
denominator are whole and finite numbers, are called rational numbers. The definition of
1844 and 1850 may indicate an influence by Bernard Bolzano and his definition of measur-
able numbers (Russ 2004: 347–349,360–361), and Holmboe now specifies magnitudes, and
not numbers.

The following table illustrates some of the use of irrational numbers in corollaries and
in the definition of the sum where at least one of the addends is irrational.

Table 5: Use of irrational numbers

EDITION COROLLARY / DEFINITION

1825 One can always find a rational number, whose value approaches the value of
a given irrational root, so that the difference between them is less than any
given unit fraction.

1844 If two irrational, a positive magnitudes P and Q, both independent of n and
between boundaries of the form r and r + a

n , are in such a way that
r < P < r + a

n and r <Q < r + a
n , where one can make n larger than any given

number and a is finite. Then P =Q.

1850

1850 If one or both of two magnitudes, x and y , are irrational, and where
t
n ≤ x < t+1

n and p
n ≤ y < p+1

n , and one can make n larger than any given
number. The sum x + y is then to be understood as the common boundary
for the sums t

n + p
n and t+1

n + p+1
n , whose difference is 2

n , which disappears
when n grows infinitely.

a In the 1850 edition, the specification of irrational is taken out. The statement is now valid for
real numbers or magnitudes – rational and irrational.

Bernard Bolzano introduces measurable numbers in his Pure Theory of Numbers ["Reine
Zahlenlehre"]4 (Russ 2004: 347–49, 360–61). According to the definition, S is measurable

4Was not published until late 20th century (Russ 2004: 681). Bolzano wrote in a letter, dated 5th of April,
1835, to one of his former students, that he had "one book near completion with the title Pure Theory of
Numbers consisting of two volumes: an Introduction to Mathematics, the first concepts of the general theory
of quantity, and then the Theory of Numbers itself " (Russ 2004: 347).

822



when

∀q ∈N ∃p ∈Z such that S = p

q
+p1 = p +1

q
−p2 where p1 ≥ 0, p2 > 0

In other words
p

q
≤ S < p +1

q

Bolzano explains that p1 and p2 denotes a pair of strictly positive number expressions, the
former possibly denoting zero (Russ 2004: 361).5

The measurable number may be used to measure, or determine by approximation,
the magnitude or quantity. Bolzano called the fraction p

q the measuring fraction, and the

fraction p+1
q the next greater fraction. p1 is called the completion of the measuring fraction

since S = p
q +p1. Every rational number is a measurable number where p1 = 0, and indeed

a complete measure.
Abel is the only known reference that Bolzano was known already in the 1820s, as he

mentions Bolzano in his Paris notes (Schubring 1993: 45). Schubring (1993: 50) writes that
during the four months Niels Henrik Abel stayed in Berlin in 1825, he was in close contact
with August Leopold Crelle and his mathematical circle, where he was engaged in intensive
conversations on all mathematical issues. Crelle had Bolzano’s three booklets in his personal
library, and Abel’s reading of Bolzano was part of this process of communication.

4.3 Geometry

The textbook in basic geometry (Holmboe 1827) starts with several definitions of basic
concepts. The very first definition describes geometry as a science about the coherent
magnitudes. Coherent magnitudes are the space with all available dimensions and time.
According to Solvang (2001), Holmboe’s way of organizing the subject matter was influenced
by Adrien-Marie Legendre’s (1752–1833) introduction to geometry (Legendre 1819). The
geometry of Legendre is constructed mainly the same way as Euclid, and starts with a long
list of what he calls explanations, similar to what Euclid calls definitions.

The first definition in Legendre (1819) defines geometry as a science which has for its
objects the measure of extension. Extension has three dimensions, length, breadth, and
thickness. With reference to classification of coherent magnitudes in space and time,
Holmboe classifies geometry in two parts:

1. The real geometry defined by the relations between the various magnitudes in
space, without considering their changes in time.

2. Mechanics, defined by the changes the magnitudes goes through in time. All
changes on a magnitude through time are called motion, and it is conditioned by
force.

It is postulated that the space stretches indefinitely.6

5Bolzano denoted them p1 and p2, but the superscripts only distinguished, they where not powers (Russ
2004: 349). I have chosen to use subscripts to avoid confusion.

6Geometrie er en Videnskab om de sammenhængende Størrelser. Sammenhengende Størrelser er ere
Rummet med enhver deri forekommende Udstrækning og Tiden. Med Hensyn til de sammenhængende
Størrelsers Inddeling i Rum og Tid, inddeles Geometrien i 2 Dele. (1) Den egentlige Geometri, der bestemmer
de i Rummet forekommende Størrelsers Forhold til hinanden uden Hensyn til deres Forandring i Tiden. (2)
Mekanik, der bestemmer de Forandringer, som Størrelserne undergaae i Tiden. Anm. Enhver Forandring, som
en Størrelse i Tiden undergaaer, kalles Bevægelse, hvis betingelse kaldes Kraft. Fordringssætning. Rummet
maa tænkes udstrakt i det Uendelige. (Holmboe 1827: 1)
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Holmboe advises the teacher to show moderation in the review of proofs, and to show
examples using numbers before the examination of the proof. This practical advice con-
tradicts the structure of his textbooks, which is strictly Euclidean. There are few exercises
and numerical examples, and the notion of construction means to elucidate the concept,
and not to use compass and ruler. Holmboe does not give any detailed instructions on how
to use ruler and compass in this book, nor does he mention geometric locus, but writes
about elucidative [anskueliggjørende] objects, magnitudes and concepts. His idea may be
that the mathematics teaching shall educate the students with respect to formal logic, by
encouraging them to think and conclude.

Holmboe’s first definition is a description of a classification – any bounded part of
the space is called a body [Legeme], the boundary of the body is called a face [Flade], the
boundary of a face is called a line [Linie], and the boundary of a line is called a point [Punkt].
A body has three extensions, called length [Længde], breadth [Brede] and height [Høide], a
face has two extensions, called length and breadth, a line has one extension, called length,
and a point has no extensions. Holmboe then states without any explanation, but with an
illustration,

"Fundamental concept. A straight line." [Grundbegreb. En ret Linie.]

A curved line [krum Linie] is a line of which no part is a straight line, and a straight plane
[ret Flade] is a plane where one, between two arbitrary points may draw a straight line.
The fundamental statements of the straight line is that a straight line may be prolonged
infinitely, one may always draw one straight line between two points, and one may never
draw more than one straight line between two points. The part of the straight line that lays
between the two points is the shortest of all lines drawn between the points, and it is called
the distance [Affstanden] between the points. (Holmboe 1827: 2–4)

Two of the chapters are called "About two straight lines intersected by a transversal",7 and
"About parallel lines".8 The first of these chapters gives a thorough description of all pairs of
angles this situation produces. This is followed by the consequences of two corresponding
angles being equal, and vice versa, the situations which have the consequence that the
corresponding angles are equal (Holmboe 1827: 11–16).

The chapter "About parallel lines" has a theorem with proof which states that when
two straight lines are intersected by a transversal, such that an outside angle is equal to
its corresponding interior angle, that is ∠r =∠p on the first figure on page 11, then the
two straight lines cannot intersect no matter how far they are prolonged in both directions
(Holmboe 1827: 45). The structure of the proof is that if the two lines cross on one side
of the transversal, then the two lines and the transversal form a triangle, where ∠r is an
outside angle. Holmboe has already demonstrated that an outside angle of a triangle is
always grater than any of its interior angles (Holmboe 1827: 34), so therefore ∠r > ∠p,
which contradicts the condition.

This is followed by Holmboe’s definition of parallel lines:

"Two straight lines in the same plane that do not intersect when prolonged indefinitely
to both sides, are parallel to each other, or the one is parallel to the other"9 (Holmboe
1827: 46)

7Om to rette Linier, som overskjæres af en tredie
8Om parallele Linier
9To rette Linier i samme Plan, som til begge Sider forlængede i det Uendelige ikke skjære hinanden, siges

at være parallele med hinanden, eller den ene at være parallel med den anden.
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In two following theorems, using the same situation of two straight lines intersected
by a transversal, he demonstrates first that if the outside angle is greater than the interior,
∠r >∠p, then the two straight lines are not parallel. He next proves that if the two lines
are parallel, then∠r =∠p. This last proof is done by assuming that∠r 6=∠p, and showing
that the lines then are not parallel. (Holmboe 1827: 50)

�
�
�
�
�

p

r

n

m ∠r =∠p =⇒ m ∥ n

∠r >∠p =⇒ m ∦ n

m ∥ n =⇒ ∠r =∠p

Figure 1: Theorems about parallel lines

In a following corollary he then states that if two lines are parallel, and intersected by
a transversal, then the sum of the two interior angles equals 2R. This is a consequence
of the previous theorem that proves that ∠r =∠p. This is followed by another corollary
stating that if the sum of the two interior angles is not equal to 2R, then the two lines are
not parallel. (Holmboe 1827: 51–52)

�
�
�
�
�

q

o

n

m
m ∥ n =⇒ ∠o +∠q = 2R

∠o +∠q 6= 2R =⇒ m ∦ n

Figure 2: Corollaries about parallel lines

These two corollaries carry many characteristics of corresponding angles in the original
text. It is the last one mentioned here that has the same wording as Euclid’s parallel
postulate, but it is not emphasized in any way. Holmboe is in his textbook very true to
the ideas of the Elements in the way of introducing and presenting the subject matter, but
without ever referring to or even mentioning Euclid.

Holmboe’s textbook in geometry came in a total of four editions, but only the two first
were published in Holmboe’s lifetime. There are very few differences from the first edition
to the second, and none concerning the concepts discussed in this paper.

4.4 Trigonometry

Most of Holmboe’s textbooks came in several editions, but the textbook in plane and
spherical trigonometry (Holmboe 1834: 3) was his only textbook in basic mathematics
that came in one edition only, in 1834. Holmboe starts by defining trigonometric lines
to an arc, and with this definition, lines in spherical geometry also have trigonometric
lines. Trigonometric values calculated by ratios of sides in right angled triangles are results,
deducted from the definitions, and presented in his textbook as a theorem with proof.

Holmboe defines plane trigonometry (Holmboe 1834: 3) to be that part of geometry
that may be used for "solving the triangle". By this Holmboe means that there are six
magnitudes in a triangle, three sides and three angles, and when a necessary and sufficient
number of these six magnitudes are known to unambiguously define the triangle. The task
is to find the remaining magnitudes. There is a similar definition where Holmboe defines
spheric trigonometry (Holmboe 1834: 45) to be the task to unambiguously define a spherical
triangle.
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Trigonometric lines

"The dependencies between sides and angles in a triangle, or in general between straight
lines and angles, or the circular arcs that measure the angles, may be expressed by certain
lines, called trigonometric lines" (Holmboe 1834: 3). These lines are geometric objects
shown on the constructions in figures 3 and 4, and the numerical values of their lengths are
what a modern reader understand by sines, cosines, etc. With a current understanding of
straight lines, we would say that the trigonometric lines were line segments. It was, however,
not un-common in 19th century and earlier to use the word line (Linie or linje) for a line
segment.

There is also another important definition that implies that Holmboe is assuming Eu-
clidean geometry. §2 defines that if the sum of two angles equals 90◦, they are called
complementary, and if the sum of two angles equals 180◦, they are called supplementary. A
corollary to §2 states that each of the acute angles in a right angled triangle is the comple-
ment of the other acute angle, and that each of the angles in a right angled triangle is the
supplement of the sum of the other two angles (Holmboe 1834: 3–4). This corollary refers
to §44, with corollaries 1 and 2, in his textbook in geometry (Holmboe 1827: 55–56).

Figure 3 is presented in the textbook (Holmboe 1834: Final page, Figure 1). It is interest-
ing to note that in Holmboe’s figure, quadrant 1 is AC H , quadrant 2 is HC K , and so on –
mirrored from what we use today.

Figure 3: Construction of trigonometric lines

The trigonometric lines to the arc AB are:

Sine – BD The sine of an arc, or of the central angle when the radius is 1, is the perpen-
dicular from the end point of the arc (B) to the diameter through the other end
point of the arc (D).

Cosine – DC The cosine of an arc, or of the central angle when the radius is 1, is the
sine of the complementary angle.
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BF = DC = sin y = cos x = DC
A consequence of this is that cos x = sin(90◦−x)

Tangent – AE The tangent of an arc, or of the central angle when the radius is 1, is the
perpendicular on the diameter through one of the end points of the arc (A), to the
point of intersection with the prolonged diameter through the other end point of
the arc (E).

Cotangent – GH The cotangent of an arc, or of the central angle when the radius is 1,
is the tangent of the complementary angle.
G H = tan y = cot x

Secant – EC The secant of an arc, or of the central angle when the radius is 1, is the
distance between the centre (C ), which is the angle vertex, and the end point of
the tangent line of the arc, outside the periphery of the circle (E).

Cosecant – GC The cosecant of an arc, or of the central angle when the radius is 1, is
the secant of the complementary angle. The distance between the centre (C ) and
the cotangent line outside the periphery of the circle (G).
G H = tan y = cot x =⇒ GC = sec y = csc x

Versed sine – AD The versed sine of an arc, or of the central angle when the radius is 1,
equals 1−cos x

Versed cosine – HF The versed cosine of an arc, or of the central angle when the radius
is 1, equals 1− sin x

Figure 4: Trigonometric lines

Holmboe (1834: 24–25) demonstrates that sin x < AB < tan x, when 0 < x < π
2 , a point

that is used later in calculating the trigonometric values. The sine line to a specific arc is half
the chord of the double arc, and an arc is always longer that its chord, therefore AB > sin x.
The triangle C AE is greater than the segment C AB , therefore AB < tan x.

827



Right-angled triangles

Holmboe states a theorem (Holmboe 1834: 15–16) where the trigonometric lines may be
found as ratios between the sides in a right-angled triangle, that is the magnitude of one
side divided by the magnitude of another side. In today’s textbooks in trigonometry these
ratios are the definitions of trigonometric values.

Figure 5: Trigonometry in right-angled triangles

Theorem 1
Consider the triangle 4 PQR,∠R is a right angle, and the sides are lower-case p, q, and r , as
shown in Figure 5.

p/r = sinP, q/r = cosP

p/q = tanP, q/p = cotP

r /q = secP, r /p = cscP

Proof With radius PA = 1, draw arc AB . Construct AC perpendicular on PB , as shown in
Figure 5.

=⇒ AC = sinP and C P = cosP

The ratios between the corresponding sides of the triangles 4PQR and 4PAC are the
same, so we have

r : 1 = p : sinP

=⇒ sinP = p/r

and correspondingly for all the other trigonometric values. �

Calculation of trigonometric values

Holmboe (1834: 25–27) describes how to calculate trigonometric values with the precision
required. In a unit circle, the length of the full periphery equals 2π, and the problem is
to find a value for sin x with an arbitrary x. He has already established in a theorem that
every arc x between 0 and π/2 is larger than its sine and smaller than its tangent (Holmboe
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1834: 24–25), as shown in figure 4 on page 13. Holmboe states in a theorem (Holmboe
1834: 25–26) that for every arc x between 0 and π/2, the sine must be greater than x/

p
1+x2.

The proof for this is purely algebraic, but my geometric understanding of x/
p

1+x2 is
shown in Figure 6.

Figure 6: A geometric understanding of x/
p

1+x2

The magnitude δ is varying continuously and increasing between δmin = 0 when x = 0,
and δmax when x = π

2 . From the figure we then see that sin(x −δ) = x/
p

1+x2, and since
x > x −δ we have that sin x > sin(x −δ). We may therefore conclude that

0 < x < π

2
=⇒ sin x > xp

1+x2

The following assignment is then presented.

Assignment 2

To calculate the value of trigonometric lines to any given arc with a certain
number of decimals.

Solution 3

x − xp
1+x2

< 1 decimal unit

x > sin x > xp
1+x2

By decimal unit is here meant "decimal unit of a certain order after the decimal point", and
Holmboe gives the following example.
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Example

x = 1 arcminute

= π

180 ·60

= 0.00029088√
1+x2 = 1.0000000423

xp
1+x2

= 0.00029087

sin1′ = 0.00029088

The value of π was known with a sufficient number of correct decimals to make these
calculations accurate, and sin1′ has the first eight decimal places in common with 1′.

The solution is that the difference x −x/
p

1+x2 will be smaller than 1 decimal unit of
the least value that one requires. Then sin x will be between x and x/

p
1+x2 where x is the

length of the arc.
Holmboe’s motivation for calculating sine for arcs as small as 1’ is that Sine of every

arc less than 1’ has the first eight decimals common with the arc; the smaller the arc is, the
smaller is the difference between x and x/

p
1+x2, and sin x is always between these two

magnitudes (Holmboe 1834: 27). If one needs an accuracy of eight correct decimals, and
the arc is less than 1’, one may calculate the length of the arc instead of finding the sine
value. To calculate larger angles with the same number of accurate decimals, one may use
angles where the sine and cosine values are known, and one may use known formulas.

5 Christopher Hansteen (1784–1873)

Christopher Hansteen (1784–1873) was born in Christiania in Norway. He was first a law
student in Copenhagen, but became interested in the natural sciences after he met the
physicist H. C. Ørsted. He became a teacher in applied mathematics at the university in
Christiania in 1814, and he was professor from 1816 till 1861. Hansteen was very productive,
and wrote about terrestrial magnetism, northern lights, meteorology, astronomy, mechan-
ics, etc. He was a well-known scientist, and received further international recognition after
an expedition to Siberia in 1828–30 to study the geomagnetism. In 1835, Hansteen wrote a
textbook in geometry where he challenged the traditional Euclidean geometry.

5.1 Plane geometry

In 1835, Hansteen published a textbook in basic geometry (Hansteen 1835), which in many
ways challenged Holmboe’s textbooks. Hansteen’s book was 278 pages, which is a lot more
than what is expected of a textbook in elementary geometry. The author is intentionally
trying to tear down the walls that existed between the classical geometry on one side, and
the newer analytical geometry and the infinitesimal geometry on the other. The basis of the
textbook is real life, with references to artifacts like corkscrews, stove pipes and hourglasses.
The presentation of the subject matter is very unlike Euclid’s Elements. The style is narrative
and written in the first person, sometimes very lengthy, and there are many numerical
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examples. Hansteen tried to expand Euclid’s definition of straight lines and of parallel lines,
and Euclid’s parallel postulate (Euclid 1956).

Hansteen’s textbook contains a comprehensive preface which also contains definitions
of fundamental concepts. The first concept to be defined is the straight line (Hansteen
1835: III–IV), which is also, according to Hansteen, "the foundation of geometry" [Geome-
triens Grundvold]. It is of great importance that this concept is clearly defined, especially
in a science that demands a consistent and logic practice. Hansteen presents five different
ways a straight line may be defined

– "A straight line is a line which lies evenly with the points on itself " from Euclid
(1956). Close to this is also Baron Wolff’s definition stating that "a line is straight
when a part is similar to the whole" [Linae recta est, cujus pars quæcunque est
toti similis].

– Archimedes, and most French geometers after him, defined the straight line as
"the shortest trajectory between two points".

– Some geometers regard the straight line as a hereditary concept that only needs
to be mentioned to be understood, and defines a straight line as "those things
which is known to be a straight line" [Qvæ linea recta dicatur notum est ].

– Abraham Kästner says that "a straight line is that whose points all bear against
one trace" [en ret Linie er den, hvis Punkter alle ligge hen mod een Egn], and he
adds that "no one will learn the straight line to know from an explanation, and no
one needs to; but one may say something about it, that guides the attention to a
closer attention to what makes it a straight line".

– Finally, others say that "when a point moves continually in the same direction,
then its trajectory is a straight line".

According to Hansteen, after such definitions, all geometers introduces a postulate
which states that "one may create a straight line between two given points, and prolong such
a given straight line in any direction in both directions as one pleases". Hansteen makes
noteworthy objections to such a postulate by asking with what tool such a prolonging shall
be made, and how to make sure that the line made by such a tool is homogeneous, or
that is satisfies the demands made in the various definitions of a straight line (Hansteen
1835: VI–V).

Hansteen elaborates towards a definition where he let lines be produced by the move-
ment of a point, and there are two kinds. One kind has the quality that when two points of
a part of the line are placed on two arbitrary points on the whole line, then all points of the
part of the line will coincide with points in the whole line – analogous, if we let a part of
a line move along the whole line, and the part always fits with the whole line. Such lines
are called homogeneous lines [eensartede Linier], and there are two types – straight and
curved lines. A homogeneous line has all over the same curvature, and all perpendiculars
of any plane homogeneous line will, when duly prolonged, either intersect in one point,
or not intersect at all. There are in other words only two types of homogeneous lines in a
plane – the straight line and the circle. When a point moves from one place to another in a
space, then it describes a line. If this line is straight, it is called the direction of the motion
(Hansteen 1835: IV–V,7,9,35–38). From the concept of the straight line we may derive the
concept of the plane, and from these definitions we may prove that a line is straight when
all the points in the line remains unchanged in the same position is the line is rotated
around two arbitrary points on the line (Hansteen 1835: 9), and that a straight line between
two points is shorter than any curved or broken lines between these two points (Hansteen
1835: 40).These two statements are not axioms, but theorems.
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It is more proper that a "mechanical artist" derives rules for his practice from the def-
initions and theorems of the geometry, than that the theoretical geometer shall direct
his concepts and definitions towards this practice. The carpenter’s planer and the met-
alworker’s file are tools that are suitable for producing homogeneous planes and lines,
and the geometer should not neglect to acquire the theoretical principles on which these
methods are based. A ruler is described as a tool – made by wood or metal – by which one
may produce straight lines in a plane. (Hansteen 1835: VIII,13)

The cause for the much discussed controversy Hansteen’s textbook made was the
handling of parallel lines. Hansteen states very clearly that the Euclidean definition of
parallel straight lines, embraced by nearly all geometers, has all the logic errors a definition
may have. He states correctly that parallel lines are defined, according to Euclid, by a
negative quality, and not a positive. He continues by stating that the quality by which
the parallel lines are defined, is outside all experience and test, as it points towards the
infinite. Euclid’s definition may also not be used on curved lines, which may also be parallel
– according to Hansteen. "No one will hesitate in declaring two concentric circles reciprocal
parallel". There is a definition stating that if two lines in a plane never intersect, no matter
how far they are prolonged in any direction, does not make an angle (Hansteen 1835: 28).
There is, however, no mentioning that these lines are parallel.

Hansteen argued for an understanding of parallel lines where one let a perpendicular to
any kind of line move along this line, in such a way that it always is a perpendicular. Any
point on this perpendicular then describes a line, where any point’s smallest distance to
the original line all over is the same (Hansteen 1835: IX). Consequently, Hansteen has a
definition of parallel lines

"Any line that is being described by a point on the perpendicular to a given line, when it
moves along the same with an unaltered angle, is said to be parallel to the directrix10"
(Hansteen 1835: 59)

where the characteristics of a line, parallel to another, are

– it always cuts off equal parts of all its perpendiculars
– any perpendicular to one of these lines is also a perpendicular to the other

and a parallel to a straight line has in addition the following characteristics

– the parallel is also a straight line
– as these straight lines never intersect, they form no angle with each other
– if the parallel lines are intersected by a transversal, then the alternate interior

angles are equal, the corresponding angles are equal, and the consecutive interior
angles equals 2R

Figure 7: Hansteen’s definition of parallel lines

10a fixed line used in describing a curve
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Hansteen’s textbook was published in one edition only, but one reason may be that it
contained much subject matter outside the school curriculum. He explains that because of
a limited production of textbooks in Norway, he has added subject matter that is outside
the curriculum of the learned schools, but should be of interest for students that want
to prepare themselves for a study of the higher mathematics (Hansteen 1835: XVIII). It is
also worthwhile to mention, as a curiosity, that Hansteen in his textbook introduces and
describes Metre as a new unit of length (Hansteen 1835: 81).

6 Disagreement and controversy

Holmboe’s textbooks were more or less controlling the market regarding textbooks in math-
ematics in the first half of the 19th century. Hansteen’s textbook challenged Holmboe’s
textbooks, and was the cause of a bitter controversy between the two professors in mathe-
matics.

A newspaper polemic between Holmboe and Hansteen about Hansteen’s textbook in
geometry took place in Morgenbladet from December 1835 till January 1836, and in Den
Constitutionelle from June till September 1836.11

The core of the debate that followed was whether one in mathematics education should
let utilitarian considerations overrule logical deduction and theoretical thinking. Hansteen
declared that proofs should not be used in the elementary teaching before it was necessary
for the students. This, he said, invited the students to memorizing without understanding.
To this, Holmboe replied that you either have to prove all or nothing, as half a proof is worse
than no proof.

The polemics between Holmboe and Hansteen has later been called the "dispute about
parallelism" and they both published booklets where they justified their views (Holmboe
1836; Hansteen 1836).

The main article on the 5th of December, 1835, was written by Holmboe and called "On
Professor Hansteen’s new understanding of parallel lines" [Om Professor Hansteens nye
Parallellære]. It was a review of Hansteen’s textbook and it was very critical to Hansteen’s
definitions of straight and parallel lines. Ten days later there was an unsigned article titled
"Concerning Professor B. Holmboe’s article in Morgenbladet: ’On Professor Hansteen’s
new understanding of parallel lines’".12 The author praised Holmboe for his "touch of
thoroughness", but he continued that it was too much to expect from a man who had too
long occupied himself with obsolete knowledge, to be an impartial judge of new knowledge.
Hansteen’s signed reply to Holmboe’s article was published on the 18th of December. He
stated that Holmboe had reviewed his textbook in a very unseemly manner, and that
Holmboe considered Hansteen’s textbook dangerous, and teachers should be warned
against it, so that young people not are led astray from the rigour of pure and orthodox
geometry, into heresy and delusion. A short declaration from Hansteen appeared a week

11See Morgenbladet (1835) and Den Constitutionelle (1836).
The newspaper Morgenbladet was established in 1819, and was until 1857 a substantial voice for the opposition
against the establishment, both literary and political. It was also the first daily newspaper in Norway, and it
exists now as a weekly newspaper with a liberal, radical and intellectual profile. Den Constitutionelle existed as
a daily newspaper in Norway between 1836 and 1847. The idea was to establish a newspaper on a considerably
higher intellectual level than Morgenbladet. Den Constitutionelle made high demands on the journalistic
content, and it introduced daily editorials. (Kunnskapsforlaget 2006)

12Angående Professor B. Holmboes i Morgenbladet No. 339, 1835, indrykkede Stykke: "Om Professor
Hansteens nye Parallellære".
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later, where he admitted that he probably never would agree with Holmboe about how a
good mathematics textbook should be, and that he will publish a booklet the following
week. Then there was a short notice signed by Hansteen, dated 18th of January 1836, titled
"To the owners of my textbook in geometry" [Til Eierne af min Lærebog i Geometrie], where
he admitted that some explanations in his textbook may be simplified. He had therefore
made some new pages that by the end of the week would be available at the publisher, free
of charge, to the owners of the book.

There was an unsigned paragraph in Den Constitutionelle on the 15th of June, 1836,
informing that a professor Jürgensen of Copenhagen had written a review of Hansteen’s
textbook in the Monthly Journal for Literature [Maanedsskrift for Literatur]. This review
took no part in the controversy, but asserted the intention of making Hansteen’s textbook
known in Denmark. Three weeks later there was an article signed Hansteen, titled "On the
teaching of mathematics in the schools" [Om den mathematiske Underviisning i Skolerne],
where he indicated that the reviewer had been unfortunate with his review. Holmboe now
rejoined the fray. In an article he opposed Hansteen by asserting that Hansteen claimed
that the only controversies that had been proposed against his textbook in ge-ometry was
mainly the question if it is allowed to define a concept before one can prove its possibilities.
Holmboe wrote that this is not the case. Hansteen now wrote a long and final article, titled
"Farewell to Professor Holmboe" [Afsked til Professor Holmboe]. Hansteen ended his article
with an anecdotal remark about Frederick II of Prussia, complaining over the difficulties
of being at war with the Russians – "not only did you have to shoot them, you also had to
knock them over with your rifle butt", meaning that you not only had to kill them once, you
had to kill them twice. Hansteen concluded that he would leave Holmboe standing upright
until he got tired – he would not have the trouble of knocking him down. This was the last
newspaper article from Hansteen in this matter. Holmboe replied that he was surprised
that Hansteen continued this polemics, even though he long time ago said that he would
not. Holmboe also asserted that Hansteen had not read his booklet published after the
controversy in Morgenbladet. (Morgenbladet 1835; Den Constitutionelle 1836)

6.1 Summary of the controversy

Both Holmboe and Hansteen published booklets where they justified their views.
Hansteen wrote a booklet (Hansteen 1836) titled "Investigation of Mr. Professor B. Holm-
boe’s review of my Plane Geometry, Morgenbladet no. 339, 5th of Dec. 1835",13 dated
26th of December 1835, which means that it was written towards the end of the period the
polemics was active in Morgenbladet. Holmboe’s name appears only in the title, later he
is only referred to "the reviewer". In addition to defending his own textbook, Hansteen
also criticizes Holmboe’s arguments in the review, and he attacks Holmboe’s textbook in
geometry (Holmboe 1827).

Hansteen’s booklet is organized in five sections, labeled A till E where he focuses on five
complaints from Holmboe’s review.

A. Absence of contingency proof [Forsømmelse af Muelighetsbeviset]. Holmboe’s
complaint is that Hansteen uses the attributes of lines and surfaces before he
defines them. Hansteen starts his textbook by classifying lines as homogeneous
[eensartede] and heterogeneous [ueensartede]. Hansteen blames Holmboe for

13Belysning af Hr. Professor B. Holmboes Anmeldelse af min Plangeometrie, Morgenbladet No. 339, 5 Dec.
1835.
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not respecting authorities like Newton and Laplace, and he is attacking the defi-
nitions of basic concepts in Holmbo’s textbook in geometry. Hansteen justifies
his presentation of the subject matter by the fact that his book has been used for
half a year at Christiania Kathedralskole.

B. Definition of a straight line. Hansteen is accused of not using accurate descrip-
tions and terms, and he argues by the fact that the textbook is written for children,
and their only previous knowledge is their language, and names of concepts from
their everyday life. Therefore one has to use a language that stimulates the
imagination.

C. "A circle is a circle". A vital error, according to Holmboe, is that he states that there
exist only two homogeneous lines in a plane, the straight line and the circle, at a
stage where it is unfounded.

D. Theory of parallelism. The definition of parallel lines in Hansteen’s textbook
states that a line parallel to another has the characteristics that it cuts equal parts
of its perpendiculars. This relates to straight as well as curved lines, and it follows
that they will never cross no matter how long you extend them.14 This definition
is, according to Holmboe, not generally correct, as parallel curved lines may cross
one another.

E. Euclidean definition of parallel lines. Hansteen states that it is better for a con-
cept to be defined by a positive property than by a negative one, and parallel
lines are by Euclid defined by a property that lies beyond our experience, and it
refers our minds towards the infinite. He also attacks Holmboe’s statement that
"to construct is to elucidate the specified concepts of the definition of a magni-
tude",15 and he finds it paradoxical that thorough knowledge of geometry does
not assume the use of compass and ruler. How may such a mental construction
elucidate the shape of a curved line, if it is defined by an equation between its
coordinates, he asks. He also claims to have met students that didn’t know one
end of a compass from the other. Holmboe calls the use of compass and ruler an
insignificant requirement [uvæsentlig fordring] which should not be included in
a textbook, and he claims that he has not found these instruments mentioned in
textbooks by Lacroix, Legendre, Kästner, Wolff, or Vega. Only the textbooks by
Hansteen and Thomas Bugge mention the use of compass and ruler.

Towards the end of his booklet, Hansteen recommends that a new edition of Lindrup’s
textbook16 should be made, if one wants easily understood textbooks in arithmetic and
geometry that does not frighten students away from studies in mathematics.

Holmboe responded by writing a booklet (Holmboe 1836) titled "Retort provoked by Mr.
Professor Hansteen’s enlightenment of my review of his textbook in geometry, containing:
1) Defense of the review containing proofs collected by a continued review of his textbook.
2) Refutation of his attack on my textbook in mathematics",17 and this was dated the 8th

14Den almindelige Charakter for en Linie, som er parallel med en anden, er altsaa: At den overalt affskjærer
ligestore Stykker af dennes Normaler; hvoraf altsaa følger for alleslags parallele Linier, saavel rette som
krumme, at de, i hvor langt de end forlænges, aldrig kunne skjære hinanden.

15at construere er at anskue det ved en Størrelses Definition fastsatte Begreb
16The Danish teacher of mathematics, Hans Christian Linderup (1763–1809) published a textbook in basic

mathematics in 1807.
17Gjenmæle fremkaldt ved Hr. Professor Hansteens Belysning af min Anmeldelse af hans Lærebog i

Geometrien, indeholdende: 1) Forsvar for anmeldelsen med Beviser hentede ved en fortsat Recention over
hans Lærebog. 2) Gjendrivelse af hans Angreb paa min Lærebog i Mathematiken.
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of March 1836. It was written in the period between the two polemics in Morgenbladet
and Den Constitutionelle. Throughout the booklet, Hansteen is referred to as "the author".
Holmboe’s booklet is structured in the same five sections as Hansteen’s, and section D is
– not surprisingly – the most comprehensive. Holmboe shows a wide knowledge of the
subject matter by quoting Klügel’s definition of curved parallel lines from 1763, in addition
to the textbook "Theorie des lignes courbes" by Lacroix. The latter does not call curved
lines parallel. Holmboe admits that Hansteen is correct in his objection against Euclid’s
definition of parallel lines, that it declares a property that is beyond all experience, in the
sense that the definition appears before it is proven that two straight lines in a plane could
have such a location that they will never cross if they are prolonged indefinitely. Holmboe
is very clear in adding that Hansteen’s theory of parallel lines is in obvious conflict with
the existing theory, which states that a curved line at a certain point is parallel to another
curved line at a certain point, only if the tangents through each of the two points are parallel.
The better part of Holmboe’s booklet is a defense against the attacks made by Hansteen on
his textbooks, and Holmboe is constantly referring to Legendre and his definitions.

7 After the conflict

The first textbook by Holmboe that was published after the conflict with Hansteen was the
second edition of the textbook in arithmetic in 1844 and on the reverse page of the title
page, the following signed declaration is printed:18

No. 200
The second edition of the present textbook’s 1st part, or the arith-
metic, is printed in 1050 copies. Each copy has a specific number,
in such a way that the copies are labelled with the numbers in
their order from 1 to 1050. If a copy is not numbered in this man-
ner, and if the reverse side of the title page does not contain this
declaration signed by the author, then that copy is illegal, and will
be dealt with in accordance with the existing legal provisions.

B.M. Holmboe

and this is the only publication by Holmboe that contains such a declaration.

8 Conclutions

The first half of the 19th century was in many ways a turning point for higher education in
mathematics in Norway. The position of mathematics as a school subject was strengthened
through school reforms at the turn of the century, and the first university was established
in Norway in 1811. Bernt Michael Holmboe’s textbooks in mathematics were the ones
that were predominantly used in the learned schools at that time. His textbooks were,
as we have seen, not without opposition – an opposition addressing the use of proofs
in elementary mathematics, and whether the introduction of geometry should be in a
traditional Euclidean way, using logical deductions and theoretical thinking – as in the case

18No. 200. Af nærværende Lærebogs 1ste Deels eller Arithmetikens andet Oplag er trykt 1050 Exemplarer.
Hvert Exemplar har sit særskilte Nummer, saaledes at Exemplarerne ere nummererede med Tallene efter deres
Orden fra 1 til 1050. Saafremt noget ikke saaledes nummereret Exemplar, og hvis Titelblad paa Bagsiden ikke
er forsynet med nærværende af Forfatteren underskrevne Erklæring, maatte forefindes, er samme ulovligt, og
vil blive behandlet overeensstemmende med de for Eftertryk gjældende Lovbestemmelser. B.M. Holmboe
(sign.)
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of Holmboe – versus a more "informal" way using everyday language and terms. Holmboe
is in his textbooks very true to the Euclidean tradition in presenting the subject matter, and
there was an ongoing debate about the use of Euclidean ideas in textbooks in geometry.
When Hansteen published his textbook in geometry, it was evidently a controversial issue
and his textbook was seen as an attack on the Euclidean textbooks.

Hansteen encouraged using a language that stimulated the pupils imagination, and he
also used a definition of parallel lines, which – according to Holmboe – was not generally
correct. The issues addressed in the newspaper polemics were both the mathematical
topics of geometry, and didactical issues – how geometry should be presented to the pupils.
Today we find it impressing that a debate like this reached as far as the public press, and that
it was given so much attention and space in the papers. This shows, more than anything
else does, the position professors at the university had in the society. Hansteen states in
the preface of his textbook that there is no lack of good geometry books in the Danish-
Norwegian language, but they are all very true to Euclid. It is Hansteen’s stated intension to
differ from not only Euclid, but also other textbooks. The world of mathematics had been
through a development towards strong demands on rigour in definitions and methods
(Christiansen 2010), and Hansteen turned against this in his way of presenting the subject
matter. Hansteen concretized the mathematical objects, and talked about straight lines
as something one could make with a ruler, while the mathematical objects for Holmboe
were something one had to elucidate in one’s mind, and not to construct. For Holmboe, the
mathematical correctness was the most important, while Hansteen had, what we would call
today, a much more didactical approach. Hansteen’s textbook was only published in one
edition, but in addition to being untraditional, Hansteen’s textbook also contained much
subject matter outside the school curriculum. Even if Hansteen’s way of presenting the
subject matter would be closer to how we today view didactics, tradition was stronger and
Holmboe’s books were used in the learned schools until they were replaced by textbooks by
Ole Jacob Broch about a decade after Holmboe’s death. (Christiansen 2009)

A question was formulated in the introduction regarding what we may learn from
these textbooks and the didactical debate from the early 19th century. I have in this paper
described important and relevant parts of Holmboe’s textbooks in arithmetic, geometry
and trigonometry. I have also described parts of Hansteen’s textbook in plane geometry and
made comparisons between Holmboe’s and Hansteen’s way of presenting the subject matter.
The feud between the two is also a good and well documented example of the didactical
debate. The pupils in the learned schools were normally somewhere between 12 and 20
years of age, and a newspaper debate about school mathematics today would probably
look completely different. The knowledge level in the textbooks used by the pupils of early
19th century is considerably higher than in modern textbooks, but Holmboe’s textbooks
were very encyclopaedic, and only contained the subject matter. Modern textbooks may
also be characterized by a didactic angle that is missing in the old textbooks, with a possible
exception of Hansteen’s textbook in plane geometry.

Norwegian pupils are scoring average to low in student assessments by OECD (PISA),
and one explanation may be that the content knowledge in mathematics is too low. Mathe-
matics is a comprehensive subject, and pupils will inevitable be encouraged to memorize
without understanding if their body of knowledge is too low.
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ABSTRACT 

The treatise Algorismus is a complete prose translation of the Latin hexameter Carmen de Algorismo into the 

medieval Old Norse language. Carmen is dated in 1202, written by the French canon Alexander de Villa-

Dei. The treatise explains for the first time the Hindu-Arabic decimal place value numeral notation and 

calculation methods to the Norse people, Icelanders and Norwegians. Algorismus also relates the four 

Elements: Earth, Water, Air and Fire to cubic numbers and ratios. The treatise exists in four manuscripts, 

one of them only a fragment. The four manuscripts are compared by digital methods to show that the two 

oldest of them are quite similar and possibly copies of the same copy of the original translation. This paper 

focuses on the version in Ms GKS 1812 4to. It is a pedogogical study of the algorithms presented in the 

treatise, contrasting them with current day methods and the presentation in Carmen. 

1 Introduction 

The thirteenth century Old Norse arithmetic treatise Algorismus exists in four manuscripts: 

GKS 1812 4to, preserved in Reykjavík, and AM 544 4to, AM 685 d 4to, and AM 736 III 

4to, preserved in Copenhagen. The bulk of the treatise is a prose translation of the Latin 

hexameter poem Carmen de Algorismo, written in France in the early thirteenth century. 

Algorismus is also related to Algorismus Vulgaris by Johannes de Sacrobosco, dated 

around 1225. In this paper we explore incidences where Algorismus deviates from Carmen 

de Algorismo, and we compare the four extant manuscripts of Algorismus with 

phylogenetic alignment methods. 

Algorismus was published in a scientific edition 1892–1896 by Finnur Jónsson (1892–

1896) based on AM 544 4to, with corrections from the other three manuscripts as 

applicable. The mathematician Otto B. Bekken translated Algorismus into modern 

Norwegian in 1985 and explained its text in cooperation with linguist Marit Christoffersen 

(Bekken and Christoffersen, 1985). Kristín Bjarnadóttir (2003, 2007) has explained the 

content of Algorismus in English and in modern Icelandic (Bjarnadóttir, 2004). 

Bjarnadóttir and Halldórsson (forthcoming) studied Algorismus, focusing the manuscript 

GKS 1812 4to and the phylogenetic alignment methods, as done here.  

Algorismus, a treatise of nearly 3000 words, contains an explanation of the Hindu-

Arabic decimal place-value notation and calculation methods in seven algorithms: 

addition, subtraction, doubling, halving, multiplication, division, and extraction of roots, 

which is further subdivided into the square root and the cubic root. These methods have 

been relayed to Algorismus via a well-known Latin hexameter, Carmen de Algorismo, 

composed by Alexander de Villa Dei (1170–1240) between 1200 and 1203 (Beaujouan, 

1954). Alexander de Villa Dei was a Franciscan and a master at the University of Paris, 

later canon at the St. Andrew’s Cathedral in Avranches (Beaujouan, 1954). Finnur Jónsson 

(1892–1896, p. cxxxii) suggested that Carmen was translated into the Old Norse language 
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before 1270. Jónsson referred to an analysis by Hankel (1874, p. 325) of the typeface of 

Arab numerals, where the typeface used in the manuscripts of Algorismus corresponds 

Hankel’s examples from before 1271. According to Tropfke (1980) the typeface belongs 

to the West-Arab notation. Helgi Guðmundsson (1967, p. 68) deems it possible that the 

translation existed in the Viðey monastery in the early 14
th

 century.  

Carmen is a verbal explanation of Hindu-Arabic arithmetic, built on a translation of the 

work by Muhammad ibn-Mūsā al-Kwārizmī (ca. 780–850), Kitāb al-jam´wal tafrīq bi 

hisāb al-Hind [The Book of Bringing Together and Separating According to the Hindu 

Calculation], most likely on Liber alghoarismi de practica arismetrice, one of its twelfth 

century Latin translations (Allard, 1992, p. xxxi). This conjecture is based on the order of 

the arithmetic operations which varies in the different translations. The cubic root is not 

included in the translations of Al-Khwārizmī’s work and must be acquired from another 

source. Algorismus expands Carmen with concrete examples as well as a concluding 

section of unknown origin. There are also a few omissions that do not compromise the 

meaning. 

The poem Carmen exists in a great number of manuscripts, preserved in libraries in 

France, Great Britain, the Netherlands and many other countries. It is considered to have 

played an even greater role in distributing Hindu-Arabic positional number notation in 

Northern Europe than the well-known Liber abaci by Leonardo da Pisa (Jacqueline 

Stedall, personal communication, 2009). The translation of Carmen into the vernacular of 

the Norse people in Norway and Iceland was a further effort in the distribution of 

knowledge.  

Carmen de Algorismo, contained in the manuscript MS. Auct. F.5.29, preserved in the 

Bodleian Library in Oxford, dated to the thirteenth century, has been drawn on when 

comparing Algorismus in the manuscripts GKS 1812 4to and AM 544 4to. The 

manuscripts AM 544 4to and MS. Auct. F.5.29 have chapter headings that are neither 

found in the other manuscripts of Algorismus nor in the two known printed versions of 

Carmen de algorismo (Steele, 1988, pp. 72–80; Halliwell, 1841, pp 73–83).   

In the following, chosen passages from Algorismus and Carmen de algorismo are 

compared and translated into English. The passages from Algorismus in GKS 1812 4to 

have been rewritten with modern Icelandic spelling.  

2 Arithmetic operations in Carmen de Algorismo and Algorismus 

Carmen de Algorismo is a hexameter to be recited verbally. The beginning of the poem 

reads as follows:
 1

 

Hec algorismus ars presens dicitur ; in qua  

Talibus Indorum fruimur bis quinque figuris. 

0. 9. 8. 7. 6. 5. 4. 3. 2. 1. 

Prima significat unum : duo vero secunda : 

Tercia significat tria : sic procede sinistre 

Donec ad extremam venies, que cifra vocatur ; (Steele, 1988, p. 72). 

The ten digits in the third line of the poem are the only occurrence of the then new Hindu-

Arabic numerals in Carmen, see Fig. 2.1. Everywhere else numbers are expressed in 

                                                           
1 In the following examples, the Latin texts are from “Carmen de algorismo”, printed in The Earliest 

Arithmetics in English (Steele, (Ed.), 1988). 
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words. The poem explains algorithms that are now common without giving concrete 

examples. It is not known how the poem was used to aid computation but one may assume 

that calculations were made on tablets or a flat surface, strewn with sand, or on a wax 

tablet. 

 

Figure 2.1: The ten digits of Hindu-Arabic numerals in Carmen de Algorismo in MS. 

Auct. F.5.29. 

The initial text in Algorismus is a nearly literal translation of the Latin original in Carmen: 

List þessi heitir Algorismus. Hana fundu fyrst indverskir menn með tíu stöfum er svo eru 

ritaðir 0 · 9 · 8 · 7 · 6  ·5 · 4 · 3 · 2 · 1. Hinn fyrsti stafur merkir einn í fyrsta stað. En annar 

tvo. En þriðji þrjá. Og hver eftir því sem skipaður er allt til hins síðasta er cifra heitir.2 

(GKS 1812 4to, 13v)3 

 

Figure 2.2: The ten digits of Hindu-Arabic numerals in Algorismus in GKS1812 4to. 

Carmen de Algorismo is believed to be the first work where the nought (zero), cifra, is 

presented as a digit (Beaujouan, 1954). Both the Latin text of Carmen and that of 

Algorismus count the cifra as the last one in the order of numerals, and 1 as the first one in 

the order, which indicates that the numbers were read in the Arabic way from right to left. 

This is emphasised in Carmen: “sic procede sinistre” [proceed thus to the left]. 

Algorismus vulgaris by Johannis de Sacrobosco is a longer text that is related to 

Carmen. Sacrobosco’s text cites three verses from Carmen, e.g. on the operations: 

Subtrahis aut addis a dextris vel mediabis ; 

A leua dupla, diuide, multiplicaque; 

Extrahe radicem semper sub parte sinistra (Steele, 1988, p. 73; Sacrobosco, 1898, p. 7).4 

Algorismus in GKS 1812 4to: 

Frá hinni hægri hendi skalt þú af taka og við leggja og skipta í helminga en frá vinstri hendi 

skalt þú tvöfalda og skipta og margfalda og svo draga rót undan hvorutveggju (GKS 1812, 

4to, 13v).5 

The arithmetic operations addition, subtraction and division, explained in Carmen and 

Algorismus, are largely similar to present day methods used in paper-and-pencil 

arithmetic.  Multiplying two composite numbers, however, proceeds from the left, as 

opposed to common modern algorithms. The numbers to be multiplied are arranged so 

                                                           
2 Translations from Icelandic into English were made by the author, K. B.  
3 This art we call Algorismus. It was first found by Indians and arranged by ten digits those which so are 

written: 0 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1. The first digit signifies one in the first place. But the second two. 

But the third three. And each as it is ordered until the last one which is called cifra [the nought]. 
4 Subtract or add from the right, or halving; from left double, divide, multiply; extract roots always from the 

left side. 
5 From the right hand you shall deduct and add and split in halves but from the left hand you shall double 

and divide and multiply and so extract both roots. 
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that the digit farthest to the right of the multiplicand is placed below the first digit (from 

left) of the multiplier. The multiplicand is multiplied by this digit which then disappears 

under the product. Carmen and Algorismus do not illustrate their algorithms on the four 

arithmetic operations by examples. The following example is constructed for clarification 

in this paper: 

Multiply 523 by 217:  

First 523 is multiplied by 2, and 2 disappears under the product: 

  217  104617  

523    

Next, the multiplicand is moved one place to the right so that the rightmost digit is placed 

below the second digit of the multiplier in the upper row and the lower number is now 

multiplied by that digit in the same manner. The product is written above the multiplying 

digit and added to the next digits to the left. In the example, the rightmost digit of the 

multiplicand, 3, is now placed below the second digit of the multiplier, 1, which now is 

the multiplying digit. The product 1·3 = 3 replaces the multiplier 1 and products of the 

other digits are added to previous products. Finally, the previously mentioned digit 3 is 

moved one more step to the right and the procedure is repeated. In this third step, 7 is the 

multiplying digit. 

  217  104617 109837 109837 113491 

523    523    523     523    523  

In general, this procedure continues until all digits of the upper number have been used as 

multipliers. The advantage of multiplying from the left is that the products of the digits 

can be added to the previous product as they are found and it is not necessary to carry.  

Doubling and halving were treated as distinct algorithms. Both operations are known 

from antiquity, even as replacements for multiplication and division (Seppala-Holzman, 

2007). Doubling was done from the left as is customary in mental arithmetic, while 

halving was done from the right. 

Square root was drawn from the left. The method is not much different from what was 

customary before calculators became common in schools. In extracting the square root, 

one digit of the number of which the root is drawn is pulled down at the time. At the 

beginning, the highest possible one-digit number, squared, is subtracted. Its double, the 

“dufl” is preserved aside, and so is the half of the double, the “subdufl”, becoming the first 

digit of the root. Next, as many “dufls” as possible are subtracted when the next digit has 

been pulled down. The multiplier is the next digit of the root. As the work progresses, the 

“dufls” are combined and their multiples subtracted, each multiplier constituting the next 

digit. The combined “subdufls”, the first found digit and the multipliers, form the desired 

square root. An example of drawing the square root of 119,025 was composed, see Fig. 

2.3.  
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Figure 2.3: Here a = 3, b = 4, and c = 5. The square root of 119,025 is 345 

The algorithm is based on the fact that  

(100a + 10b + c)
2
 = (100a)

2
 + 2·100a·10b + (10b)

2
 + (2·100a + 2·10b)c + c

2
   

One notices that by this method, the digits of the square root emerge gradually in a natural 

way without guessing. 

Extracting cubic root had also separate sections in Carmen, Algorismus and Algorismus 

vulgaris. The section in Carmen is considered to be the first treatment of extracting cubic 

root in Latin (Beaujouan, 1954). It is not contained in the Latin translations of al-

Kwārizmī’s work but known from the work Āryabhaţīya by the Indian mathematician 

Āryabhaţa (born 476) (Katz, 1993, p. 202).  

Extracting the cubic root is done by alternatively pulling down two digits and one digit 

at the time. Fig. 2.4 shows the extraction of the cubic root of 15,069,223 to reach 247. A 

triple digit is called “tripl”, while the digit itself is called “subtripl”. The algorithm is 

based on the identity  

(100a + 10b + c)
3
 =  

(100a)
3
 + (100a + 10b)·3·100a·10b + (10b)

3
 + (100a + 10b + c)(3·100a + 3·10b)c + c

3
  

The procedure, shown in Fig. 2.4 is less simple than that of finding the square root. In the 

second step, when subtracting the term (100a + 10b)·3·100a·10b, one must search the 

value of b by testing its most likely value, and likewise when searching for c. 

 

Figure 2.4: Here, a = 2, b = 4, and c = 7. The cubic root of 15,069,223 is 247. 
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3 Deviations of Algorismus from Carmen de Algorismo 

The poem Carmen contains a description of the Hindu-Arabic number notation in general 

terms. The treatise Algorismus enhances Carmen by demonstrating the new system’s 

notation. It extends the first chapters, suggesting a need to clarify the text by numerical 

examples, while several repetitions in Carmen were omitted in the translation. Following 

Carmen’s explanation of decimal place value notation, examples are inserted in the Old 

Norse translation, shown here in bold font and square brackets. 

Ergo, proposito numero tibi scribere, primo  

Respicias quis sit numerus ; quia si digitus sit, 

Una figura satis sibi; sed si compositus sit 

Primo scribe loco digitum post articulum fac 

Articulus si sit, cifram post articulum sit. (Steele, 1988, p. 72) 

Ef þú vilt rita nokkra tölu þá hygg þú að ef það er fingur og rita í fyrsta stað eina hverja 

fígúru slíka sem þarf [á þessa leið, 8]. En ef þú vilt lið rita þá settu cifru fyrir fígúru [á 

þessa lund, 70]. Vilt þú samsetta tölu rita þá settu fígúru fyrir lið [sem hér, 65]. (GKS 1812 

4to, 13v)6  

Notice that the order of sentences in Algorismus is different from the Latin version. Next 

even and odd numbers are presented, where the following addition is inserted in 

Algorismus: 

Quolibet in numero, si par sit prima figura, 

Par erit et totum, quicquid sibi continetur; 

Impar si fuerit, totum sibi fiet et impar. (Steele, 1988, p. 73) 

Hverja tölu er þú ritar þá er hún jöfn ef [tigum gegnir eða] jafn fingur er umfram. En öll 

tala er ójöfn ef ójafn fingur er umfram. [Jafnir fingur eru fjórir: 2. 4. 6. 8. En ójafnir aðrir 

fjórir: 3. 5. 7. 9. En einn er hvorki því að hann er eigi tala heldur upphaf allrar tölu.] 

(GKS 1812 4to, 13v)7 

 

Figure 3.1: …fingur eru fjórir, 2 4 6 8. En ójafnir aðrir fjórir, 3 5 7 9, en 1 er hvorki því 

hann er ei tala helldur upphaf allrar tölu. (AM 685d 4to, p. 25v) 

The digits inserted are written in Hindu-Arabic mode in all extant Algorismus 

manuscripts. Algorismus also inserts a note that one is neither even nor odd number as it is 

the origin of all numbers. Bekken and Christoffersen (1985, p. 27) have pointed out a 

likeness to the statement that one is not a number in al-Kwārizmī’s Arithmetic, which 

again refers to another book on arithmetic, most likely either Euclid’s Elements, book VII, 

                                                           
6 If you want to write some number then think if it is a digit and write in the first place each one figure such 

as is needed [in this way, 8]. But if you want to write tens then put zero in front of the figure [in this way, 

70]. If you want to write a composite number, put a figure in front of the tens [as here, 65]. (This translation 

of the Latin term “post” by “fyrir”, meaning “before”, “in front of” (see e.g. Cleasby, 1957) is contradictory, 

but consistent with earlier counting from right to left where 1 was counted as the first in the row of the ten 

digits, and the cifra as the last one).  
7Each number that you write, then it is even if [it is a multiple of ten or] an even digit is extra; but the whole 

number is uneven if an uneven digit is extra. [Even dig  6. 8. But uneven another four; 3. 

5. 7. 9. But one is neither as it is the origin of all number.]  
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definition 2, stating: “A number is a multitude composed of units” (Euclid, 1956, p. 277), 

or Arithmetica by the Neo-Pythagorean Nicomachus. The citation referred to is the 

following from the translation Dixit Algorizmi of al-Kwārizmī’s work: 

Et iam patefeci in libro algebr et amucabalah, idest restaurationis et oppositionis, quod 

uniuersus numerus sit compositus et quod uniuersus numerus componatur super unum. 

Unum ergo inuenitur in uniuerso numero. Et hoc est quod in alio libro arithmetice dicitur 

quia unum est radix uniuersi numeri et est extra numerum : (al-Kwārizmī, 1992, p 1).8   

The next insertion to Algorismus is when Carmen’s text states that there are seven 

operations: addition, subtraction, doubling, halving, multiplication, division and root 

extraction: 

Septem sunt partes, non plures, istius artis ; 

Addere, subtrahere, duplare, dimidiare ; 

Sextaque est diuidere, set quinta est multiplicare ; 

Radicem extrahere pars septima dicitur esse. (Steele, 1988, p. 73)   

Then Algorismus adds that root extraction has two branches, extracting square root and 

cubic root:  

Í sjö staði er skipt greinum þessarar listar. Heitir hin fyrsta viðurlagning. Önnur afdráttur. 

Þriðja tvefaldan. Fjórða helminga skipti. Fimmta margfaldan. Sjötta skiptingin. Sjöunda að 

taka rót undan [og er sú með tveimur greinum. Önnur er að taka rót undan ferskeyttri 

tölu. En önnur grein er það að draga rót undan átthyrndri tölu þeirri er verpils vöxt 

hefur]. (GKS 1812 4to, p. 13v)9 

Sacrobosco’s elaboration of al-Kwārizmī’s work, Algorismus Vulgaris, states: “... radicem 

extractio, et haec dupliciter, quoniam in numeris quadratis et cubicis” [extraction of roots, 

which is twofold, since [it applies] to square numbers and cube numbers].” (Sacrobosco, 

1897, p. 1). This quotation suggests that the translator may have known Sacrobosco’s text 

in addition to Villa Dei’s Carmen. Sacrobosco claims, however, that there are nine 

arithmetic operations, adding numeration and progression as operations number one and 

eight (Sacrobosco, 1897, p. 1). 

Each arithmetic operation is explained in a separate chapter. In order to multiply, the 

reader is instructed to arrange the two numbers to be multiplied in columns such that the 

first digit (from the right) of the multiplier is placed below the last digit of the 

multiplicand as explained previously. However, one must first check the difference of the 

larger digit of the multiplicand from ten and then delete the smaller one from its tens as 

often as that difference:   

In digitum cures digitum si ducere, major 

Per quantes distat a denis respice, debes 

Namque suo decuplo tociens delere minorem; (Steele, 1988, p. 75) 

                                                           
8 And I have already explained in the book on algebra and almucabalah, that is on restoring and comparing, 

that every number is composite and every number is composed of the unit. The unit is therefore to be found 

in every number. And this is what is said in another book on arithmetic that the unit is the origin of all 

numbers and is outside numbers (English translation by the author, KB, after André Allard’s translation 

from Latin to French).  
9In seven parts is divided this art’s branches. The first one is called addition. Second subtraction. Third 

doubling. Fourth halves splitting. Fifth multiplication. Sixth the division. The seventh to take root from 

under [and is that one in two branches. One is taking a root from under a square number. But another 

branch is drawing a root from under an eight-vertex number, the one which has cubical growth].  
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Þar næst skalt þú hugsa hversu mikið hina meiri fígúru skortir á tíu þá er þú vilt margfalda. 

Og svo margar einingar sem áskortir á tíu svo oft skalt þú hina minni töluna þá er þú vilt 

margfalda taka af tigum hennar. (GKS 1812, 4to, p. 14v)10  

Algorismus adds this explanation as the last clarification example: 

Og að þú skiljir þetta margfalda sjö og níu. Níu skortir einn á tíu, því tak þú eina sjö af 

sjötigum. Þá verða eftir þrír og sextigir það eru sjö sinnum níu. Að slíku skapi mátt þú 

aðrar tölur reyna. (GKS 1812 4to, 14v)11 

In modern notation this can be written  

7·9 = 10·7 – 1·7          

or more generally: 

a·b = 10a – (10 – b)a        (0 < a, b < 10).   

Two conclusions may be drawn from this explanation. First, the Latin text’s presentation 

was not considered clear enough so that an example was needed. Second, the example 

demonstrates that the translator/transcriber was not fully confident with Hindu-Arabic 

digits, so he used words. Numerals do not have a consistent representation across 

manuscripts. The manuscript GKS 1812 4to uses words, the AM 544 4to Roman 

numerals, and in the youngest manuscript containing the whole treatise Algorismus, the 

AM 685 d 4to, some numbers in this particular example are written in the Hindu-Arabic 

numerals while others in words or Roman numerals.  

4  A chapter in Algorismus on numbers related to the Elements 

In addition to the calculation examples, a separate chapter is added to the translation. It is 

on the cubic numbers 8 and 27 and their intermediate numbers 12 and 18, and their 

relation to the Elements: Earth, Water, Air and Fire. This chapter does not exist in 

Carmen, and its content is unrelated to the bulk of Algorismus in modern understanding. 

Its introduction says: 

Hver ferskeytt tala hefur tvær mælingar, það er lengd og breidd. En cubicus tala hefur 

þrenna mæling. Það er breidd og lengd og þykkt eður hæð. Og því kalla spekingar hvern 

sýnilegan líkama með þessi tölu saman settan að hann hefur saman þessa mæling þrenna. 

Með því að eilíf speki og einn guð vildi heiminn sýnilegan og líkamlegan skapa, þá setti 

hann fyrst tvær hinar ystu höfuðskepnur eld og jörð. Því að ekki má náttúrlega sýnilegt vera 

utan þær. Þar sem eldur gerir ljós og hræring. En jörð staðfesti og hald. En með því að þau 

hafa þrenna ójafna huiligleika og gagnstaðlega12 þá var náttúruleg nauðsyn að setja nokkuð 

milli þeirra það er samþykkti þeirra ósætti. Og sem fyrr er sagt að eldur og jörð og það allt 

sem líkamlegt er er með þrefaldri tölu er vér köllum cubicum saman sett þá ritum vér þessa 

                                                           
10 Next you are to think how much the larger figure differs from ten, the one you want to multiply. And so 

many units as differ from ten so often you are to take the lesser number, the one you want to multiply, from 

its tens. 
11 So that you understand this multiply seven and nine. Nine differs by one from ten, therefore, take one 

seven from seventies. Then remain three and sixties, that is seven times nine. In that way you may try with 

other numbers. 
12 Corrected from “gang staðlega” in GKS 1812 4to. The manuscripts AM 544 4to and AM 685 d 4to have 

“gagn staðlega”, meaning “opposite”, “contrary”.  
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tvo cubus. Ritum vér jörðina þessa leið. Tvisvar sinnum tveir tvisvar, 2, 4, 8. En eldinn svo: 

þrisvar þrír þrisvar, 3, 9, 27. (GKS 1812 4to, 16r–16v)13 

Thus Earth was assigned the numerical value 2·2·2 = 8 and Fire 3·3·3 = 27. As no single 

mediator existed between these two cubes, two proportional numbers were found by 

taking the square (4) of the root 2 of the smaller cube, multiplied by the root 3 of the 

larger cube (4·3): 2, 4, 12. In the same way, the root of the smaller cube (2) was multiplied 

by the square (9) of the larger cube (2·9): 3, 9, 18. These two numbers belong equally to 

the two previously mentioned cubes, 8 and 27, as 27 contains 18 and half of 18, and 18 

contains 12 and half of 12.  

Similarly, God arranged two elements between Fire and Earth: Air and Water. Water 

contains two attributes and two numbers from Earth and one attribute and one number 

from Fire. Air contains two attributes from Fire and two numbers, but one from Earth and 

one number. The four Elements are thus assigned numerical values: Earth, 2
3 

= 8; Water, 

2
2
 ·3 = 12; Air, 2·3

2
 = 18; Fire, 3

3
 = 27. This puts the Elements in the correct order by 

lightness: Fire (27), Air (18), Water (12) and Earth (8). These numbers constitute a 

sesquialterate progression 8:12::12:18::18:27, or in general terms: n : (n + ½n). The text of 

Algorismus concludes by saying that this can be more perfectly understood from a figure 

later in the manuscript, called Cubus Perfectus (GKS 1812 4to, 16v). 

The idea about the Elements has a strong relation to Plato’s Timaeus, paragraphs 31b-

32c. Calcidius translated the first part (to 53C) of Timaeus from Greek into Latin around 

the year 321 CE. 

[31b] … And since it [the world] was rightly to be corporeal, visible, and tangible, and 

there is no perception of anything visible in the absence of fire, or of anything tangible in 

the absence of solidity, and no solidity without earth, god laid down fire and earth as the 

foundations of the world body … no two things cohere firmly and indissolubly without the 

binding force of a third [31c] … [32a] … if the body of the world were required to have 

only length and width but no solidity and were of the same sort as the surface of fully 

formed bodies, then one mean would suffice [32b] for the cohesion of it and its extreme 

parts. But as it is, since the world body required solidity, and the cohesion of solids involves 

never one but two means, the craftsman of the world accordingly inserted air and water 

between fire and earth, salubriously balancing the same elements so that the relationship 

between air and water would be the same as that between fire and air … And so from the 

four material elements here named [32c] he fabricated this splendid engine as visible, 

tangible, and bound together by a harmonious proportion in the equilibrium of its parts … 

(Calcidius, 2016, p. 49-51) 

Comparing texts, originally written in different languages and brought together through 

translations from language to language, is intriguing and needs vigilance.  The texts about 

                                                           
13 Every quadratic number has two measures, that is length and breadth. But a cubic number has three 

measures. That is breadth, length and thickness or height. And therefore wise men call each visible body 

composed by this number, that it has these three measures. As eternal wisdom and one God wanted to create 

the world visible and corporeal, he first set the two outmost elements, fire and earth. Because nothing can be 

naturally visible without them. As fire makes light and motion. But earth solidity and hold. But as they have 

three different and contrary sets of attributes and then there was a natural necessity to add something in 

between them that would agree their alienation. And as said previously that fire and earth and everything 

that is corporeal is combined by a triple number which we call a cube then we write these two cubes. We 

write the earth in this way. Twice two twice, 2, 4, 8. But the fire so: thrice three thrice, 3, 9, 27. 
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the four elements in Algorismus and Timaeus bear remarkable resemblance. Here, the term 

“staðfesti” has been translated by “solidity”, the term used in the translation of Timaeus, 

referring to that the earth is a solid and firm body. 

Calcidius provided an extensive commentary to his translation of Timaeus. In the 

commentary on the passages above, Calcidius discussed the analogy of the relations 

between the four Elements to continuous proportions, where the air would have “two 

powers of fire, its fineness and mobility, and one of earth, i.e. its compactness … for air is 

compact, fine and mobile”. Similarly, water would have “two powers of earth, i.e. its 

compactness and corporeality, and one of fire, i.e. its movement, and the substance of 

water will emerge, that being a body compact, corporeal and mobile. And thus between 

fire and earth from the coalescence of extremes air and water will arise, giving binding 

continuity of the world” (Calcidus, 2016, p. 153).  

Calcidius (2016, pp. 139–145) had already discussed continuous proportions in relation 

to these items. However, he did not bring up the sequence 8 – 12 – 18 – 27. That 

sequence, however, appeared in a manuscript of Euclid’s Elements, the Vat. Gr. 190 

(codex P), on p. 115v, see Fig. 4.1. The Vatican Euclid (Vat. Gr. 190, called P) is a 

version of a Greek text of Euclid’s Elements dating from the ninth century. 

 

Figure 4.1: A diagram of continued proportions in the manuscript Vat. Gr. 190  

(codex P), 115v. 

The diagram shown in Fig. 4.1 appeared at the end of proposition VIII 2 in Euclid’s 

Elements. Proposition VIII 2 is the following: 

To find numbers in continued proportion, as many as may be prescribed, and the least that 

are in a given ratio. (Euclid, 1956, p. 346)  

At the top of the vertical line segments in Fig. 4.1, marked Α, Β, Γ, Δ, etc., there are 

numbers, written in the ancient Greek number notation where alphabetical letters with a 

bar at the top denote numbers. Thus Ᾱ = 1, and the Β and Γ with bars on top of the 

uppermost vertical line segments denote 2 and 3. The first vertical line segment in the 

second row is marked Δ with a bar, denoting 4. Thus, in the top row the numbers are 2 and 

3; in the middle row 4, 6, 9; and in the bottom row 8, 12, 18 and 27, the numbers 

appearing in Algorismus and in a number of medieval manuscripts, representing 

continuous proportions with the rate 3/2. On the right side of the diagram, another set of 

numbers appear, the first three rows with numbers, identical to those on the left, in a 
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reversed order. The sequences thereafter continue up to 2 and 3 to the fifth power on each 

end, and the numbers in-between in continuous proportions. 

5 Diagrams of the Elements 

The manuscript AM 736 III 4to contains only a fragment of the treatise Algorismus. It 

does not contain the text on the Elements and their associated numbers. However, on a 

different leaf in the same manuscript a diagram of the four Elements is found together 

with their names and the texts “bis bini tres xii” [twice two three 12] associated to Aqua, 

Water, “tres trium bis xviii” [three thrice twice 18] to Aer, Air, and “tres trium tres” [three 

thrice three] to Ignis, Fire. The roundels to the right distribute three pairs of qualities: 

acuity (acutus above, obtusus below), density (subtilis above, corpulentus below), and 

capacity for motion (mobilis above, immobilis below), see Fig. 5.1. Water is associated 

with three qualities, being corporeal, soft and mobile. Similarly, Air is soft, mobile and 

light. It seems fair to conclude that we have here the Cubus Perfectus which is mentioned 

in the three complete copies of Algorismus. 

 

Figure 5.1: A diagram of the four Elements in the manuscript AM 736 III 4to, 2r. 

Diagrams with the Elements and the four numbers exist in other foreign manuscripts on 

medieval cosmology, but those manuscripts are not related to Algorismus. For instance, 

the same sequence of proportions, 8, 12, 18 and 27, and Elements, Ignis, Aer, Aqua and 

Terra, and the same qualities appear on the right in St. John’s College MS 17 (Oxford 

Digital Library),
14

 see Fig. 5.2. A similar schema exists in an eleventh century manuscript 

of Boethius, Madrid Biblioteca nacional Vit. 20 fol. 54v (Bekken, 1986). It is also found 

in an anonymous treatise on cosmology in Bodleian Library Digby 83, fol. 3r. 

                                                           
14 The Calendar and the Cloister – St. John’s College MS 17, commentary.  
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Figure 5.2: St. John’s College MS 17, dated early 12
th

 century. 

6 Comparing the four manuscripts of Algorismus 

The texts of Algorismus in the manuscripts AM 544 4to and GKS 1812 4to are identical in 

most respects, as is Algorismus in AM 685 d 4to, which however has added a 306-word 

long section, placed after the section on subtraction. It describes a method of halving a 

number, the fourth operation. This section is neither contained in Carmen nor in the 

manuscripts AM 544 4to and GKS 1812 4to, and is not discussed further in this paper. 

The AM 736 III 4to is only a fragment. 

AM 544 4to, preserved in the manuscript collection Hauksbók, contains the oldest 

manuscript of the treatise, estimated to be written in the period 1302–1310, most likely in 

1306–1308 (Karlsson, 1964). The text is divided into chapters bearing headings. Numbers 

are written using Hindu-Arabic numerals in the introduction and in the additions to 

Carmen with examples of place value notation and even and odd numbers, shown earlier. 

Numbers, however, are mainly written in Roman numerals, until in the last chapter on the 

Elements, which does not originate in Carmen de Algorismo, and where Hindu-Arabic 

numerals are used.  

The part of GKS 1812 4to containing Algorismus is estimated to be written in 1300–

1400 (A Dictionary of Old Norse Prose – Indices, 1989, p. 26). There are no chapter 

headings. Numbers are mainly written using words as in Carmen, exceptionally in Roman 
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numerals. Hindu-Arabic numerals are only used in the first additions to Carmen, as is 

done in AM 544 4to, and in the chapter on the Elements.  

AM 685 d 4to, is dated to 1450–1500 (A Dictionary of Old Norse Prose – Indices, 

1989, p. 26). It has no chapter headings. Numbers are written alternately in words, Roman 

numerals, and Hindu-Arabic notation which is the most common. Finnur Jónsson states 

that the text of Algorismus in AM 685 d 4to is the most error free of the four texts, basing 

this conclusion on various spelling examples (Jónsson, 1892–1896, p. cxxxi). 

Furthermore, this text is the most concise of the four texts as it is often contracted, 

preserving a correct meaning. The text in AM 685 d 4to is also correct where other texts 

have an error on the origin of one half (Jónsson, 1892–1896, p. 419), called semiss, 

coming up after halving an odd number, which indicates that one of the transcribers of 

AM 685 d 4to understood the treatise well.  

AM 736 III 4to is estimated to origin around 1550 (A Dictionary of Old Norse Prose – 

Indices, p. 26). It contains only a fragment of the text of Algorismus, a section on root 

extraction, in addition to the leaf with the diagram of the Elements in Fig. 5.1.  

The adaptations made to Carmen de Algorismo to create Algorismus suggest that 

Algorismus served a role in introducing the use of Hindu-Arabic numerals in the Norse 

societies. In the oldest manuscript of Algorismus, AM 544 4to, Roman numerals are used 

to explain the text, or plain words are used as in Carmen. The use of Roman numerals 

indicates that the transcriber needed to shorten the text and that he was not used to Hindu-

Arabic numerals.  

Plain-word number notation is dominant in GKS 1812 4to. The youngest whole 

manuscript, AM 685 d 4to, rarely has Roman numerals, while words and Hindu-Arabic 

numerals are used interspersed.  

6.1  Manuscript comparison - methodology  

When reading the four manuscripts of Algorismus it is apparent that they are quite similar; 

sentence structure and phrasing suggests that they all derive from the same prototype.  The 

same text insertions and deletions are made in all four manuscripts to Carmen de 

Algorismo, exemplifying that these are not different translations.  

How similar are these manuscripts? Numerical methods were used to compare the 

manuscripts, comparable to methods used extensively in comparative linguistics (Fox, 

1995) and in gene and protein comparison. In the following comparison, difference in 

spelling is generally not revealed as the texts of all the manuscripts have been rewritten in 

modern Icelandic. 

The four texts were aligned using the computer programme ClustalW (Thompson, 

Higgins and Gibson, 1994), and a weighted number of mismatches between the 

manuscripts was computed. As ClustalW is designed to align protein sequences it takes as 

input sequences from the twenty letter alphabet of protein sequences.  The Icelandic 

version of the Latin alphabet is larger than twenty letters, so each letter was mapped to 

two letters in the alphabet of protein sequences. ClustalW was then used to align the texts 

and the text was mapped back to the Latin alphabet. The alignment was then corrected 

manually, considering in particular word reorder and different forms of the imperative. 

Mismatches between the manuscripts were counted and classified into three distinct 

classes; single character mismatches, word reorders and word mismatches. 

- Single character mismatches were defined as: 
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- Identical spelling apart from a single character difference.  

- Mismatches in writing style of the numerals; Hindu-Arabic, Roman or spelled out. 

- Mismatches in the writing of the imperative, e.g. tak þú - taktu.  

- Word reorders were defined as parts of the manuscripts where the order of two or 

more words had been reordered.  

- Word mismatches were all other types of differences such as word insertion, missing 

words or a different word being used.  

The weighted distance between the manuscripts was used to infer the phylogeny of the 

manuscripts, using the assumption that it is unlikely that the same change is made more 

than once. One may also assume that each transcriber is equally likely to cause a 

distinction. Finally, a simple programme was written to count the number of differences.   

6.2 Results  

The manuscripts are different in length. In the following, a section in AM 685 d 4to of 

length 306 words, not extant in the other manuscripts, has been removed.  The lengths are: 

Manuscript Words # Characters # 

GKS 1812 4to 2986 15174 

AM 544 4to 2960 15110 

AM 685 d 4to 2902 14772 

AM 736 III 4to  630  3323 

Table 6.1: No. of words and characters in the four manuscripts of Algorismus. 

That AM 685 d 4to has fewest words of the complete manuscripts suggests that the 

transcriber(s) of AM 685 d 4to sometimes shortens the text. 

The following weights of mismatches were used: 

Word mismatches:   1.00 point  

Word reorders:   0.25 point 

Single character mismatches:  0.25 point 

Results from counting mismatches between the three complete texts in AM 685 d 4to, AM 

544 4to, and GKS 1812 4to, were: 

Manuscripts GKS 1812 4to AM 544 4to AM 685 d 4to 

    0.00 123.25 264.50 

AM 544 4to 123.25     0.00 261.00 

AM 685 d 4to 264.50 261.00     0.00 

Table 6.2: No. of mismatches between the three complete manuscripts of Algorismus. 

The shortest distance between two manuscripts is between AM 544 4to, and GKS 1812 

4to, 123.25 mismatches by 2986 words, or 4.1%. 

The greatest distance between two manuscripts is between AM 685 4to, and GKS 1812 

4to, 264.5 mismatches by 2986 words, or 8,9%.  

The parts of the manuscripts that all have in common, i.e. the part also found in AM 736 

III 4to, were compared separately.  

The results were: 
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Manuscripts GKS 1812 4to AM 544 4to AM 685 d 4to AM 736 III 4to 

GKS 1812 4to     0.00   26.00   55.00    57.75 

AM 544 4to   26.00     0.00   52.00    57.25 

AM 685 d 4to   55.00   52.00     0,00    73.25 

AM  736 III 4to   57.75   57.25   73.25      0.00 

Table 6.3: No. of mismatches in the part common to all manuscripts of Algorismus. 

The distance of AM 736 III 4to is greatest from AM 685 d 4to, while it is closest to AM 

544 4to, and nearly equally close to GKS 1812 4to. Clearly, AM 544 4to and GKS 1812 

4to are more close to each other than the other two, which are also different from each 

other.  

In this counting of mismatches the ratio 1 : 0,25 or 4 : 1 between word mismatches and 

other mismatches was used. Counting was also done using the ratio  

3 : 1 and lead to comparable conclusions.  

Fig. 6.1 exhibits the relation between the different copies of Algorismus. A matrix was 

made according to the distances between the four manuscripts, from which was 

constructed a phylogenetic tree with distances similar to the distances in the distance 

matrix. The diagram was made by the programme ATV (Zmasek and Eddy, 2001). 

 

Figure 6.1. A phylogeny of the copies of the part of Algorismus in common to the 

manuscripts AM 736 III 4to, AM 685 d 4to, AM 544 4to, and GKS 1812 4to, made by the 

programme ATV. 

The phylogeny may be interpreted such that the manuscript AM 544 4to, contains the 

most original copy of the treatise, and that the copy in GKS 1812 4to is closest to it. The 

copies in the manuscripts AM 736 III 4to and AM 685 d 4to are partly drawn from the 

same stem, but are further from the origin, in particular AM 736 III 4to.  

Comparing copies of Algorismus in GKS 1812 4to and AM 544 4to we see that both 

copies were written about +/-50 years after Finnur Jónsson’s estimated translation date, 

before 1270. The difference in the number of words in the two copies are 26 words where 

GKS 1812 4to is the longest. Of them, 18 can be ascribed to the differently expressed 

imperative form of the verbs, such as skalt þú – skaltu. The contracted form is more 

common in AM 544 4to while the separated form is the norm in GKS 1812 4to.  

Out of the points for mismatches, 123.25, 11 may be explained by different form of the 

imperative and different expression of numbers. Both may be interpreted as efforts to save 
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the precious vellum. Most other mismatches may be ascribed to personal preferences of 

the scribes or simple mistakes.  

It is not unreasonable to conclude that the two versions of Algorismus are copies of the 

same origin, possibly the first or second copies of the original version. The two versions of 

Algorismus are similar in length. Both contain several same errors, for example in the 

section about doubling:  

... en ef semiss stendur yfir uppi í ysta stað þá legg við einn því að þar var áður jöfn tala er í 

helminga var skipt.(GKS 1812 4to, 14r)15 

Here, jöfn, even [number] should be replaced by ójöfn, uneven/odd [number]. This error is 

not found in the copy contained in the fifteenth century manuscript AM 685 d 4to. 

7 Discussion 

We have explored the thirteenth century treatise Algorismus, written in the Old-Norse 

language, its content of arithmetic studies and cosmology, and compared its manuscripts. 

Algorismus was written in the transition period when Hindu-Arabic decimal place value 

numeral notation and associated arithmetic methods were being introduced in Europe. The 

four different manuscripts of Algorismus, written in the time span from early fourteenth 

century until mid-sixteenth century, reveal that the new style of number notation gradually 

entrenched. We may wonder how large role Algorismus played in that development. 

What motivated the Old Norse people to translate Carmen de Algorismo? Certainly, 

they had to count their belongings and assets, e.g. for taxation, but they could have done 

so with the Roman numerals they knew. Writing manuscripts was an integral part of the 

Christian monastic culture. The reason may have been an aspiration to belong to the 

European cultural world. The Old-Norse-speaking population in Iceland and Norway was 

never large compared to populations of millions in the centres of the Christian world in the 

present Italy and France. Producing writings in the vernacular was an important factor in 

creating a common culture for this small group of people.  

The additions in Algorismus to its original, Carmen de Algorismo, bear witness to a 

desire for learning, to understand the text as demonstrated by insertions for clarification. 

Comparison of the four copies of Algorismus of different age reveals that people 

continued to work on understanding the text and gradually began to use the convenient 

Hindu-Arabic number notation.  

But it took time. According to the phylogeny and other considerations, manuscript AM 

544 4to was not the original of Algorismus, suggesting that Algorismus may originally 

have been written in the second half of the thirteenth century, as proposed by Finnur 

Jónsson, or about 200 years before AM 685 d 4to, and possibly up to 300 years before AM 

736 III 4to. Algorismus therefore played an important role in Icelandic culture until the era 

of printing, when printed books began to spread much more rapidly between countries 

than manuscripts. 

Iceland was originally an independent society in close contact to Norway, but from 

1397 it belonged to the Danish realm until 1944. It lagged gradually behind other 

European countries in educational respect. Algorismus appears in history whenever 

mathematics education was revived, serving as a monument of the proud past, when 

                                                           
15 … but if a semiss [symbol for one half] is placed above in the farthest place then add one as there was 

earlier an even number divided into halves. 
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Icelanders kept up with the latest global knowledge. Even the most distinguished Icelandic 

scholars continued to refer to Algorismus until the nineteenth century (see e.g. 

Gunnlaugsson, 1865, p. 4), paying respect to the time when Icelanders were familiar with 

the latest mathematical knowledge in the world and translated it to their own language.     
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ABSTRACT 

According to Julius Petersen in 1866 (Petersen, 1866/1927), to do geometry is to examine 

a figure, by propositions which either are theorems (a certain well constructed figure 

satisfies certain conditions) or are problems of construction (we require a figure so 

constructed, that certain given conditions are satisfied). So here theorems and problems do 

not mean exactly the same thing as in Euclid and Proclus: they are thought in duality.  

By using straight edge and a pair of compasses, Petersen solved problems of 

construction of a point satisfying several conditions. Two ancient methods are usual for 

that: analysis by angles and lengths, with the tool of the three cases of equality of triangles 

taken as atomic properties to be combined; and analysis by equations on lines, with the 

tool of equational calculus. These methods are rather statics. In contrast with these 

methods, thanks to the development of geometrical transformations especially during the 

19th century, Petersen proposed a more dynamical method by determination of locus of 

points, and by transformations of figures. His method turns on three rules: 1. To draw a 

figure representing the solved problem. 2. Imagine one of the given conditions for the 

figure in quest of removed, and seek the loci of the points of the figure thus rendered 

indeterminate. 3. Of the drawn figure try to form another, in which the relations between 

the given and sought elements are more convenient. 

It is not completely new to draw a figure, to observe a locus of points as a curve, or to 

modify a figure: what is truly new here is the explicit determination of a method with this 

design of rules. And furthermore, Petersen proved that many of the problems previously 

solved by examinations of triangles or equations can be solve in this way. Finally, the very 

point of the method is that the book is not ordered as a theory, but it is ordered according 

to problems and as a practice of invention, according to difficulties of constructions. 

According to works of É. Barbin (2001), J. Lützen et al (1992), G. Moussard (2015), 

we will consider Petersen’s book among other books for teaching geometry in the 19th 

century, showing how Petersen’s rules are in action in some problems. 

This book is a splendid tool for teaching, noticeably for a self-taught-person, because it 

is truly a method:  not only you know solutions, but also you are learned how to find them. 

So, it can be considered as a method to teach and learn geometry. 
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ABSTRACT 

Anders Gabriel Duhre, an important mathematician and mathematics educator in Sweden during the 18th century, 

contributed with two textbooks in mathematics, one in algebra and one in geometry. Among others, he treats 

infinitesimals based on Nieuwentijts’ theories from Analysis infinitorum and infinite sums based on Wallis’ 

method of induction from Arithmetica infinitorum. Based on these results, Duhre develops an ingenious method 

to determine the area enclosed by curves by constructing a corresponding curve. He applies his method to the 

circle in order to find an expression of   as an infinite series. The series he finds is a modified version of the 

Gregory-Leibniz’ series. In the present paper we consider in detail Duhre’s presentation in order to further 

investigate the influence upon him as well as his influence on the Swedish mathematical society of his time.  

1   Introduction  

The Swedish mathematician and mathematics educator Anders Gabriel Duhre (c.1680–1739) 

was an important and influential person in the Swedish mathematical society in the early 18
th

 

century (Rodhe, 2002). He studied mathematics at Uppsala University, Sweden, and for some 

time he was a student of the Swedish scientist, inventor and industrialist Christopher Polhem 

(1661–1751) at his school Laboratorium Mechanicum in Stjärnsund. For some years Duhre 

taught mathematics to engineering students at Bergskollegium (a central agency in the mining 

industry) and to prospective officers at the Royal Fortification Office in Stockholm. In 1723 

he opened his own school, Laboratorium Mathematico-Oeconomicum, outside Uppsala, 

where theoretical and practical subjects were taught to young boys (Hebbe, 1933). Of 

particular interest is that mathematics was taught in this school; Duhre had knowledge of 

mathematics that was not yet taught at the university, and students at the university turned to 

him to learn more on modern mathematics. Among his students were several of the Swedish 

mathematicians to be established during the 1720s and 1730s (Rodhe, 2002). Duhre taught in 

Swedish and early on planned to write mathematical textbooks in Swedish in order to 

introduce the Swedish youth to new and modern mathematics. 

Duhre contributed with two textbooks in mathematics – one in algebra and one in 

geometry. Both were based on his lecture notes from his teaching at Bergskollegium and the 

Royal Fortification Office. The first book, En Grundelig Inledning til Mathesin Universalem 

och Algebram (“A thorough introduction to universal mathematics and algebra”), was edited 

by Georg Brandt and published in 1718. In this book, modern algebra based on Descartes’ 

notation is presented, as well as examples from Newton’s, Wallis’ and Nieuwentijt’s theories 

from the end of the 17
th

 century. For example, he treats infinitesimals based on Nieuwentijt’s 

theory as presented in Analysis infinitorum (1695) and utilizes Wallis’ method of induction, as 

presented in Arithmetica infinitorum (1656), to determine the quotient of infinite series. In his 
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second book, Första Delen af en Grundad Geometria (“The first part of a founded 

geometry”), published in 1721, Duhre takes advantage of the theories he presented earlier in 

his book on algebra. Of particular interest is his use of algebra in the geometrical context 

(Pejlare, 2017).  

In this paper, we will consider Duhres’ utilization of infinitesimals and infinite sums to 

determine the quotient between the circumference and the diameter of a circle, in order to find 

  expressed as an infinite series. We will first give a short introduction to Nieuwentijt’s 

Analysis infinitorum and his utilization of infinitesimals, before we consider Duhre’s 

interpretation of Nieuwentijt’s work. Thereafter we will consider Wallis’ Arithmetica 

infinitorum and how Duhre utilizes his method of induction to determine the quotient of 

infinite series. Following that, we will consider Duhre’s method to find the area enclosed by 

curves. Finally, we will consider how Duhre utilizes this method on a circle and how he 

determines an expression for  . 

2 Infinitesimals in Nieuwentijt’s Analysis infinitorum 

The Dutch philosopher and mathematician Bernard Nieuwentijt (1654–1718) is, in particular, 

known for his critique on the foundations of Leibniz’ infinitesimal calculus. In 1695 he 

published Analysis infinitorum, a book “written by a beginner for beginners”
1
 on elementary 

infinitesimal calculus. This book is primarily of a didactic character; he attempted at 

presenting mathematics in a systematic way as a coherent unit (Vermij, 1989). In the prologue 

he presents three definitions and two axioms which enable him to deduce rules for calculating 

with the infinite and infinitesimal quantities through more than 50 lemmas. In the chapters 

following the introduction, these lemmas lead to the propositions on infinitesimal calculus.  

For Nieuwentijt, a quantity is infinitesimal if it is smaller than any arbitrary given quantity 

and it is infinite if it is greater than any arbitrary given quantity. The word infinitesimal is 

however not used in the definitions, axioms or lemmas. Instead, Nieuwentijt uses the 

expression “datâ minor” which can be translated into “the given smallest”. Of central 

importance is his first axiom:  

Anything that when multiplied, however many times, does not equal another given 

quantity, however small, cannot be considered a quantity, geometrically it is absolutely 

nothing.
2
 

The main peculiarity of Nieuwentijt’s approach to infinitesimals is represented in Lemma 10, 

where it is stated that if an infinitesimalquantity is multiplied by an infinitesimal quantity, 

then the product is zero or nothing. The product of two infinitesimal quantities, or “the 

infinite small of the infinite small”, can be interpreted as Leibniz’ second differential. 

However, whereas Nieuwentijt considered squares of infinitesimals to be equal to zero, this is 

generally not the case with Leibniz’ differentials (Mancosu, 1996).  

                                                           
1 “Tyroni scriptum tyronibus” (Nieuwentijt, 1695, præfatio). 
2 “Quicquid toties sumi, hoc est per tantum numerum multiplicari non potest, ut datam ullam quantitatem, ut ut 

exiguam, magnitudine suâ æquare valeat, quantitas non est, sed in re geometricâ merum nihil” (Nieuwentijt, 

1695, p. 2). 
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3 Infinitely small quantities in Duhre’stextbook on algebra 

In Chapter XXVI of his book on algebra, Duhre presents an interpretation of the prologue of 

Nieuwentijt’s Analysis infinitorum (1695). An infinitely small quantity is defined by Duhre 

as: 

If a quantity is divided by an infinitely big number, one should consider the received 

quotient to be infinitely small; it is something that is smaller than the smallest quantity 

that can ever be given.
3
 

Thus, according to Duhre, if   is an infinitely big number then the quotient 
 

 
 is infinitely 

smaller than the quantity  . Duhre considers the nature of an infinitely big number to be 

that it is bigger than every given number and that it thus can be seen as “ceaselessly 

growing with no return”.
4
From this it follows that 

 

 
 is smaller than the smallest quantity 

that can ever be given. Duhre gives a proof by contradiction that 
 

 
 really is “smaller than 

the smallest”: if   is a quantity that is smaller than 
 

 
 then the given quantity   is bigger 

than    and the quotient 
 

 
 is bigger than the infinitely big quantity  , but this 

“contradicts all truth”.
5
 Therefore,

 

 
must be smaller than the smallest quantity, i.e., an 

infinitely small quantity. 

The arguments above show that handling the infinite is problematic. Duhre treats the 

infinite as a fixed number, but this is in conflict with his earlier statement that an infinite 

number grows ceaselessly. Also, it seems easier to accept the infinitely big than the infinitely 

small, since the existence of the infinitely small is proven with the help of a given existence of 

the infinitely big.  

After introducing infinitely small quantities, Duhre continues with 14 lemmas with rules 

for calculating with them; 10 of these are also found in Nieuwentijt’s Analysis infinitorum. 

Among Duhre’s lemmas we find, among others, that the sum of two infinitely small quantities 

is an infinitely small quantity (Lemma 1) and that the product of any number and an infinitely 

small quantity is an infinitely small quantity (Lemma 3). Of great importance for his later 

presentation on infinite sums is Lemma 4, which corresponds to Nieuwentijt’s Lemma 10:  

If an infinitely small part 
 

 
 is either multiplied by itself or by another infinitely small 

part  
 

 
; then the received product 

  

  
 or 

  

  
 is nothing or no quantity.

6
 

Thus, Duhre, just as Nieuwentijt, considers the square of infinitely small quantities to be 

equal to zero. In the proof of this lemma Duhreuses Nieuwentijt’s first axiom: If the product 

of two infinitely small quantities is multiplied by an infinite number, this will be equal to an 

infinitely small quantity, i.e., 
    

  
 

  

 
 and 

    

  
 

  

 
, and since something multiplied by an 

                                                           
3 ”Om en förestäld quantitet hålles före wara fördehlad utaf ett oändeligen stort tahl; bör man anse then ther af 

komna quotienten för oändeligen lijten thet är för en ting som är mindre än then allerminsta quantitet som 

någonsin kan gifwas” (Brandt, 1718, p. 212). 
4 ”[…] ouphörligen växande utan någon återvända” (Brandt, 1718, p. 213). 
5 ”[…] stridande emot all sanning” (Brandt, 1718, p. 213). 
6 ”Om en oändeligen lijten dehl 

 

 
, antingen warder multiplicerad med sig sielf eller med någon annan 

oändeligen lijten dehl 
 

 
; at then ther af komna producten

  

  
 eller 

  

  
 måtte wara alsintet eller ingen quantitet” 

(Brandt, 1718, p. 214).  
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infinite number is equal to an infinitely small number then this something is not a quantity 

and geometrically is nothing. 

In this proof Duhre does not seem to have a problem handling the infinite; it is no problem 

for him to shorten the expression with the infinitely big number  . He uses Lemma 4 in 

Lemma 14 where he deals with how infinitely small quantities can be handled in equations. 

He concludes that in an equation involving infinitely small quantities, the infinitely small 

quantities can be omitted, since, if the equation is divided by an infinitely big number  , then 

it follows from Lemma 4 that these can be considered as nothing. Algebraically this lemma 

can be interpreted as   
 

 
   since 

 

 
 

 

  
 

 

 
.  

4 Wallis’ Arithmetica infinitorum 

After considering the introduction of Nieuwentijt’s Analysis infinitorum, Duhre, in 

Chapter XXVII of his book on algebra, proceeds with studying John Wallis’ (1616–1703) 

Arithmetica infinitorum from 1656. Arithmetica infinitorum was an important text in the 

17
th

 century, in particular regarding the transition from geometry to algebra and regarding 

infinite series (Stedall, 2005). For example, Isaac Newton (1642–1727) was influenced 

by Wallis in his work towards integral calculus. Introducing new methods and concepts, 

Wallis’ purpose was to find a general method of quadrature, i.e., finding the area 

enclosed by curves, or rather the ratios of those areas to inscribed or circumscribed 

rectangles. He achieved this by drawing together ideas from René Descartes’ (1596–

1650) algebraic geometry and Bonaventura Cavalieri’s (1598–1647) theory of 

indivisibles. Wallis’ results were based on the summation of indivisibles or infinitesimal 

quantities, where an indivisible can be considered to have at least one dimension equal to 

zero, as for example a line or a plane, while an infinitesimal is considered to have an 

arbitrarily non-zero width or thickness. Wallis was however not concerned with the 

distinction between indivisibles and infinitesimals and generally spoke of infinitely small 

quantities.  

In order to find the area enclosed by curves, Wallis reduced the geometric problem to the 

summation of arithmetic sequences (Stedall, 2004). Two important mathematical methods he 

developed were induction and interpolation. Wallis’ method of induction relied on intuition; 

he believed that if a pattern was established for a few cases then it could be assumed to 

continue indefinitely. Also, in his method of interpolation he relied on intuition; for example, 

he assumed continuity regarding sequences of numbers in order to interpolate intermediate 

values. One example of this is when he used his method of interpolation between the 

triangular numbers 1, 3, 6, 10 … Another example of interpolation is when he, in Proposition 

191, found the ratio of a square to an inscribed circle: 
 

 
 

               

               
 . 

5 Infinite sums in Duhre’s textbook on algebra 

We now turn our attention to Duhre’s textbook on algebra again. We will here only consider 

those parts when Duhreuses Wallis’ method of induction in order to deal with infinite sums. 

Duhre begins Chapter XXVIIby determining that the proportion of the sum of infinitely many 

squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem terminorum maximo 

æqualium equals the proportion of 1 to 3. The summan totidem terminorum maximo æqualium 

864



is explained to be “the sum of the greatest term as many times as there are terms in the 

progression”
7
. Thus, in modern notation the proportion to be determined can be interpreted as: 

 

   
   

    
   

       
 

 

 
 

 

Duhre proves this proportion using Wallis’ method of induction, as presented in 

Arithmetica infinitorum. To do this, he first examines the proportion when n equals 1, 2, 

3, 4, and 5 in the expression above:  

 
   

   
 

 

 
 

 

 
 

 

     

     
 

 

 
 

 

  
 

 

       

       
 

 

 
 

 

  
 

 

          

              
 

 

 
 

 

  
 

 

             

                 
 

 

 
 

 

  
 

 

Duhre examines the pattern of the partial proportions and concludes that the denominators 6, 

12, 18, 24, 30 et cetera form an arithmetical sequence. As long as the number of squares is 

finite the proportion is bigger than 
 

 
. However, if we have infinitely many ( ) squares, the 

proportion will be
 

 
 

 

 
, but since

 

 
 

 

 
 

 

 
 according to Lemma 14 in Chapter XXVI (see 

Section 3), the proportion will be 
 

 
. Therefore, he concludes, the proportion of the sum of 

infinitely many squares with the roots 1, 2, 3, 4, 5 et cetera to the summan totidem 

terminorum maximo æqualium equals the proportion of 1 to 3. 

In this presentation, Duhre closely follows Wallis, but unlike Wallis who in his following 

propositions offers geometrical interpretations of this result, Duhre does not do so. According 

to Wallis, the above proportion 1 to 3 geometrically corresponds to the proportion of the 

complement of half a parabola to the parallelogram completed by the same half parabola and 

its complement (Wallis, 1656, Prop. XXIII). Furthermore, Wallis’ method of induction would 

not be an accepted method of induction today, since only a limited number of cases for 

          were tested and the induction step (i.e., if the property is assumed to be true for 

    it should be proven to be true for      ) was not included.  

Duhre proceeds by proving the corresponding proportion for cubes with the help of Wallis’ 

method of induction. In modern notation, he proves the following: 

 

   
   

    
   

       
 

 

 
 

                                                           
7 ”[…] en summa innehållande then största ledamoten så ofta som progressionens ledamöter äre” (Brandt, 1718, 

p. 77). 
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After these two proofs, using Wallis method of induction, Duhre states that, again 

interpreted in modern notation, the following proportions are true: 

 

   
   

    
   

       
 

 

 
 

 

   
   

    
   

       
 

 

 
 

 

   
   

    
   

       
 

 

 
 

6 Duhre’s method of finding the area enclosed by curves 

Let us now turn to Duhre’s textbook on geometry. We will consider Duhre’s method of 

finding the area enclosed by curves in order to see how he uses the proportions including 

infinite sums that he considered in his Algebra. In Chapter XXX Duhre formulates a 

proposition where he considers the curve      and from it constructs the curve      such 

that the area of the segment       is equal to half of the area        (see Figure 6.1). 

The curve      is constructed in the following way: Let    be a tangent at the point  , 

parallel to the ordinate    and for every point   on     with a tangent    where   is a 

point on   , the ordinate    is equal to the line   . 

 

Figure 6.1: The area of the segment       is equal to half of the area        (Duhre, 

1721, p. 572). 

Duhre proves this proposition without using algebra, only considering geometrical properties. 

First, he draws a few help lines. He draws the line    parallel to    such that      is a 

parallelogram. If the point   is considered to be infinitely close to the point  , he concludes 

that the line    can be considered to be a straight line and thus it can be considered to be a 

part of the tangent   . Then he draws the line    parallel to    and the lines   ,    and 

   parallel to   . Finally, he draws the line   . The proof of the proposition follows: 

Since the two parallel lines    and    are infinitely close to each other, the points   and 

  are infinitely close to each other, and thus the mixed lines figure      must be the same 

as the parallelogram    . Furthermore, the lines   ,    and    are equal to each other 

and hence the parallelogram      equals the parallelogram     , which in turn equals the 

parallelogram     . Now, if    is considered as a base, the parallelogram      is twice 

as big as the triangle    , since the lines    and    are parallel. This implies that also the 

mixed lines figure     and the parallelogram     are twice as big as the triangle    . 
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Finally, if other lines parallel to the line    are drawn, each of the resulting mixed lines 

figures are twice as big as the corresponding triangles for the same reason that the mixed lines 

figure      is twice as big as the triangle    . Therefore, the figure       , which is 

the composite of the mixed lines figures, equals twice the sum of the corresponding triangles 

that forms the segment     , which is what Duhre wanted to prove. 

7 Duhre’s method applied to the circle  

In order to calculate the decimals of  , or more specifically, in order to show that the 

proportion between the diameter and the circumference of a circle is approximately the same 

as 100 to 314, Duhre now wants to apply the proposition from Chapter XXX to a circle, i.e., 

instead of considering the circumference he considers the area of a circle. He begins Chapter 

XXXI with considering a half circle; the area under the corresponding curve to a half circle 

should be equal to the area of a full circle (see Figure 7.1). However, the corresponding 

curve    to the half circle    in fact is an asymptote to the line   , and thus the 

“indescribable width”
8
 of the area contained by the “indescribable” line     is equal to the 

area of the circle. However, the “undescribable width” is too difficult for Duhre to consider 

further. Therefore, he instead considers a quarter of a circle    and its corresponding 

curve   . Doing this, the area      equals twice of the area of the segment     

according to the proposition in Chapter XXX. By adding half of this area to the area of the 

triangle     and multiplying the expression by four, an expression of the area of the circle 

will be given.  

 

 

Figure 7.1: The area      equals twice of the area of the segment     (Duhre, 1721, p. 

574). 

Instead of calculating the area of the figure    , Duhre’s idea is to calculate the area of the 

figure    . He states that the line   , which is equal to the line   , can be divided into 

infinitely many equal parts, and the lines   ,   ,    et cetera proceeding from these points 

of intersection will fill up the figure    .  

Now Duhre introduces the variables  ,   and  . He lets      , i.e., the radius of the 

circle equals  , the ordinate            and     . He wants to find an 

                                                           
8 ”[…] obeskrifweliga widden” (Duhre, 1721, p. 110). 
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expression for  , which can be considered as a length that varies.He does this using 

proportional reasoning: He first concludes that         and, because of properties of 

the circle the square of    equals       which is the same as       . Considering the 

two uniform triangles     and    , Duhre concludes that since  ,   ,    and    are 

geometrical proportional, i.e.,            , the squares    ,    ,     and     will 

also be geometrical proportional, i.e.,                .
9
 From this it follows that 

                       , which can be simplified into             . He 

now uses the fact that the product of the two utmost in a geometrical progression equals the 

product of the two inners, i.e.,             . By adding     and dividing by       

on both sides, Duhre now finally finds the expression   
    

     
   . This quotient can be 

expressed as an infinite series: 

 

     
    

     
 

   

 
 

   

  
 

   

  
 

   

  
    

 

Furthermore, he concludes that if       then  

 

   
   

 
 

    

  
 

     

  
 

     

  
     

 

if        then  

 

   
    

 
 

     

  
 

      

  
 

       

  
     

 

and so on. Since      is divided into infinitely many equal parts, where the first one is 

    ,      ,      , and so on, the expressions above give the corresponding 

lengths of    . These lengths could also be denoted   ,   ,    according to Figure 7.1. 

The last of these lengths is     .The infinitely many lengths together fill up the figure 

   , and therefore Duhre now has to compute the infinite sum of these infinitely many 

series. In order to compute the sum, i.e., the area of the figure    , Duhre now collects all 

terms of the same power of  . Thus, the area     will be: 

 
 

 
                 

 

  
                  

 

  
                      

 

In modern notation this expression can be interpreted as 

 

 

 
   
   

      
 

   

 
 

  
   
   

      
 

   

 
 

  
   
   

      
 

   

   

 

To compute these sums, Duhre uses the results on infinite sums from his text book on algebra 

(see Section 5). First, he has to determine the summa totidem terminorum maximo æqualium. 

The summa totidem terminorum maximo æqualium to the infinite sum              
must be     , since he considers   to be the number of terms in the infinite sum and    to 

                                                           
9 In modern notation: 

  

  
 

  

  
      

   

   
 

   

   . 
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be the biggest term in the sum. It follows that, in modern notation,              
    

 

 
  . 

In the same way              
    

 

 
  ,              

    
 

 
   and so on. Therefore, 

the infinite sum of the infinite series above, i.e., the area of the figure    , will be equal to 
 

 

 
 
 

 
    

 

  
 
 

 
    

 

  
 
 

 
        

 

 
 

 
   

 

 
   

 

 
   

 

 
       

 

Duhre can now easily find an expression for the area of the figure    ; he just has to take the 

area of the square of   , i.e.,   , and subtract the area of the figure    . Thus, the area of 

the figure     will be 

 

   
 

 
   

 

 
   

 

 
   

 

 
    

 

According to the method presented in Chapter XXX (see Section6), the area of the figure 

    is twice the area of the segment    , and therefore it follows that the area of the segmet 

    will be 

 
 

 
   

 

 
   

 

 
   

 

 
   

 

 
       

 

Now, adding the area of the triangle     to this expression and multiply with four will 

finally give an expression for the area of the circle with radius  : 

 

    
 

 
   

 

 
   

 

 
   

 

 
       

 

Duhre modifies this expression even further, in order to find an expression for the 

circumference of the circle. Since the area of a circle equals the area of a triangle where the 

base equals the circumference of the circle and the height equals the radius of the circle, he 

concludes that he will find an expression of the circumference of the circle if he divides the 

area of the circle with half of its radius, i.e., 
 

 
 . Thus, he gets the following series expressing 

the circumference of the circle: 

 

   
 

 
  

 

 
  

 

 
  

 

 
     

 

Duhre now lets the diameter of the circle, i.e.,   , equal 1 and finds that the proportion 

between the diameter of a circle and its circumference is as one to the following series: 

 

  
 

 
 

 

 
 

 

 
 

 

 
    

 

He finally modifies this series by merging the terms pairwise: 
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In modern notation we can interpret this result as 

 

     
   

 
 

         
 

 

   

 

8 Duhre’s calculation of   

After finding the proportion of the diameter of the circle to its circumference, Duhre proceeds 

with computing this proportion. He starts with constructing a table (see Figure 8.1) with the 

first 315 denominators of the series  
 

         

 
    .This table is actually not completely 

correct, possibly due to typesetting errors. For example, for k=100 it says 258.403 instead of 

158.403 and for k= 50 it says 39.204 instead of 39.203.  

 

Figure 8.1: The table containing the first 315 denominators in Duhre’s infinite series of   

(Duhre, 1721, pp. 116–117). 

Duhre proceeds with constructing a second table, containing the first 315 terms and partial 

sums of the series (see Figure 8.2). However, he does not want to consider decimals and 

therefore he considers a circle with diameter 100.000.000 instead of 1, i.e., the general 

numerator in the series will be 800.000.000 instead of 8. In modern notation this new series 

can be written as  
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In this way the partial sums, after approximations, will be natural numbers. In the table in 

Figure 8.2 we can see that the proportion of the diameter of a circle to its circumference will 

be approximately as 100.000.000 to 314.000.528, or as 100 to 314. 

 

Figure 8.2: Duhre’s table showing the first 315 approximated termsand partial sums in the 

series  
           

         

 
    (Duhre, 1721, pp. 119–121). 

Duhre concludes Chapter XXX by noting that in practice, when minor computations have to 

be made, the proportion 100 to 314 or the Archimedean proportion 7 to 22 can be used, the 

requested proportion being smaller than the former and bigger than the latter. If larger 

computations have to be performed, however, he suggests that the proportion 100.000 to 

314.159 should be used. Nevertheless, he does not perform the computations needed to find 

this proportion. 

9 Concluding remarks 

The series   
 

 
 

 

 
 

 

 
 

 

 
    which Duhre received before he merged the terms pairwise, 

we recognize as a Maclaurin series for         for   . Since          , we can 

conclude that Duhre’s series is correct. However, it converges very slowly. This series is 

known as the Gregory–Leibniz’ series after James Gregory (1638–1675) and Gottfried 

Wilhelm Leibniz (1646–1716). Leibniz was concerned with the quadrature and when he 

applied his method to the circle he received the series 
 

 
   

 

 
 

 

 
 

 

 
  . Leibniz found 

this result in 1673, but already in 1671 Gregory, who was concerned with infinite series 

representations of transcendental functions, had found the corresponding Taylor series. Also, 
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an Indian mathematician, whose identity is not definitely known, found the series for        

during the 15
th

 century (Roy, 1990). This series, written in Sanskrit verse, is usually ascribed 

to Kerala Gargya Nilakantha (c.1450–c.1550) and can be found in the book Tantrasangraha 

composed around 1500.  

Since Duhre follows Wallis’ method of induction when he considers the infinite series, it 

may be surprising that he in his book on geometry does not proceed with studying Wallis’ 

interpolation method to find the area of a circle in order to find an expression for  . However, 

Duhre’s method, where he from the circle constructs a corresponding curve where he can use 

the previously found infinite sums to find the enclosed area, is indeed ingenious. In his search 

for   Duhre also uses modern algebra that cannot be found in Wallis’ Arithmetica 

infinitorum. Duhre considers algebra to be helpful, since it enables complicated expressions to 

be transformed into simpler ones, and thus convenience in calculations is obtained.  

While Duhre primarily was an educator, his main pioneering achievement was that he 

brought knowledge of modern mathematics into the Swedish mathematical community. 

Of particular value is his choice to write in Swedish in order to find a greater audience. 

Twice he applied for a position as professor at Uppsala University, without success, but 

he still succeeded in inspiring several among the next generation of Swedish 

mathematicians. Certainly, also his students at Bergskollegium and the Royal 

Fortification Office had the opportunity to be introduced into modern mathematics thanks 

to Duhre. 
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