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Abstract
Epidemiological studies demonstrate an association between migraine and chronic kidney disease (CKD), while the genetic 
basis underlying the phenotypic association has not been investigated. We aimed to help avoid unnecessary interventions 
in individuals with migraine through the investigation of phenotypic and genetic relationships underlying migraine, CKD, 
and kidney function. We first evaluated phenotypic associations using observational data from UK Biobank (N = 255,896). 
We then investigated genetic relationships leveraging genomic data in European ancestry for migraine (Ncase/Ncontrol = 48,9
75/540,381), CKD (Ncase/Ncontrol = 41,395/439,303), and two traits of kidney function (estimated glomerular filtration rate 
[eGFR, N = 567,460] and urinary albumin-to-creatinine ratio [UACR, N = 547,361]). Observational analyses suggested no 
significant association of migraine with the risk of CKD (HR = 1.13, 95% CI = 0.85–1.50). While we did not find any global 
genetic correlation in general, we identified four specific genomic regions showing significant for migraine with eGFR. 
Cross-trait meta-analysis identified one candidate causal variant (rs1047891) underlying migraine, CKD, and kidney function. 
Transcriptome-wide association study detected 28 shared expression–trait associations between migraine and kidney function. 
Mendelian randomization analysis suggested no causal effect of migraine on CKD (OR = 1.03, 95% CI = 0.98–1.09; P = 0.28). 
Despite a putative causal effect of migraine on an increased level of UACR (log-scale-beta = 0.02, 95% CI = 0.01–0.04; 
P = 1.92 × 10−3), it attenuated to null when accounting for both correlated and uncorrelated pleiotropy. Our work does not find 
evidence supporting a causal association between migraine and CKD. However, our study highlights significant biological 
pleiotropy between migraine and kidney function. The value of a migraine prophylactic treatment for reducing future CKD 
in people with migraine is likely limited.
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Introduction

The vascular dysfunction basis of migraine, a common 
neurological disorder, is well established (Gormley et al. 
2016; Hautakangas et al. 2022). Accumulating evidence 
from observational studies has demonstrated a long-term 
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risk of macrovascular complications among individuals with 
migraine, including a 30% significantly increased risk of 
stroke and a 36% significantly increased risk of myocardial 
infarction compared to the general population according 
to results from the most updated meta-analysis (Ng et al. 
2022). Such a link, however, stays weak for microvascular 
complications with most evidence restricted to retinal 
abnormalities (Al-Moujahed et al. 2021; Lin et al. 2021). 
Despite studies having identified an association of migraine 
with endothelial dysfunction (Tietjen 2009), which might 
lead to abnormal kidney function (Chauhan et al. 2019), 
only one nationwide population-based cohort study reports 
individuals with migraine to be at a 22% increased risk of 
chronic kidney disease (CKD) compared to individuals 
without migraine, independent of migraine medications 
(Weng et al. 2017).

The brain–kidney interconnection has long been 
identified, as both display similar anatomical and functional 
microvascular regulations, and are regarded as end organs 
on parallel trajectories. Both also share cardiometabolic 
risk factors, with inflammation- and oxidative stress- 
induced microvascular dysfunctions usually starting in low-
resistance vascular beds and endothelial structures (Murray 
2009; Seliger and Longstreth 2008). Current progresses 
from genomic and proteomic studies have highlighted 
common pathogenic mechanisms underlying migraine 
and CKD involving vascular development and endothelial 
function (Carlsson et al. 2017; Gormley et al. 2016; Guo 
et al. 2020), and loci mapping to genes CPS1 (Choquet et al. 
2021; Wuttke et al. 2019) and SMG6 (Hautakangas et al. 
2022; Wuttke et al. 2019) are found to affect both migraine 
and kidney function. All these results suggest the observed 
phenotypic association be, at least in part, attributable to 
shared genetic basis.

Investigating the genetic contributions to the 
epidemiological associations helps to elucidate intrinsic 
biological mechanisms underlying migraine and CKD, 
which may aid clinical and public health practice, 
for example, to help doctors cut rates of unnecessary 
interventions for individuals with migraine. A genome-wide 
cross-trait analysis is an efficient approach to understand the 
intrinsic relationship across complex traits (Zhu et al. 2021). 
Such analysis leverages summary statistics from genome-
wide association studies (GWAS) and cutting-edge statistical 
methods, including a genetic correlation analysis to quantify 
global and local genetic overlap, a cross-trait meta-analysis 
to identify specific shared variants, a transcriptome-wide 
association study to detect tissue-specific shared genes, 
and a Mendelian randomization analysis to make causal 
inference. To the best of our knowledge, no such study has 
been performed to systematically investigate the shared 
etiology underlying migraine and CKD.

Therefore, we aim to comprehensively dissect the 
migraine–CKD relationship, leveraging the hitherto largest 
observational and genetic data. We first evaluated the 
phenotypic association using individual-level data from 
255,896 participants of UK Biobank (UKB). We next 
conducted a genome-wide cross-trait analysis to characterize 
the shared genetic architecture and causality. In addition to 
the binary diagnostic outcome, we further incorporated two 
continuous measures on kidney function. The overarching 
goal of our study was to gain insight into mechanistic links 
underpinning migraine and CKD. The overall study design 
is shown in Fig. 1.

Methods

Data sources

UK Biobank data

UKB is a large population-based prospective cohort study 
with over 500,000 individuals aged 40–69 years at baseline, 
recruited in 22 study assessment centers throughout 
UK between 2006 and 2010 (Sudlow et  al. 2015). All 
participants provided written informed consent, and ethical 
approval was granted by the National Health Service 
North West Multi-Centre Research Ethics Committee. We 
restricted the sample set to 472,050 participants of white 
descent (data-field 21,000). We defined migraine as self-
reported medical conditions code 1265 at baseline (data-
field 20,002), the International Classification of Diseases, 
Ninth Revision (ICD-9) code 346 (data-field 41,271) and 
ICD-10 code G43 (data-field 41,270), and CKD as ICD-
10 code N18. We excluded participants with a diagnosis 
of other headaches at baseline (self-reported medical 
conditions code 1436; ICD-10 code G44) or a history of 
kidney disease at baseline (ICD-9 codes 580–589; ICD-10 
codes N00-N29) or reduced estimated glomerular filtration 
rate (eGFR < 90 mL/min per 1.73 m2) at baseline or had a 
diagnosis of CKD before migraine during follow-up. In total, 
255,896 participants were included.

GWAS summary statistics for migraine and CKD

The hitherto largest GWAS of migraine was conducted by 
the International Headache Genetics Consortium (IHGC), 
aggregating five study collections (IHGC, 23andMe, 
UK Biobank, GeneRISK, Nord-Trøndelag Health Study) 
totaling ~ 870,000 individuals of European ancestry 
(102,084 cases and 771,257 controls) (Hautakangas et al. 
2022). Migraine in IHGC was ascertained based on clinical 
phenotyping, while migraine in other studies was verified 
on self-report. An inverse-variance weighted fixed-effect 
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Fig. 1   Flowchart of the overall 
study design in European 
ancestry individuals. CKD 
chronic kidney disease; eGFR 
estimated glomerular filtration 
rate; UACR​ urinary albumin-to-
creatinine ratio
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meta-analysis was performed to combine effect sizes for 
each variant across studies, adjusted for sex and at least four 
leading principal components of the genetic population 
structure. We extracted the information of 123 genome-
wide significant (P < 5 × 10–8) independent SNPs and used 
these SNPs as IVs (Supplementary Tables 1, 2 and 3). We 
also applied and obtained GWAS summary statistics (48,975 
cases and 540,381 controls, excluding 23andMe) for other 
analyses.

Given the heterogeneity of migraine subtypes, to better 
reflect the subtype specificity of migraine and to improve 
the robustness of findings, additional 4 independent 
SNPs associated with migraine with aura (MA) and 15 
independent SNPs associated with migraine without aura 
(MO) were used as IVs (Hautakangas et al. 2022).

The hitherto largest GWAS of CKD was conducted by 
the CKD Genetics (CKDGen) Consortium, aggregating 
23 participating studies totaling ~ 480,000 individuals of 
European ancestry (41,395 cases and 439,303 controls) 
(Wuttke et al. 2019). CKD was defined as an eGFR below 
60 ml/min per 1.73 m2. An inverse-variance weighted fixed-
effect meta-analysis was conducted to combine effect sizes 
for each variant across studies. As CKD-associated SNPs 
were not reported by the original GWAS, we thus identified 
27 genome-wide significant independent SNPs using 
PLINK clumping function (parameters: clump-p1 = 5e−8, 
clump-p2 = 1e−5, clump-r2 = 0.1, clump-kb = 500, 
pop = “EUR”) (Hemani et al. 2018).

While CKD represents the disease status, to better reflect 
different stages of CKD, we also included two critical 
measures of kidney function, eGFR (Wuttke et al. 2019) and 
urinary albumin-to-creatinine ratio (UACR) (Teumer et al. 
2019). The hitherto largest GWAS of eGFR and UACR were 
conducted by the CKDGen Consortium, aggregating 42 
participating studies totaling 567,460 individuals for eGFR 
and 18 participating studies totaling 547,361 individuals 
for UACR. An inverse-variance weighted fixed-effect meta-
analysis was conducted to combine effect sizes in log (eGFR) 
and log (UACR) for each variant across studies, adjusted for 
sex and age. A total of 256 independent eGFR-associated 
SNPs and 61 independent UACR-associated SNPs were 
identified and used as IVs. We extracted the effect size and 
relevant information of these IVs (Supplementary Tables 4, 
5 and 6), as well as downloaded full set GWAS summary 
statistics for other analyses.

Statistical analysis

Observational analysis

Baseline characteristics of UKB participants were 
presented as mean ± standard deviation (SD) for 
continuous variables, and as counts and percentages for 

categorical variables. Person-years at risk for the migraine-
free category (unexposed) were accumulated from baseline 
until migraine diagnosis, CKD diagnosis, death, loss to 
follow-up, or end of follow-up, whichever came first. For 
the migraine category (exposed), person-years at risk were 
accumulated from baseline or migraine diagnosis during 
follow-up until CKD diagnosis, death, loss to follow-up, or 
end of follow-up, whichever came first. We constructed a 
Cox proportional hazards regression model with exposure 
to migraine modeled as a time-dependent variable. We 
used three sets of adjustments. Estimates in model 1 (basic 
model) were adjusted only for sex and age. Estimates in 
model 2 (antimigraine use model) were further adjusted for 
antimigraine medication usage (Anatomical Therapeutic 
Chemical classification code N02C; data-field 20,003), in 
addition to sex and age. Estimates in model 3 (full model) 
were further adjusted for assessment center, income, 
Townsend deprivation index, smoking, drinking, physical 
activity, sleep duration, BMI, type 2 diabetes mellitus, 
hypertension, and dyslipidemia on top of model 2. In the 
sensitivity analysis, we excluded participants with less 
than a year of follow-up or a diagnosis of CKD within 
a year after developing migraine. All statistical analyses 
were done using SAS version 9.4 (SAS Institute, Cary, 
NC). A two-sided P value of less than 0.05 was considered 
statistically significant.

Genome‑wide genetic correlation analysis

Genetic correlation represents an average sharing of 
genetic effect between two traits that is independent of 
environmental confounders. We first quantified the global 
genetic correlation (rg) across the genome using software 
linkage-disequilibrium score regression (LDSC) (Bulik-
Sullivan et al. 2015). The method uses only GWAS summary 
statistics, relying on the fact that the effect size estimate for 
a given SNP aggregates the effects of all SNPs in LD with 
that SNP. Genetic correlation ranges between − 1 and + 1. 
We used pre-calculated HapMap3 LD scores computed 
from ~ 1.2 million common SNPs in European ancestry, 
commonly acknowledged as well imputed. A Bonferroni-
corrected P-threshold (P < 0.017 = 0.05/3) was used to define 
statistical significance.

While global genetic correlation depicts an average 
of shared signal across the whole genome, it may fail to 
identify scenarios where the signal is restricted to particular 
genomic regions or in opposing directions at different loci. 
We thus estimated the pairwise local genetic correlation 
using software SUPERGNOVA (Zhang et  al. 2021). 
This algorithm partitions the whole genome into 2353 
approximate LD-independent regions with an average 
length of 1.6 centimorgans and quantifies genetic correlation 
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confined to these genomic regions. A Bonferroni-corrected 
P-threshold (P < 2.12 × 10–5 = 0.05/2,353) was used to define 
statistical significance.

Cross‑trait meta‑analysis

Genetic correlation reflects either horizontal pleiotropy 
(pleiotropy) or vertical pleiotropy (causality). In horizontal 
pleiotropy, a genetic variant has independent effects on 
multiple traits, whereas in vertical pleiotropy, a genetic 
variant has an effect on a trait through its genetic effect on 
an intermediate trait. We next conducted a cross-trait meta-
analysis to identify pleiotropic variants that simultaneously 
influence both traits using software Cross-Phenotype 
Association (CPASSOC) (Zhu et  al. 2015). CPASSOC 
combines GWAS summary statistics to test the association of 
each SNP with at least two traits, controlling for population 
structure or cryptic relatedness. We calculated pairwise SHet 
based on a fixed-effect model, a test statistic that is more 
powerful when heterogeneity (including opposite directional 
allelic effects) exists.

After CPASSOC, we obtained independent shared 
variants via PLINK clumping (parameters: –clump-p1 
5e−8 –clump-p2 1e−5 –clump-r2 0.2 –clump-kb 500). 
Significant index SNP was defined as PCPASSOC < 5 × 10–8 
and Pmigraine or CKD or kidney function < 1 × 10–5. Novel 
index SNP was defined only if all following three 
criteria were met: (1) the SNP reached genome-wide 
significance (PCPASSOC < 5 × 10–8) in CPASSOC; (2) 
the SNP did not reach genome-wide significance 
(5 × 10–8 < Pmigraine or CKD or kidney function < 1 × 10–5) in 
original single-trait GWAS; (3) the SNP was not in LD ( r2 
< 0.05) with any of those previously reported genome-wide 
significant SNPs from both single-trait GWAS.

Ensembl Variant Effect Predictor (VEP, https://​grch37.​
ensem​bl.​org/​info/​docs/​tools/​vep/​index.​html) was used to 
map the shared SNPs identified by CPASSOC to its nearest 
gene.

Fine‑mapping credible set analysis and colocalization 
analysis

An index SNP does not represent a causal SNP. We 
further identified a credible set of variants with a 99% 
probability of containing the causal variant at each of the 
identified pleiotropic loci using FM-summary (Huang et al. 
2017). Specifically, we extracted variants within 500 kb 
of the index SNP at each locus and estimated posterior 
inclusion probability (PIP, the probability of including a 
SNP as causal) for each variant by setting a flat prior with 
the steepest descent approximation. A 99% credible set 
corresponds to ranking SNPs from largest to smallest PIPs 

and taking the cumulative sum of PIPs until it is at least 
99%.

We also conducted Coloc (Giambartolomei et al. 2014) 
to examine whether cross-trait meta-analysis identified 
shared loci colocalized at the same causal variant. Coloc is a 
Bayesian algorithm calculating the posterior probabilities of 
different causal variant configurations under the hypothesis 
of a single causal variant at each locus for each trait, i.e., 
H0 (no causal variant), H1 (causal variant for trait 1 only), 
H2 (causal variant for trait 2 only), H3 (two different causal 
variants), and H4 (a common causal variant). A shared locus 
was considered colocalized if the posterior probability for 
H4 (PPH4) was greater than 0.7.

Transcriptome‑wide association study analysis

Cross-trait meta-analysis identifies pleiotropic variants 
without considering gene expression and tissue specificity 
while many genetic variants lead to complex traits via 
regulating tissue-specific gene expressions. We performed 
a transcriptome-wide association study (TWAS) analysis 
using FUSION (Gusev et al. 2016) to identify regulated 
genes whose expression pattern across tissues implicates 
shared biological mechanisms. We first conducted single-
trait TWAS using the expression weights from 48 post-
mortem Genotype–Tissue Expression project (GTEx) tissues 
and CommonMind Consortium (CMC) brain tissue. The 
Bonferroni correction (PBonferroni < 0.05) within each tissue 
was used to identify significant expression–trait associations. 
We then performed joint/conditional tests for loci with 
multiple associated features to determine independent genes 
at each locus. Colocalization analysis was further conducted 
to examine whether GWAS signals and GTEx expression 
quantitative trait loci (eQTL) signals were colocalized at the 
same causal variant. We then integrated these results across 
traits to identify shared gene–tissue pairs.

Mendelian randomization analysis

We finally performed a bidirectional two-sample Mendelian 
randomization (MR) analysis to assess putative causal 
relationships via software TwoSampleMR (Hemani et al. 
2018). We applied the inverse-variance weighted (IVW) 
method (Burgess et  al. 2015) as our primary analytical 
method assuming all IVs to be valid, which provided the 
greatest statistical power. We next performed sensitivity 
analyses using MR-Egger regression (Bowden et  al. 
2015) and weighted-median method (Bowden et  al. 
2016) to examine the robustness of primary results. We 
also repeated IVW excluding palindromic IVs (i.e., A/T 
or G/C alleles) or pleiotropic IVs (SNPs associated with 
potential confounding traits according to NHGRI-EBI 
GWAS Catalog, https://​www.​ebi.​ac.​uk/​gwas/). We further 

https://grch37.ensembl.org/info/docs/tools/vep/index.html
https://grch37.ensembl.org/info/docs/tools/vep/index.html
https://www.ebi.ac.uk/gwas/
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conducted CAUSE (Causal Analysis Using Summary Effect 
estimates) as a complementary analysis to detect causal 
relationships while accounting for both correlated and 
uncorrelated pleiotropic effects (Morrison et al. 2020). We 
then performed multivariable MR to account for the effect 
of blood pressure (Evangelou et al. 2018), as a shared causal 
factor for migraine and CKD (Guo et al. 2020; Zheng et al. 
2022).

We computed the phenotypic variance explained by IVs 
( r2 ) (Shim et al. 2015) and calculated F-statistics (Pierce 
et al. 2011) to assess the strength of IVs (Supplementary 
Table 7). We also computed the statistical power of MR 
(https://​shiny.​cnsge​nomics.​com/​mRnd/).

Results

Phenotypic association

The baseline characteristics of UKB participants included in 
the observational analysis are presented in Supplementary 
Table 8. Participants were followed for 3,122,499 person-
years (12.1 ± 2.0  years), during which 97 migraine 
patients and 2,461 migraine-free individuals developed 
CKD (Table 1). After adjusting for sex and age, migraine 
patients showed a significantly increased hazard of CKD 
(HR = 1.32, 95% CI = 1.07–1.61). With further adjustment 
of antimigraine medication usage, the effect attenuated to 
some extent (10.33%), but remained statistically significant 
(HR = 1.28, 95% CI = 1.02–1.60). In fully adjusted model, 
the effect attenuated to null (HR = 1.13, 95% CI = 0.85–1.50). 
No significant association (HR = 1.05, 95% CI = 0.78–1.40) 
was observed in sensitivity analysis.

Global and local genetic correlation

As shown in Fig.  2A, no significant global genetic 
correlation between migraine and CKD ( r

g
 = −  0.01, 

P = 0.84) was found. For kidney function, no significant 

global genetic correlation was observed for migraine with 
either eGFR ( r

g
 = − 0.01, P = 0.75) or UACR ( r

g
 = 0.01, 

P = 0.82).
Partitioning the whole genome into 2353 LD-independent 

regions and after correcting for multiple testing 
(P < 2.12 × 10–5), no significant local signal was identified 
between migraine and CKD (Fig. 2B–G and Supplementary 
Table  9). For kidney function, significant local signal 
was observed for migraine with eGFR at four genomic 
regions (4q24, 9q34.1, 11q14.1, 12q24.1). Of note, 4q24 
(chromosome 4: 103,388,441–104,802,530), with the 
strongest local effect, harbors gene NFKB1 encoding the 
subunits of nuclear factor‑κB (NF‑κB) transcription factor, 
known to associate with migraine (Reuter et  al. 2002), 
kidney function, and CKD (O'Brown et al. 2015).

Cross‑trait meta‑analysis

Given the evidence of significant local genetic overlap, 
we further performed pairwise CPASSOC to identify 
pleiotropic loci (Table 2 and Supplementary Table 10). In 
total, 11 independent pleiotropic SNPs reached genome-
wide significance (PCPASSOC < 5 × 10–8) in cross-traits and 
suggestive significance (Pmigraine/CKD/kidney function < 1 × 10–5) 
in single traits, including one locus shared between migraine 
and CKD (rs1047891), seven loci shared between migraine 
and eGFR (rs1566225, rs41272663, rs1047891, rs13099628, 
rs6776700, rs62576116, rs9894634), and three loci shared 
between migraine and UACR (rs1047891, rs1971819, 
rs4909945). Of note, rs1047891 was shared across all 
traits. This SNP is located near CPS1, previously reported 
to associate with migraine in women (Choquet et al. 2021) 
and eGFR (Kottgen et al. 2010).

A f t e r  e x c l u d i n g  S N P s  t h a t  r e a c h e d 
genome-wide  s i gn i f i c ance  i n  s i ng l e  t r a i t s 
(Pmigraine/CKD/kidney function < 5 × 10–8) or were in LD ( r2 ≥ 
0.05) with any of the previously reported genome-wide 
significant SNPs (Supplementary Table 11), two novel 
SNPs (rs41272663, rs13099628) were identified to be shared 

Table 1   Observational associations between migraine and the risk of subsequent chronic kidney disease

Basic model: adjusted for sex and age
Full model: adjusted for sex, age, antimigraine medication usage, assessment center, income, Townsend deprivation index, smoking, drinking, 
physical activity (IPAQ), sleep duration, BMI, type 2 diabetes mellitus, hypertension, and dyslipidemia
IPAQ International Physical Activity Questionnaire; BMI body mass index

Exposure status 
during follow-up

Cases/person-years Primary analysis Sensitivity analysis

Basic model Basic 
model + antimigraine 
use

Full model Full model

Migraine
 No 2461/3,013,908 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)
 Yes 97/108,591 1.32 (1.07–1.61) 1.28 (1.02–1.60) 1.13 (0.85–1.50) 1.05 (0.78–1.40)

https://shiny.cnsgenomics.com/mRnd/
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between migraine and eGFR. SNP rs41272663 was mapped 
to LANCL1, an antioxidant gene protecting neurons from 
oxidant damage (Huang et al. 2014). SNP rs13099628 was 
mapped to SCN11A, encoding a voltage-gated sodium ion 
channel (Nav1.9) associated with pain perception (Leipold 
et al. 2013). Detailed annotations for all 11 shared loci are 
shown in Supplementary Table 12.

For each of the 11 shared loci, a 99% credible set of the 
causal variant (Supplementary Table 13) was determined, 
including a median of 22 variants (ranges: 1–197). Notably, 
at the locus of index SNP rs1047891, the 99% credible set 
consisted of only one single variant (rs1047891 itself) for 
migraine–eGFR and migraine–UACR, and of only two 

Fig. 2   Genome-wide genetic correlation between migraine and 
chronic kidney disease. The boxes (A) denote point estimates of the 
global genetic correlation, and the error bars denote 95% confidence 
intervals (CI). The blue color indicates a positive genetic corralation 
and the green color indicates a negative genetic corralation. In the 
QQ plots (B–D) and Manhattan plots (E–G), each point presents a 

specific genomic region, while red points represent genomic regions 
that contribute significant local genetic correlation as estimated by 
SUPERGNOVA (P < 0.05/2353). CKD, chronic kidney disease; 
eGFR, estimated glomerular filtration rate; UACR, urinary albumin-
to-creatinine ratio
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variants (rs1047891 and rs715) for migraine–CKD, stressing 
again its putative causal role.

Furthermore, for the 11 shared loci, a majority (seven, 
64%) colocalized at the same candidate causal variant 
(PPH4 > 0.7), while four colocalized at different candidate 
causal variants (PPH3 > 0.7). Of note, both fine-mapping 
and colocalization analyses supported a shared causal 
variant for migraine with CKD, eGFR, and UACR at 
rs1047891 (Supplementary Table 14).

Transcriptome‑wide association study

To investigate specific tissue–gene pairs shared by migraine, 
CKD, and kidney function, we performed TWAS using 
two different data sources of gene expression (GTEx and 
CMC). No overlapping tissue–gene pair was found for 
migraine and CKD using either tissue. For kidney function, 
19 significant tissue–gene pairs were found for migraine 
and eGFR using GTEx tissues, including four genes 
(TREX1, SHISA5, PRR13, TMA7) mainly expressed in 
tissues of the nervous and cardiovascular system (Table 3). 
Among these genes, TREX1 remained significant using 
CMC brain tissues, previously reported to associate with 
migraine (Sutherland and Griffiths 2017). Furthermore, nine 
significant tissue–gene pairs were found for migraine and 
UACR using GTEx tissues, including four genes (NBEAL1, 
FAM117B, ICA1L) mainly expressed in tissues of the 
nervous and cardiovascular system. Among these genes, 
ICA1L remained significant using CMC brain tissues, which 

was also identified by our cross-trait meta-analysis and the 
previous UACR GWAS (Teumer et al. 2019).

Mendelian randomization analysis

Finally, we performed a bidirectional two-sample MR to 
make causal inference (Fig. 3). Genetically predisposed 
migraine did not seem to affect CKD risk (OR = 1.03, 
95% CI = 0.98–1.09; P = 0.28). Conversely, genetically 
predisposed CKD also did not seem to influence migraine 
onset (OR = 1.03, 95% CI = 0.99–1.08; P = 0.17). For kidney 
function, genetically predisposed migraine was significantly 
associated with a higher level of UACR (beta = 0.02, 95% 
CI = 0.01–0.04; P = 1.92 × 10–3), while the effect attenuated 
to null when accounting for correlated and uncorrelated 
pleiotropy (beta = 0.01, 95% CI = − 0.001–0.02; P = 0.23) 
or adjusting for systolic blood pressure (beta = 0.01, 95% 
CI = −  0.01–0.02; P = 0.29; Supplementary Table  15). 
Conversely, genetically predicted UACR was not associated 
with migraine (OR = 0.90, 95% CI = 0.74–1.11; P = 0.33). 
There was no significant association between migraine and 
eGFR. The results remained consistent when restricting 
analyses for MA and MO (Supplementary Fig. 1).

The mean F-statistics of our IVs were larger than 50 
(Supplementary Table 7), indicating strong instruments. 
With the current sample size of outcome, assuming 0.81% 
(migraine) and 0.32% (CKD) of phenotypic variance 
explained by IVs based on the data we used, our study 
had more than 80% statistical power to detect an OR of 

Table 2   Pleiotropic SNPs identified by cross-trait meta-analysis between migraine and chronic kidney disease

Novel: novel SNPs only if all following criteria were satisfied: (1) the SNP reached genome-wide significance (PCPASSOC < 5 × 10−8) in 
CPASSOC; (2) the SNP did not reach genome-wide significance (5 × 10−8 < PGWAS < 10−5) in both single-trait GWAS(s); (3) the SNP was not in 
LD (r2 < 0.05) with any of those previously reported genome-wide significant SNPs of single traits
CKD chronic kidney disease; eGFR estimated glomerular filtration rate; UACR​ urinary albumin-to-creatinine ratio

SNP Novel A1 A2 Beta P-migraine P-kidney P-CPASSOC Mapped genes

Migraine CKD

Migraine and CKD
 rs1047891 No A C 0.041 0.055 8.22 × 10−07 2.28 × 10−07 6.13 × 10−12 CPS1

Migraine and eGFR
 rs1566225 No G C 0.035 − 0.002 7.90 × 10−06 2.81 × 10−12 2.61 × 10−15 RPRD2
 rs41272663 Yes A C − 0.043 0.002 1.34 × 10−06 1.08 × 10−07 2.91 × 10−12 LANCL1, AC007970.1
 rs1047891 No A C 0.041 − 0.007 8.22 × 10−07 3.59 × 10−64 9.35 × 10−65 CPS1
 rs13099628 Yes G T 0.040 − 0.002 4.86 × 10−06 4.82 × 10−06 4.18 × 10−10 SCN11A
 rs6776700 No A G 0.036 0.002 2.50 × 10−06 1.83 × 10−11 2.95 × 10−15 ATRIP
 rs62576116 No A G 0.055 0.004 3.54 × 10−07 4.28 × 10−12 8.05 × 10−17 ASTN2, RP11-67K19.3
 rs9894634 No C T 0.034 0.002 9.13 × 10−06 1.69 × 10−09 6.16 × 10−13 SMG6, HIC1

Migraine and UACR​
 rs1971819 No G C − 0.054 − 0.019 6.62 × 10−08 4.66 × 10−14 1.03 × 10−19 ICA1L, KRT8P15
 rs1047891 No A C 0.041 − 0.019 8.22 × 10−07 2.55 × 10−18 1.06 × 10−21 CPS1
 rs4909945 No T C − 0.067 − 0.010 5.08 × 10−16 6.46 × 10−06 2.28 × 10−19 MRVI1
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1.16 for migraine on CKD and 1.24 for CKD on migraine, 
respectively.

Discussion

To the best of our knowledge, this is the most comprehensive 
observational and genetic analysis that systematically 
investigates the phenotypic association, genetic correlation, 
pleiotropic loci, expression–trait association, and causal 

relationship between migraine, CKD, and kidney function. 
In observational analysis, we found no strong phenotypic 
link between migraine and CKD. Genetic analysis suggested 
a weak genetic relationship between migraine and CKD 
with merely one candidate pleiotropic variant identified, 
while four specific genomic regions showing significant 
local signals were found for migraine and eGFR, relaxing 
the binary disease status to the continuous physiological 
measure. Such genetic overlap was further substantiated 
by 10 pleiotropic loci and 28 shared expression–trait 

Table 3   Shared TWAS significant genes between migraine and chronic kidney disease across 48 GTEx tissues (version 7) and CMC brain tissue

GTEx Genotype–Tissue Expression Project, CMC CommonMind Consortium, TWAS transcriptome-wide association studies, CKD, chronic 
kidney disease, eGFR estimated glomerular filtration rate, UACR​ urinary albumin-to-creatinine ratio

Tissue Gene CHR NSNP Migraine CKD related phenotypes

BEST.GWAS.ID TWAS.P PPH4 BEST.GWAS.ID TWAS.P PPH4

Migraine and eGFR
 GTEx adipose subcutaneous TREX1 3 257 rs6776700 3.91 × 10−06 0.95 rs6776700 2.28 × 10−10 0.89
 GTEx adrenal gland TREX1 3 257 rs6776700 3.73 × 10−06 0.95 rs6776700 3.61 × 10−11 0.98
 GTEx artery aorta TREX1 3 257 rs6776700 3.91 × 10−06 0.95 rs6776700 2.28 × 10−10 0.89
 GTEx artery coronary PRR13 12 408 rs3816806 2.58 × 10−06 0.98 rs10876470 1.48 × 10−05 0.84

TREX1 3 257 rs6776700 3.91 × 10−06 0.94 rs6776700 2.28 × 10−10 0.88
 GTEx artery tibial TREX1 3 257 rs6776700 4.20 × 10−06 0.94 rs6776700 3.36 × 10−11 0.98
 GTEx brain anterior cingulate 

cortex BA24
TMA7 3 258 rs6776700 2.46 × 10−06 0.95 rs6776700 1.21 × 10−10 0.97

 GTEx brain cerebellar hemisphere TMA7 3 258 rs6776700 3.42 × 10−06 0.95 rs6776700 9.58 × 10−11 0.97
 GTEx brain cortex TMA7 3 257 rs6776700 2.46 × 10−06 0.96 rs6776700 1.86 × 10−11 0.99
 GTEx brain frontal cortex BA9 TMA7 3 258 rs6776700 2.76 × 10−06 0.95 rs6776700 3.37 × 10−11 0.98
 GTEx cells transformed fibroblasts TREX1 3 257 rs6776700 3.91 × 10−06 0.95 rs6776700 2.28 × 10−10 0.89
 GTEx colon sigmoid TREX1 3 257 rs6776700 3.00 × 10−06 0.95 rs6776700 4.94 × 10−10 0.77
 GTEx esophagus gastroesophageal 

junction
TREX1 3 257 rs6776700 2.46 × 10−06 0.96 rs6776700 1.86 × 10−11 0.99

 GTEx esophagus mucosa TREX1 3 257 rs6776700 3.72 × 10−07 0.94 rs6776700 4.26 × 10−11 0.90
 GTEx heart atrial appendage TMA7 3 258 rs6776700 1.64 × 10−06 0.95 rs6776700 1.20 × 10−10 0.98
 GTEx heart left ventricle TMA7 3 258 rs6776700 2.85 × 10−06 0.96 rs6776700 3.80 × 10−11 0.98
 GTEx muscle skeletal TMA7 3 258 rs6776700 2.85 × 10−06 0.96 rs6776700 3.80 × 10−11 0.98
 GTEx skin not sun exposed 

suprapubic
SHISA5 3 254 rs6776700 2.29 × 10−06 0.95 rs6776700 8.97 × 10−11 0.91

 GTEx spleen TREX1 3 256 rs6776700 6.26 × 10−06 0.94 rs6776700 1.38 × 10–10 0.98
 CMC brain TREX1 3 257 rs6776700 2.48 × 10−06 0.94 rs6776700 5.49 × 10−12 0.97

Migraine and UACR​
 GTEx adipose subcutaneous NBEAL1 2 262 rs934287 2.19 × 10−06 0.95 rs934287 1.54 × 10−12 0.97
 GTEx adipose visceral omentum NBEAL1 2 262 rs934287 3.68 × 10−06 0.94 rs934287 1.06 × 10−12 0.98
 GTEx artery aorta FAM117B 2 241 rs934287 3.68 × 10−06 0.93 rs934287 1.06 × 10−12 0.97
 GTEx artery coronary NBEAL1 2 262 rs934287 2.73 × 10−06 0.96 rs934287 1.67 × 10−12 0.98
 GTEx artery tibial ICA1L 2 244 rs934287 2.62 × 10−06 0.79 rs934287 1.93 × 10−12 0.80
 GTEx nerve tibial ICA1L 2 244 rs934287 2.62 × 10−06 0.96 rs934287 1.16 × 10−12 0.98
 GTEx pancreas ICA1L 2 244 rs934287 3.42 × 10−06 0.95 rs934287 1.30 × 10−12 0.97
 GTEx skin not sun exposed 

suprapubic
ICA1L 2 244 rs934287 2.73 × 10−06 0.96 rs934287 1.67 × 10−12 0.97

 GTEx skin sun exposed lower leg NBEAL1 2 262 rs934287 3.74 × 10−06 0.93 rs934287 1.10 × 10−12 0.97
 CMC brain ICA1L 2 267 rs934287 2.73 × 10−06 0.96 rs934287 1.67 × 10−12 0.97
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associations for migraine and kidney function, primarily 
tagging tissues of nervous and cardiovascular systems. 
However, we found limited evidence to support a causal 
effect of migraine on CKD and kidney function. These 
findings advance our understanding of the relationship 
underlying migraine and CKD, providing potential 
implications for disease prevention strategies.

In contrast to previous observational studies, we found a 
minimal phenotypic and genetic link underlying migraine 
and CKD. In observational analysis, the age and sex-
adjusted hazard of CKD was 1.32 (95% CI = 1.07–1.61), 
which was largely consistent with one (and the only) 
existing observational study reporting a relatively small 
effect (HR = 1.22, 95% CI = 1.02–1.47) (Weng et al. 2017). 
When we further adjusted for other covariates in the subset 
of participants with more complete data on risk factors, 

the effect attenuated with adjustment for antimigraine 
medication usage and was null in fully adjusted model. 
Such a weak phenotypic link was corroborated by genetic 
findings of neither significant a genetic correlation nor a 
putative causal association, with merely one pleiotropic 
causal variant (rs1047891) identified. These findings 
are perhaps not very surprising as similar patterns have 
been observed for migraine with macrovascular diseases, 
while observational studies consistently indicate strong 
phenotypic associations between migraine, coronary artery 
disease, and stroke (Ng et al. 2022), genetic analyses show 
minimal shared basis (Pickrell et al. 2016; Siewert et al. 
2020) with significant results only found at the individual 
variant level.

Despite the ambiguous findings for migraine with CKD, 
we found consistent and robust evidence supporting for a 

Fig. 3   Bidirectional mendelian randomization analysis between 
migraine and chronic kidney disease. The blue boxes denote point 
estimates of the causal effects, and the error bars denote 95% 

confidence intervals (CI). CKD chronic kidney disease; eGFR 
estimated glomerular filtration rate; UACR​ urinary albumin-to-
creatinine ratio
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shared genetic architecture between migraine and kidney 
function. This is not against our expectation as the latter 
reflects a continuous physiological measure, a measurement 
of higher granularity that could be used to determine a 
binary disease outcome. We identified four significant local 
signals for migraine and eGFR, supporting a brain–kidney 
interconnection driven by a shared genetic basis. The 
strongest local signal was at 4q24 harboring NFKB1, a 
gene encoding the subunits of NFκB transcription factor, 
activation of which contributes to local inflammation and 
headaches (Reuter et al. 2002), as well as to age-related 
decline in kidney function (O'Brown et al. 2015).

Results from cross-trait meta-analysis suggest that the 
intrinsic link observed for migraine and kidney function 
may largely be explained by biological pleiotropy. We 
highlight a candidate causal variant (rs1047891) shared 
for migraine with kidney function as well as with CKD. 
This pleiotropic SNP is located near CPS1, encoding 
a mitochondrial enzyme named carbamoyl-phosphate 
synthase 1 that controls the synthesis of carbamoyl 
phosphate from ammonia in the initial step of urea 
cycle. Individuals with a CPS1 deficiency typically 
present hyperammonemia with a wide range of clinical 
manifestations, including migraine, abdominal pain, 
vomiting, and decreased urea production (Haberle et al. 
2019; Raina et al. 2020). Follow-up experimental studies 
are needed to validate the role of the identified candidate 
causal variant. Of note, we found several shared genetic 
variants whose signs of effect estimates are opposite to 
the direction that would be predicted from the global 
genetic correlation. This likely implies the heterogeneous 
pathways shared by migraine and kidney function.

TWAS analysis takes us one level down from the variant-
based association to the gene-based association in disease-
related or potentially pathological tissues. We found multiple 
shared expression–trait associations between migraine and 
kidney function. Here, we highlight two pleiotropic genes 
(TREX1 and ICA1L) replicated by using the CMC brain 
tissue. TREX1, shared by migraine and eGFR, and expressed 
in the brain, artery, spleen, and many other tissues, encodes a 
3’ to 5’ DNA exonuclease known to regulate immunity and 
repair DNA. In human neural cells, deficiency of TREX1 
contributes to the accumulation of extranuclear DNA, 
thereby inducing neurotoxicity through increased type I 
interferon secretion (Thomas et al. 2017), which may play 
a role in the etiology of migraine (Yazgan and Naziroglu 
2021). Furthermore, mutations in TREX1 may contribute to 
renal thrombotic microangiopathy through increased type I 
interferon secretion and concurrent autoimmune activation 
(Gulati et al. 2018). In addition, ICA1L, shared by migraine 
and UACR, and expressed in the brain, artery, pancreas, and 
skin tissues, encodes islet cell autoantigen 1-like (ICA1L) 
protein that is involved in protein domain specific binding 

activity and regulation of transport. Findings from cell-type 
specificity analysis in the brain have identified enrichment 
in the ICA1L expression in glutamatergic excitatory neurons 
(Ou et al. 2021), while malfunctioning of the glutamatergic 
system may cause symptoms of migraine (Gasparini 
et al. 2016). Previous proteome-wide association studies 
have discovered the brain protein abundance of ICA1L to 
affect cerebral small vessel diseases (Cullell et al. 2022) 
and Alzheimer’s disease (Ou et al. 2021). To date, little is 
known regarding the exact biological functions of TREX1 
and ICA1L in migraine and kidney function, and future 
functional studies are worth revealing their roles.

Our findings provide potential public health as well 
as clinical implications. First, migraine does not seem to 
cause CKD. The excess risk of CKD among individuals 
with migraine is probably attributed to shared environmental 
factors. For people with migraine to be identified as high 
CKD risk, the coexistence of shared risk factors is required 
and such established risk factors (e.g., hypertension) should 
be treated as clinical guideline recommendations. Avoiding 
unnecessary intervention makes sense for individuals 
with migraine because triptans as a first-line treatment 
for moderate or severe migraine attacks have the potential 
kidney toxicity to do harm (Mobasheran et  al. 2020). 
Second, migraine, CKD, and kidney function are inherently 
linked through biological pleiotropy. SNP rs1047891 is a 
candidate causal variant shared by migraine, CKD, and 
kidney function. Our findings may provide implications for 
the design of future functional experiments. Prospectively, 
the identification of specific pleiotropic loci modulating 
common biological pathways may facilitate the discovery 
of broad-spectrum therapeutic targets that would benefit 
both the precision prevention and treatment of chronic 
comorbidities.

We acknowledge several potential limitations. First, 
our findings were restricted to individuals of European 
ancestry, which may not be generalizable to other ancestral 
populations. Further research of this topic leveraging data 
from other ethnicities is warranted. Second, a substantial 
sample overlap (59.2%) exists across GWAS of migraine and 
GWAS of UACR. However, the lower end of the one-sided 
95% CI for F-statistic remained high (55.6 for migraine IVs 
and 48.1 for UACR IVs), thus considerable weak instrument 
bias in our two-sample MR was not expected (Burgess 
et al. 2016). Sample overlap is another issue that might 
introduce bias due to an inflated type 1 error rate (false 
positive findings). This, however, was not a concern in our 
two-sample MR analysis as all findings were null (negative 
findings). Future research with independent samples to 
derive IV-exposure and IV-outcome associations is needed. 
Nevertheless, the genome-wide cross-trait analytical 
approaches we have applied (e.g., LDSC, SUPERGNOVA, 
CPASSOC) are all robust to sample overlap (Bulik-Sullivan 
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et al. 2015; Zhang et al. 2021; Zhu et al. 2015). Third, our 
cross-phenotype results were restricted to overall migraine 
without subtyping, as the sample size of the hitherto 
available genetic studies on migraine subtypes was too small 
to withstand the statistical burdens of genome-wide cross-
trait analysis. Future GWAS of migraine subtypes with larger 
sample sizes are required to understand the subtype-specific 
effect. Fourth, notwithstanding substantial efforts to enhance 
the total sample size, we still had limited power to detect the 
causal effect of migraine on CKD through traditional MR, 
perhaps due to a small phenotypic variance explained by 
IVs. However, we replicated the results with an increased 
power by relaxing the outcome from a binary disease status 
(CKD) to a continuous physiological measure (eGFR and 
UACR), and obtained consistent findings.

Conclusions

To conclude, leveraging large-scale observational and 
genetic data of European ancestry, our work does not find 
evidence to support a causal association between migraine 
and CKD. However, our study highlights significant 
biological pleiotropy between migraine and kidney 
function. Our findings provide novel insights into precision 
prevention and medicine for cardiovascular comorbidities 
with migraine.

Supplementary Information  The online version contains 
supplementary material available at https://​doi.​org/​10.​1007/​
s00439-​023-​02575-9.
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