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ABSTRACT 38 

Aim. Understanding the forces shaping biodiversity patterns, particularly for groups of organisms with key 39 

functional roles, will help predict ecosystem responses to environmental changes.  Our aim was to evaluate the 40 

relative role of different drivers in shaping diversity patterns of vertebrate herbivores, a group of organisms 41 

exerting a strong trophic influence in terrestrial Arctic ecosystems.  This biome, traditionally perceived as 42 

homogeneous and low in biodiversity, includes wide variation in biotic and physical conditions and is currently 43 

undergoing major environmental change. 44 

Location. Arctic (including High Arctic, Low Arctic and Subarctic) 45 

Methods. We compiled available data on vertebrate (bird and mammal) herbivore distribution at a pan-Arctic 46 

scale, and used eight variables that represent the most relevant hypotheses to explain patterns of species richness.  47 

We used range maps rasterized on a 100 x 100 km equal-area grid to analyse richness patterns of all vertebrate 48 

herbivore species combined, and birds and mammalian herbivores separately. 49 

Results. Overall, patterns of herbivore species richness in the Arctic were positively related to plant productivity 50 

(measured with Normalized Difference Vegetation Index) and to the species richness of predators.  Greater species 51 

richness of herbivores was also linked to areas with higher mean annual temperature.  Species richness of bird and 52 

mammalian herbivores were related to the distance from the coast, with highest bird richness in coastal areas and 53 

mammal richness peaking further inland. 54 

Main conclusions. Herbivore richness in the Arctic is most strongly linked to primary productivity and the species 55 

richness of predators.  Our results suggest that biotic interactions, with either higher or lower trophic levels or 56 

both, can drive patterns of species richness at a biome-wide scale.  Rapid ongoing environmental changes in the 57 

Arctic are likely to affect herbivore diversity through both impacts on primary productivity and changes in predator 58 

communities via range expansion of predators from lower latitudes. 59 

  60 
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INTRODUCTION 61 

Biodiversity plays a key role in maintaining the stability of ecosystems facing anthropogenic environmental 62 

changes (Hautier et al., 2015).  In addition to the role of evolutionary processes and species dispersal, current 63 

biodiversity patterns are strongly determined by environmental constraints.  Understanding what shapes patterns 64 

of biodiversity, particularly for groups of organisms with key functional roles in ecosystems, will improve 65 

predictions about the responses of ecosystems to ongoing environmental changes.  Despite recent attempts to 66 

document biodiversity and to anticipate the effects of rapid and unprecedented change in the Arctic (e.g. CAFF, 67 

2013), analyses of diversity patterns and especially of their drivers are still lacking for this region.  Given the 68 

relative simplicity of arctic food webs and the extreme abiotic conditions, the Arctic has been proposed as a model 69 

for understanding the interactions between biotic and abiotic elements in ecosystem functioning.  Furthermore, as 70 

a temperature-limited system that is rapidly warming due to climate change, the Arctic may be regarded as a 71 

bellwether for the changes to come in other systems (Post et al., 2009). 72 

Herbivores have a pervasive effect on the structure and dynamics of tundra ecosystems (Bråthen et al., 2007; 73 

Olofsson et al., 2012) and can moderate the effects of climate change on plant growth (Olofsson et al., 2009).  The 74 

composition of herbivore communities may play a crucial role in determining the impacts of herbivory on the 75 

structure and dynamics of ecosystems (Ritchie & Olff, 1999) and their associated processes (Metcalfe & Olofsson, 76 

2015).  Understanding how the diversity of herbivores varies across the Arctic can help disentangle the various 77 

outcomes of plant-herbivore interactions in the tundra; something of great importance given the scope and pace 78 

of change occurring in the Arctic. 79 

The mechanisms behind large-scale patterns of biodiversity have been discussed by ecologists for decades, and 80 

several non-exclusive hypotheses have been proposed with different levels of empirical support (Table 1).  81 

However, the relative importance of the underlying processes may differ between specific guilds (Kissling et al., 82 

2012) and drivers of herbivore diversity have not been extensively investigated (but see Olff et al., 2002 for 83 

temperate and tropical areas).  Here, we test eight explanatory variables (with their underlying hypotheses; see 84 

Table 1) to explain large-scale geographical patterns of herbivore species richness in the Arctic.  In global analyses, 85 

one of the most supported hypotheses is the ‘species-energy’ hypothesis (Wright, 1983; Currie, 1991), which states 86 

that higher energy availability, either through the amount of energy entering the system (ambient energy; ‘H1a’) 87 

or through productivity (productive energy; ‘H1b’), allows more species to coexist.  Broad patterns of species 88 

diversity in the Arctic, with decreasing species richness with increasing latitude, have been related to decreases in 89 

primary productivity associated with lower temperatures at higher latitudes (Legagneux et al., 2014).  However, 90 

the relative influence of ambient vs productive energy as a driver of diversity of Arctic species has not been 91 

evaluated. 92 
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Other important drivers of species richness include environmental heterogeneity that increases the number of 93 

available niches for different species to coexist and interact.  Typically, two different (but potentially related) 94 

aspects of environmental heterogeneity have been measured: the number of habitat types (i.e. habitat 95 

heterogeneity; ‘H2a’, Kerr et al., 2001), and the range in elevation (i.e. topographic heterogeneity; ‘H2b’, Kerr & 96 

Packer, 1997) in an area.  Topographic heterogeneity has often been used as a surrogate for microclimatic 97 

conditions in broad-scale studies (Sandom et al., 2013); it seems to be a strong driver of mammal species richness 98 

at lower latitudes (Davies et al., 2007), and may also increase local diversity of terrestrial vertebrates in the Arctic 99 

(CAFF, 2013). 100 

Other potential drivers of broad-scale patterns of species richness relate to historical and geographical influences, 101 

edaphic factors and biotic interactions (Field et al., 2009).  In the Arctic, historical and geographical drivers, such as 102 

colonization limitation and evolutionary effects, are likely to play a main role on patterns of species richness 103 

(Davies et al., 2011).  Climatic oscillations in the Quaternary affected phylogeographic patterns of some arctic 104 

species (Waltari & Cook, 2005) and have influenced present-day diversity patterns (Davies et al., 2011).  The extent 105 

of ice cover since the Last Glacial Maximum (LGM) about 21,000 years ago (‘H3’) has influenced current patterns of 106 

overall diversity (Hawkins et al., 2003b) and the colonisation of particular Arctic regions (Normand et al., 2013).  107 

Some areas, like Beringia, acted as climatic refugia during the Quaternary and currently host the highest animal 108 

and plant diversity in the Arctic.  Similarly, geographical position relative to the coastline (‘H4’) can have an 109 

influence on the distribution of terrestrial vertebrate herbivores in the Arctic, where coastal zones provide 110 

important habitats for some herbivores (e.g. Ward et al., 2005), but also subsidize their predators (Oksanen et al., 111 

2013).  For example, populations of small mammalian herbivores in coastal areas can be controlled by jaegers 112 

(Stercorarius spp.), whose populations can alternatively subsist on fish and other marine food sources (Oksanen et 113 

al., 2013).  Edaphic factors (‘H5’) can also influence the distribution of herbivore species through their effects on 114 

plants.  Soil pH is a main driver of vascular plant species richness in tundra (Gough et al., 2000) and may thus drive 115 

the diversity of its primary consumers (Jetz et al., 2009).  116 

The role of biotic interactions (‘H6’) at large spatial scales is increasingly recognized (Sandom et al., 2013; Wisz et 117 

al., 2013).  Competition for resources and predation are the most investigated biotic interactions influencing 118 

species richness, and are equally able to promote or limit herbivore diversity (Chesson & Kuang, 2008).  Plant 119 

productivity (‘H6a’) is strongly correlated to herbivore biomass and diversity in terrestrial ecosystems 120 

(McNaughton et al., 1989).  However, more productive systems can sustain higher trophic levels that can control 121 

herbivore diversity (Oksanen et al., 1981).  In turn, predation (‘H6b’) can increase herbivore species richness if it 122 

reduces interspecific competition (Paine, 1966), or reduce it if predators lead to apparent competition among prey 123 

(Holt, 1977).  So far, the role of multi-trophic interactions in shaping broad scale patterns of herbivore diversity 124 

across the Arctic has not been systematically evaluated. 125 
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The aim of this study is to identify patterns of herbivore diversity in the Arctic biome, and to relate these patterns 126 

to their potential drivers.  Previous global scale analyses on herbivores focused on specific taxonomic groups 127 

(birds: Kissling et al., 2012; mammals: Sandom et al., 2013), or explicitly excluded the Arctic region (Olff et al., 128 

2002).  In this study, we focus on patterns of diversity of vertebrate herbivores (birds and mammals) as a cohesive 129 

guild with key functional roles in arctic ecosystems.  Further, we consider the Arctic as a unit; previous analyses of 130 

broad-scale diversity patterns merged the Arctic with temperate regions and consequently any patterns or drivers 131 

specific to the Arctic may have been masked by those observed in more diverse temperate areas.  We reviewed 132 

the available data on vertebrate (bird and mammal) herbivore distribution at a pan-Arctic scale, and evaluated the 133 

applicability of the most relevant hypotheses that may explain patterns of species richness at regional scales to 134 

herbivores across the Arctic (Table 1).  We analysed broad-scale patterns of herbivore species richness, and 135 

repeated the analysis separately for birds and mammalian herbivores.  Overall we expected species richness of 136 

herbivores in the Arctic to be determined mainly by energy availability, either through temperature (H1a) or plant 137 

productivity (H1b).  Biotic interactions (H6) with higher and lower trophic levels may also play a role in large scale 138 

patterns of herbivore diversity (Wisz et al., 2013).  We predicted that herbivore diversity would be greater in areas 139 

with higher primary productivity but had no clear expectations with regards to predator diversity.  We expected 140 

other drivers, such as environmental heterogeneity (H2), to play a secondary role in influencing the distributions of 141 

herbivores (Table 1).  We expected different drivers of species richness for bird versus mammalian herbivores 142 

because of their different life histories and divergent adaptations.  For instance, while most herbivorous birds in 143 

the Arctic are migratory, only some mammalian herbivores migrate seasonally (e.g. caribou/reindeer).  Most 144 

mammals have other strategies to cope with the most limiting winter conditions, such as hibernation in some sub-145 

Arctic mammals.  Thus, the distribution and population dynamics of Arctic-breeding migratory birds might be more 146 

strongly influenced by processes occurring on their wintering grounds outside the Arctic (Ward et al., 2005), while 147 

diversity patterns for mammalian herbivores might be more related to local conditions and historical influences 148 

(H3; Davies et al., 2011) in the Arctic. 149 

 150 

METHODS 151 

Patterns of herbivore species and functional group richness in the Arctic 152 

The analyses presented here are based on a database of distribution maps constructed for 73 extant vertebrate 153 

herbivore species occurring in the Arctic and Subarctic (CAFF, 2013).  Only herbivorous species (excluding species 154 

that are predominantly frugivores and granivores) of birds (20 species) and mammals (53 species) were included 155 

(Table S2.1 in Supporting Information).  Distribution data for birds (Birdlife International & NatureServe, 2013) 156 

included species with breeding and non-breeding ranges in the Arctic; migratory pathways and vagrant species 157 

were excluded.  For mammals, distribution of resident and migratory species were included (IUCN, 2013), as well 158 
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as introduced and reintroduced species and domestic animals that graze in uncultivated land (such as sheep and 159 

semi-domestic reindeer).  The original species distribution maps consisted of polygon layers that were rasterized to 160 

100x100 km grid cells to accommodate the resolution of the different information layers (see Appendix S1 for 161 

details on grain size), and were overlaid to calculate species richness for all herbivores, and separately for 162 

herbivorous birds and herbivorous mammals.  Grid cells comprising >50% ice covered land or water were excluded, 163 

resulting in 1,227 cells for our analyses (Figure S1.3). 164 

To assess the extent of congruence in patterns of local species richness among subgroups of herbivores (birds, 165 

mammals) and between subgroups and overall herbivore diversity we calculated cross-correlations (Pearson 166 

correlations) between richness patterns (Kissling et al., 2012). 167 

Drivers of herbivore species richness in the Arctic 168 

The explanatory variables considered in this study (Table 1) represent the main hypotheses that predict species 169 

richness patterns at large spatial scales.  To assess the species-energy hypothesis we used mean annual 170 

temperature and the Normalized Difference Vegetation Index (NDVI) as measures of ambient (H1a) and productive 171 

energy (H1b), respectively.  NDVI correlates strongly with net primary productivity and has been widely used as a 172 

productive energy metric (Evans et al., 2005).  In combination with energy, water availability has been well 173 

established as a driver of species richness at broad spatial scales (O’Brien, 2006), particularly for plants and at 174 

lower latitudes. At high latitudes, energy variables have a stronger effect on animal species richness (Hawkins et 175 

al., 2003a), and therefore water-related variables were not included in the present study. 176 

We evaluated the role of environmental heterogeneity using proxies for habitat heterogeneity (number of land 177 

cover types within an area; H2a) and topographic heterogeneity (range of elevation within an area; H2b).  To 178 

account for historic and geographic factors we included a binary variable indicating whether an area had been 179 

glaciated since the Last Glacial Maximum, approximately 21,000 yrs ago (H3; Currie, 1991; Davies et al., 2007), and 180 

distance to coastline (H4; Currie, 1991; Kerr & Packer, 1997).  Soil pH was included as a predictor to account for 181 

edaphic factors (H5).  NDVI and species richness of predators of terrestrial vertebrate herbivores were used to 182 

account for biotic interactions (H6) with lower and higher trophic levels, respectively.  NDVI represents two non-183 

exclusive hypotheses, productive energy (H1b) and biotic interactions with lower trophic levels (H6a), and can thus 184 

be interpreted from a strictly energetic point of view or as a proxy for plant-herbivore interactions.  More details 185 

about how each explanatory variable was obtained is provided in Appendix S1. 186 

Modelling approach 187 

To evaluate the relative effects of these potential drivers of herbivore diversity in the Arctic, we built Generalized 188 

Least Squares (GLS) models including species richness of all herbivores, herbivorous birds and herbivorous 189 

mammals as response variables.  The initial (full) models included the eight explanatory variables presented above 190 

as additive factors (Table 1): mean annual temperature (H1a), NDVI (H1b and H6a), habitat heterogeneity (H2a), 191 
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topographic heterogeneity (H2b), glaciation history (H3), distance to the coast (H4), soil pH (H5) and predator 192 

species richness (H6b).  Available raw data for each of the candidate explanatory variables were re-scaled to the 193 

same grid as the species richness data (for details on sources, raw resolutions and values, and treatment of 194 

explanatory variables see Appendix S1). 195 

Univariate relationships between each explanatory variable and the responses were visually inspected for linearity 196 

(Appendix S1).  We tested for collinearity and multicollinearity among explanatory variables, using pairwise linear 197 

correlations and Variance Inflation Factors (VIF).  Predator species richness was correlated to NDVI (r=0.56); 198 

therefore, to assess the relationship between predator species richness and herbivore richness, independent of 199 

NDVI, we took the residuals of the regression predator richness~NDVI and included them in the models.  This 200 

approach assigns priority to one of the variables over the shared contribution, assuming that one variable is 201 

functionally more important than the other (Graham, 2003).  We checked the implications of this assumption by 202 

re-running the models with the residuals of the regression NDVI~predator richness.  Results were essentially the 203 

same (Appendix S3); therefore, results presented here are from the first approach.  Mean annual temperature was 204 

correlated to NDVI (r=0.42) and soil pH (r=-0.42).  Inclusion of mean annual temperature and NDVI in the models 205 

suggested collinearity problems in the model averaging process (see below).  As these variables represent different 206 

aspects of the species-energy hypothesis and we were interested in assessing the relative role of each, we 207 

followed the same procedure as above to statistically separate their effects, taking the residuals of the regression 208 

NDVI~mean temperature.  All other pairwise correlations had r<0.4, and VIF values for the explanatory variables 209 

were <1.6 in all cases.  This approach allowed us to test the direct, independent effects of the explanatory 210 

variables.  All explanatory variables were standardized before including them in the models, so that coefficient 211 

estimates are directly comparable. 212 

Spatial autocorrelation can bias estimates of environmental parameters and is of particular concern in the analyses 213 

of geographical patterns of species richness when using regression models that assume independence of 214 

observations (Davies et al., 2007).  GLS models are well suited to deal with spatially structured data, because they 215 

can incorporate spatial covariance structures within the models to control for spatial autocorrelation.  We fitted 216 

exponential variance-covariance structures where x and y coordinates of pixel centroids were included as spatial 217 

variables.  Exponential structures were the best-fit choice among spatial covariance structures and including them 218 

in the models effectively removed spatial autocorrelation in the residuals (Appendix S1). 219 

Our eight explanatory variables represent non-exclusive hypotheses that have been proposed to explain species 220 

richness patterns.  We therefore built GLS models for all possible combinations of the 8 explanatory variables (256 221 

models for each of the three response variables) and used a model averaging approach based on AIC (Akaike 222 

Information Criterion) to assess the relative importance of these variables.  Estimated coefficients of each variable 223 

were then averaged across all models in which they were present and weighted according to the probability 224 

associated to each model (see Table S1.2 for the top-ranking models, with ΔAIC<2).  Modelling assumptions, 225 
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including the lack of independence due to spatial autocorrelation, were checked by visually inspecting residual 226 

patterns of the full models.  All statistical analyses were conducted in R 3.1.2 (R Development Core Team, 2014), 227 

using the libraries AICcmodavg and nlme (see Appendix S1). 228 

Alternative analyses such as Structural Equation Modelling have been used in macroecological studies to assess 229 

direct and indirect effects of different drivers of broad-scale biodiversity patterns (e.g. Kissling et al., 2008; Sandom 230 

et al., 2013).  However, these techniques cannot deal efficiently with spatial autocorrelation (e.g. coefficient shifts 231 

when comparing spatial vs non-spatial models; Bini et al., 2009) and in the presence of such effects (like in our 232 

study, see Appendix S4), they can yield biased results.  Our multiple regression approach using the residuals of 233 

collinear variables allowed us to focus on the direct effects of explanatory variables while accounting for spatial 234 

autocorrelation.  235 

 236 

RESULTS 237 

Patterns of herbivore species richness in the Arctic 238 

Local species richness of vertebrate herbivores in the Arctic was low and ranged between 1 and 23 species (median 239 

= 14), with peaks in diversity observed in subarctic western North America (Figure 1a; Appendix S5).  Mammalian 240 

herbivores represent 72.6% of vertebrate herbivore species in the Arctic and their species richness ranged 241 

between 0 and 19 (median = 8).  Species richness of mammalian herbivores also peaked in subarctic western North 242 

America, although over a more restricted range than overall herbivore richness; mainly in eastern Beringia (Figure 243 

1c).  Species richness of herbivorous birds ranged between 1 and 10 species (median = 5) and was highest in 244 

Eurasia, around the Ob River, and in the Siberian low Arctic east of the Lena River (Figure 1b). 245 

The richness of mammalian herbivores showed the highest congruence (r=0.87) with overall herbivore species 246 

richness while the richness of birds overlapped little with overall herbivore richness (r=0.40).  Species richness of 247 

birds did not overlap with that of mammalian herbivores (r=-0.11; Figure S1.6). 248 

Drivers of herbivore species richness in the Arctic 249 

Based on the associated Akaike weights, no single model had a strong support, further justifying the use of model 250 

averaging procedures.  For instance, the cumulative Akaike weight for models with ΔAIC<2 (Table S1.2) was 0.45 in 251 

the case of all herbivores, 0.50 for birds and 0.53 for mammals.  The 95% credibility sets, i.e. the set of models that 252 

include the best approximating model with 95% confidence (cumulative Akaike weight 0.95), included 41 models in 253 

the case of all herbivores, 32 for birds and 50 for mammals.  Variable importance scores consistently showed NDVI 254 

and predator species richness as the most important variables across herbivore groups (Figure 2).  Mean 255 

temperature was more important in the models for all herbivores than those for birds and mammals, while 256 

distance to coast was important in bird and mammal models but not in the model including all herbivores.  257 
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Patterns of herbivore species richness in the Arctic were consistently and positively correlated with NDVI (H1a and 258 

H6a) and with species richness of predators (H6b); other explanatory variables had minimal effects or affected only 259 

some subgroups of herbivores (Figure 3).  Overall species richness of herbivores was greater in warmer areas with 260 

higher NDVI and with more species of predators (Figure 3; Figure 4).  Similar patterns were observed in our 261 

separate analyses of herbivorous birds and mammals.  Correlations with NDVI and predator species richness were 262 

stronger for mammalian herbivores than for birds (Figure 4b,c).  Interestingly, we found contrasting effects for 263 

birds and mammalian herbivores for the only other explanatory variable that affected richness: distance to the 264 

coast (H4).  Mammalian species richness was positively associated with areas further from the coast, whereas bird 265 

species richness was maximized closer to the coast (negative effect).  Glaciation history (H3) did not have a 266 

significant effect on species richness of herbivores, but mammalian herbivores tended to be more diverse in areas 267 

that had not been glaciated since the LGM (95% CI interval = [-0.258, 0.033]).  Environmental heterogeneity 268 

(topographic or habitat; H2) and soil pH (H5) had no effect for any of the groups of herbivores considered. 269 

 270 

DISCUSSION 271 

Our analysis of overall patterns of herbivore species richness represents the first attempt to identify the drivers of 272 

diversity of a main trophic group across the Arctic biome.  We found strong support for the species-energy 273 

hypothesis (productive energy) and for the role of biotic interactions in shaping herbivore diversity at a pan-Arctic 274 

scale, with greater herbivore species richness in areas presenting the highest NDVI and predator richness values. 275 

As predicted, overall richness of herbivore species in the Arctic was highest in subarctic regions, with higher values 276 

of the energy-related variables.  We detected a positive effect of mean annual temperature on species richness of 277 

all herbivores, but this effect was much weaker than that of productive energy, even when the effects of both 278 

variables were statistically separated.  Productive energy metrics, such as NDVI, integrate the variables that 279 

constrain the conversion of energy to plant biomass, i.e. water and nutrient availability, temperature and light; as a 280 

composite variable, NDVI would have greater explanatory power than that of mean annual temperature alone.  An 281 

alternative explanation for the weak correlation between mean annual temperature and herbivore diversity is that 282 

other aspects of ambient energy, such as the temperature during the different seasons, are more relevant in the 283 

highly seasonal Arctic environments.  Further, NDVI represents both the species-energy hypothesis (productive 284 

energy; H1b) and the role of biotic interactions (H6a).  NDVI has successfully been used as a predictor of 285 

phytomass in the Arctic (Epstein et al., 2012) and to study interactions between herbivores and plants (Olofsson et 286 

al., 2012; Doiron et al., 2015).  These hypotheses may thus be seen as two sides of the same coin, where the 287 

specific mechanisms driving the positive correlation between primary productivity and herbivore diversity cannot 288 

be separated (Evans et al., 2005).   289 
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In our study, predator diversity was also related to patterns of herbivore diversity (Chesson & Kuang, 2008), with 290 

consistently higher herbivore species richness in areas with higher predator species richness.  The effect of biotic 291 

interactions on species distributions has been generally assumed to prevail at a local scale, and its relevance at 292 

regional or global scales has been neglected until recently (Wisz et al., 2013; Belmaker et al., 2015).  Diversity in 293 

adjacent trophic levels can be positively correlated simply because both trophic levels respond to the same 294 

environmental factors in a similar way (Hawkins & Porter, 2003).  This is not the sole explanation of the correlation 295 

between herbivore and predator diversity in the Arctic, since the positive association between species richness of 296 

herbivores and predators was evident even when the effect of NDVI on predator richness was statistically 297 

removed.  The greater variety of hunting strategies in a diverse predator community can favour increases in prey 298 

species richness, as it provides opportunities for niche differentiation in anti-predator strategies of prey (Ruifrok et 299 

al., 2015).  An alternative, non-exclusive explanation is that increased herbivore diversity is driving predator 300 

species richness.  Predator and prey species richness can be strongly associated at broad spatial scales, even when 301 

the effects of other environmental drivers are taken into account (Sandom et al., 2013).  Bottom-up (prey-to-302 

predator) effects seem to be stronger than predator top-down forces at a global scale (Sandom et al., 2013), but 303 

the strength of bottom-up and top-down control of herbivore populations may also depend on primary 304 

productivity (Oksanen et al., 1981; Legagneux et al., 2014). 305 

When analysed separately, species richness of bird and mammalian herbivores showed contrasting patterns with 306 

respect to distance to the coast.  Higher values of mammal species richness were associated with areas farther 307 

from the coast, while greater numbers of bird species were associated with coastal areas.  These patterns were not 308 

evident for the overall richness of herbivores, probably because the influence of distance to coast on each group of 309 

herbivores more or less cancelled out.  At continental scales in North America, higher species diversity of birds and 310 

mammals are found in inland locations (Currie, 1991; Kerr & Packer, 1997).  However, higher bird species richness 311 

in coastal areas in the Arctic is likely related to the predominance of wetland birds among arctic herbivores.  312 

Tundra swans and geese (13 of the 20 bird species analyzed) tend to congregate in lowland coastal areas during 313 

breeding and moulting periods and their summer distribution may respond to specific requirements for breeding 314 

(Ward et al., 2005).  The cooling effect along the coastline or less complex topographic landscapes in coastal areas 315 

may be other factors involved.  Additionally, coastal locations in the Arctic provide subsidies to predators from 316 

marine ecosystems that can then maintain more abundant populations (Gauthier et al., 2011; Therrien et al., 317 

2014).  318 

Glaciation history, environmental heterogeneity and edaphic conditions (soil pH) had no detectable effect on the 319 

observed patterns of herbivore richness.  In the case of glaciation history, there was a non-significant trend 320 

towards higher diversity of mammals in areas that remained ice-free.  The fact that we did not detect a strong 321 

signal of glaciation history might also be related to the coarse resolution of our grid cells (100 x 100 km), since 322 

studies presenting strong support for the role of glaciation history have been conducted at finer spatial scales (e.g. 323 
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Normand et al., 2013).  Current distribution patterns of terrestrial mammals in the Arctic are linked to the 324 

distribution of refugia that remained ice-free during the Last Glacial Maximum, and may reflect patterns of 325 

colonization into newly forming tundra habitats as ice retreated during the Holocene (Waltari & Cook, 2005).  326 

Historical influences on broad-scale species richness patterns might be masked by contemporary environmental 327 

drivers and fine-scale analyses would be needed to resolve their influence (Hawkins et al., 2003b).  Moreover, 328 

most herbivorous birds in the Arctic are migratory, so they may be less constrained by glacial history of an area as 329 

they may more easily colonize newly deglaciated areas. 330 

Our results suggest the importance of considering adjacent trophic levels when investigating patterns of herbivore 331 

species richness in the Arctic and the complex nature of plant-herbivore-predator interactions.  The need to 332 

include biotic interactions and food-web approaches to study the functioning of changing tundra ecosystems has 333 

been recently highlighted (Gauthier et al., 2011; Legagneux et al., 2014).  Including abundance data for herbivore 334 

populations would increase our understanding of the relative importance of productivity and predator-prey 335 

interactions as drivers of species diversity through food-webs, but reliable information is only available for some 336 

species (CAFF, 2013).  Further, high-quality data on the distribution of herbivores at finer temporal and spatial 337 

scales will be needed to further understand the drivers of herbivore diversity in the Arctic.  For example, range 338 

maps represent species distribution without a temporal reference, which might limit our ability to detect 339 

environmental correlates of species richness if species are shifting ranges, as predicted under ongoing global 340 

change or, at a finer temporal resolution, for migratory species.  It must be kept in mind that, given the coarse 341 

spatial resolution of the data available, discarding pixels that encompassed more than 50% ice-covered land in 342 

100x100 km pixels results in the loss of information from many High Arctic islands (e.g. Svalbard or many islands of 343 

the Canadian Arctic Archipelago).  Ice and snow covered land can serve as an important habitat for a number of 344 

mammal and bird species (Rosvold, 2016).  Rather than implying that these areas could not function as hotspots of 345 

herbivore diversity, this points to the need to develop remote-sensing products and species distribution maps with 346 

a resolution better tailored to the spatial attributes of Arctic ecosystems.  Despite their limitations, such large scale 347 

approaches are particularly needed for the Arctic, where the land area is vast, covering more than 15,000,000 km2 348 

of terrain that is often difficult to access.  Regional scale indices or maps of herbivore diversity based on remote 349 

sensing data (e.g. NDVI or interpolated temperature data) may inform conservation priorities (e.g. WWF RACER 350 

project; http://wwf.panda.org/what_we_do/where_we_work/arctic/what_we_do/climate/racer/) or guide 351 

research efforts in the Arctic.  352 

It is important to understand current broad-scale patterns of diversity in Arctic ecosystems so that future changes 353 

under climate warming can be detected.  Our approach focusing solely on the Arctic allowed us to uncover 354 

patterns that are specific to this region and that had not been detected in previous studies.  For example, we found 355 

that the diversity of herbivorous birds was higher in coastal areas, a pattern that contrasts with what has been 356 

found at broader continental scales (i.e. higher bird diversity inland; Currie, 1991). These patterns were not evident 357 

http://wwf.panda.org/what_we_do/where_we_work/arctic/what_we_do/climate/racer/
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in previous studies including all biomes because global patterns are largely driven by regions with higher diversity.  358 

This knowledge will also help identify diversity “hotspots” that can be protected in the face of increasing 359 

commercial activity in the North.  Our finding that coastal regions are centres of diversity for birds highlights the 360 

importance of identifying critical areas for protection before these areas are developed for oil and gas, 361 

transportation, and other human activities.  Recent changes in vertebrate herbivore populations in the Arctic are 362 

mostly related to local increases in abundance (CAFF, 2013), but also to distribution shifts (Gilg et al., 2012).  Over 363 

the long term, the abundance of certain herbivores may increase, but arctic specialist species may be gradually 364 

replaced by range-expanding species from the south.  Such changes are likely to alter the interactions among 365 

herbivores that determine the structure of their communities and, ultimately, the impacts herbivores have on 366 

tundra vegetation.   367 

 368 
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TABLES 507 

Table 1. Explanatory variables included in the models and underlying hypotheses that have been proposed to explain broad patterns of species richness at 508 

large spatial scales. Predictions for the role of each driver are indicated. 509 

Hypothesis Explanatory variables Justification Predictions 
Energy   
 Ambient 

energy 
Mean annual 
temperature (H1a) 

Physiological constraints limit species richness1. As mean 
annual temperature increases, climatic conditions are 
within the physiological tolerance range of more species, 
leading to greater species richness. 

Ambient energy variables at high latitudes will dominate species 
richness of herbivores over productive energy2. The effect of 
ambient energy at high latitudes might be stronger for mammals 
than birds, as shown at continental scales3  

 Productive 
energy 

Normalized Difference 
Vegetation Index (NDVI) 
(H1b) 

Limits to species richness are set by the energy flowing 
through food webs; herbivore diversity is limited by net 
primary production of plants4. 

Correlates of net primary productivity may better represent the 
energy available to heterotrophs2,5  

Environmental heterogeneity   
 Habitat 

heterogeneity 
Number of different 
habitat types (H2a) 

Greater habitat diversity provides increased available 
niche space that can be used by a greater number of 
coexisting species6. 

Environmental heterogeneity is predicted to have a positive 
impact on species richness of herbivores7, probably more so in 
the case of non-migratory Arctic herbivores (i.e. most 
mammals). Topographic heterogeneity will increase local 
diversity of terrestrial vertebrates in the Arctic8.   

 Topographic 
heterogeneity 

Altitudinal range (i.e. 
difference between 
maximum and minimum 
elevation; H2b) 

High rate of change in habitats along elevational 
gradients produces high between-habitat diversity in 
areas with greater topographic variability, increasing the 
potential for species coexistence9. 

History/geography   
 Glaciation (H3) More time since an area has been glaciated allows for 

colonization by more species and speciation1. 
We expect mammal species richness to be constrained by 
glaciation history. Birds (mostly migratory) are less likely to be 
affected by glaciation history. 

 Distance to coastline (H4) In the Arctic distance to the coastline may play an 
important role in the functioning of ecosystems through 
the potential influence of productive marine ecosystems 
through subsidies on predators10, their lower 
topographic complexity and oceanicity.  

Coastal areas will host lower species richness of herbivores1,9. 
This effect will be stronger for mammals, as many Arctic birds 
are wetland birds and may be positively associated to coastal 
areas. 

Edaphics Soil pH (H5) Soil pH is a main driver of vascular plant species richness 
in tundra11 

Higher herbivore species richness is expected in less acidic 
substrates that host greater plant diversity. This effect will be 
stronger for birds than for mammals as has been shown at 
global scale12. 

Biotic interactions   
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 Plant-
herbivore 

Primary productivity 
(NDVI; H6a) 

Primary productivity can determine the structure and 
abundance of herbivores and predators, increasing 
resource availability13 

At a pan-Arctic scale more productive areas will host higher 
diversity of herbivores. 

 Predator-
herbivore 

Predator species richness 
(H6b) 

Species diversity of prey can increase as a result of 
predation, if predators reduce the strength of inter-
specific competition14. Alternatively, in simple food 
webs, predation can reduce species diversity via 
apparent competition15 

Predator diversity can enhance the diversity of prey16. This 
effect might be related to diversity of body sizes17 and we 
predict it will be stronger for mammalian herbivores, which 
represent a wider range in body sizes. 

1. Currie, D. J. Energy and large-scale patterns of animal- and plant-species richness. Am. Nat. 137, 27–49 (1991). 510 
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FIGURE LEGENDS 530 

Figure 1. Distribution maps of species richness of all herbivores (A), richness of herbivorous birds (B) and mammals 531 

(C).  Grid cells are 100x100 km in size. 532 

Figure 2. Variable importance scores for all herbivores (green), birds (purple) and mammals (orange). The relative 533 

importance of each variable is calculated summing the Akaike weights for all models in which that variable 534 

appears. Variable weight can be interpreted as the probability of that variable being a component of the best 535 

model, and can be used to rank the predictors in order of importance. 536 

Figure 3. Model averaged coefficients for drivers of species richness of all herbivores (green), and bird (purple) and 537 

mammalian (orange) herbivores.  All predictors were standardized, so coefficients are directly comparable.  538 

Coefficients were averaged across all models, and means and 95% CI are shown.  Coefficients different from zero 539 

(i.e. not overlapping the vertical dashed line) had a significant effect on species richness of herbivores. NDVI (R): 540 

effect of NDVI independent of mean annual temperature. Predator species richness (R): effect of predator species 541 

richness independent of NDVI. 542 

Figure 4. Predicted relationship between species richness of all herbivores (a), herbivorous birds (b) and 543 

mammalian herbivores (c) in the Arctic, and plant productivity (NDVI, standardized residuals; left) and species 544 

richness of predators (standardized residuals; right) based on the multi-model average. Fitted lines for the partial 545 

effects (with all other predictor variables set to their means) are shown; points indicate observed values with 546 

random noise added to improve visualization.  547 
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