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ABSTRACT

In plant science, it is an established method to obtain structural parameters of crops using image analysis. In recent years, deep learning techniques
have improved the underlying processes significantly. However, since data acquisition is time and resource consuming, reliable training data are
currently limited. To overcome this bottleneck, synthetic data are a promising option for not only enabling a higher order of correctness by offer-
ing more training data but also for validation of results. However, the creation of synthetic data is complex and requires extensive knowledge in
Computer Graphics, Visualization and High-Performance Computing. We address this by introducing Synavis, a framework that allows users to
train networks on real-time generated data. We created a pipeline that integrates realistic plant structures, simulated by the functional-structural
plant model framework CPlantBox, into the game engine Unreal Engine. For this purpose, we needed to extend CPlantBox by introducing a
new leaf geometrization that results in realistic leafs. All parameterized geometries of the plant are directly provided by the plant model. In the
Unreal Engine, it is possible to alter the environment. WebRTC enables the streaming of the final image composition, which, in turn, can then
be directly used to train deep neural networks to increase parameter robustness, for further plant trait detection and validation of original pa-
rameters. We enable user-friendly ready-to-use pipelines, providing virtual plant experiment and field visualizations, a python-binding library to
access synthetic data and a ready-to-run example to train models.

KEYWORDS: Computer vision; deep learning; FSPM; HPC; synthetic data; visualization.

1. INTRODUCTION associating each pixel with a class label such as organ type and/or
organ numbering (Scharr et al., 2016; Tsaftaris et al., 2016; Yang
et al,, 2020). In terms of DL in biological image analysis, data

are often rare and hard to extract from real-world measurements

Deep learning (DL) techniques are a subset of ML and utilize the (Pound et al, 2017). This is due to the high variability of envi-
training of many-layered compute graphs. Pound et al. (2017)

show that DL techniques have the highest performance on plant
image analysis, which, in turn, has been established to be a sig-
nificant bottleneck for plant phenotyping (Tsaftaris et al., 2016;
Kamilaris and Prenafeta-Boldu, 2018; Yang et al., 2020; Scharr
and Tsaftaris, 2022). Many image-based applications for plant
phenotyping involve semantic or instance segmentation, that is,

Machine learning (ML) algorithms usually perform well when
trained on large quantities of data well covering the input space.

ronmental conditions, including light conditions, rain, soil types,
stresses influencing plant appearance even for the same genoty-
peand the high intrinsic variability of plants and their changing
appearance over time due to growth or senescence. Even lab con-
dition data cannot always be acquired in optimal circumstances
and cannot easily be reproduced as plants would need to be
regrown. Consequently, data sets acquiredover years of intense
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measurement campaigns are often heterogeneous and can only
cover small parts of alarge data space. Therefore, developed plant
image analysis solutions are typically highly specialized, for ex-
ample, for specific organs and/or plant types, and do not gener-
alize broadly (Lobet et al., 2013). In most cases, the full potential
of the data remains unused. Analysis methods that exploit large
quantities of heterogeneous data sets, covering a more significant
part of the data space, would be highly beneficial for robustness
and generalization.

DL frameworks and algorithms can address data analysis chal-
lenges but need a lot of data to perform well. Synthetic data gen-
eration can provide arbitrary amounts of well-annotated data,
thus enabling the scaling of DL methods to a more powerful
capacity for generalization and accuracy. Previous approaches
showed that introducing synthetic data makes high-quality train-
ing examples available at low cost (Pollok et al., 2019; Zhang
et al,, 2020). The generation of versatile synthetic data, how-
ever, requires a lot of inter-domain expertise on plant biology
as well as computer graphics and High-Performance Comput-
ing (HPC). Solutions to generate more data for specific tasks
often end up highly specialized, such as for 2D image gener-
ation approaches by Ubbens et al. (2018), who generate leaf
images for counting tasks or 2D root rasterization with noise
components as implemented by Lobet et al. (2017). Similar ap-
proaches for root systems have also been implemented by Benoit
et al. (2014) or the 3D voxelization approach by Masson et al.
(2021). Functional-Structural Plant Models (FSPMs) produce,
using cultivar-specific input parameters, plant morphological
and topological data that can then be used to produce synthetic
images. To assist with making FSPM rendering more realistic,
some approaches also include physics-based surface simulation
and reaction to light spectra (Bailey, 2019). In contrast, Hartley
and French (2021) address the potential synthetic-to-real data
gap by applying domain adaptation using image generation, such
as Gao et al. (2023). Other approaches additionally use few-shot
learning, that is, a limited number of observations/samples, and
transferlearning to bridge the gap between synthetic and authen-
tic images (Zhang et al., 2020). An example application where
synthetic data can be very impactful are rhizotron experiments,
which is a method for whole-plant measurement that requires
plants to be grown in specialized containers, such as produced by
Nagel et al. (2012). The measurements of this type of special set-
up are resource consuming and produces accurate but little data.
The significant overhead for a single plant measurement causes
challenges for the DL models that need to work on limited data as
well as a need to process the present data with as much accuracy
as possible.

To use the full potential of synthetic data in the training
of DL approaches, we developed Synavis (Synavis Framework:
https://github.com/dhelmrich/synavis), a coupling framework
that is versatile enough to allow different approaches and makes
use of HPC to allow an interplay of FSPMs, visualization and DL
model training. We developed a pipeline using visualizations of
the FSPM CPlantBox (Zhou et al,, 2020) and the Synavis soft-
ware, enabling the coupling of the FSPM with Unreal Engine
(UE) (Unreal Engine, https://unrealengine.com/) and the DL
framework. Synavis handles dynamic workflows with UE and is
scalable for HPC systems. The combination of CPlantBox with

Synavis in UE also allows for the easy addition of wind, leaf
diseases imposed onto the leaf texture, and other effects such as
rain or degraded image quality. The primary goal of this work
is to improve image analysis processes for plant phenotyping
and model parameter extraction. To support the data generation
for these difficult tasks, there are bottom-up approaches to di-
rectly simulate surface radiation (Bailey, 2019) and top-down
approaches aimed at replicating measures (Bouvry and Lebeau,
2023). Synthetic data can also be generatively produced to as-
sist with specific tasks, such as leaf segmentation (Ward et al,,
2018).

This article highlights the central points of our contribution,
which are centred around three main axes. We implemented a
geometrization and texturization for FSPM Visualization with
CPlantBox. Furthermore, we introduce our Synavis framework
that enables the integration of CPlantBox models into UE in an
HPC compatible method for the purpose of flexible synthetic
data generation. We test our approach against experimental data
by implementing the specific use case of rhizotron experiments
to demonstrate feasibility and performance. Furthermore, we de-
tail the field scale rendering in our virtual environments and what
aspects of the pipeline give this method advantages over other
approaches.

1.1. Description of the CPlantBox FSPM

FSPMs describe digitized versions of a phenotype (Soualiou
et al., 2021) of a plant, providing means of assessing interven-
tions, crop combinations, photosynthesis assessments and even
nutrient and soil interaction. They can provide insight into in vivo
counterparts by providing access to more measures and modeled
information, making them ideal digital twin candidates. The in-
teraction between the i silico and in vivo versions of plants can
provide valuable insight, especially concerning possible success
from interventions, as shown by Perez et al. (2022).

CPlantBox (Zhou et al., 2020; Giraud et al., 2023) is a mod-
eling framework for FSPMs based on the graph formalism as
seen in Fig. 1. Plants are described as a series of vertices linked
by edges describing the abstract morphology of the plant. The
plant object stores, moreover, a series of arrays that can con-
tain any kind of necessary information for each point or edge,
such as radius or age. CPlantBox is a stochastic model, where
all parameters are defined via their truncated normal distribu-
tion. CPlantBox can be used to generate raw plant structural data
mimicking various plant development dynamics under specific
environmental conditions. Parameterization of CPlantBox is il-
lustrated in Fig. 1 and can be done in two ways: Calibration of
the model are sometimes done directly from experimental data,
such as in Bauer et al. (2023), who investigate the effect of phos-
phorus deficiency in Zea mays plants. Another approach is mea-
suring a target distribution from experimental data, and running
an estimator for the posterior distribution of the parameter space
w.rt. the target distribution, as done by Morandage et al. (2021)
in their work on analysing how well model parameterizations
can fit onto synthetic field data. Additionally, CPlantBox can be
coupled with other models that simulate dynamic soil or atmo-
spheric conditions. Such models can exhibit growth properties
that are grounded in, for example, nutrient availability, such as
developed by Giraud et al. (2023).
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Figure 1. Overview of CPlantBox parametrization, adapted from Giraud et al. (2023), simulation of structural and functional properties, and
visualization. Parametrization exemplifies different measuring techniques—direct and through stochastic optimization. Modelling shows our
approximation model for the true plant shape, which is the discretized point/edge model. We further introduce two options for leaf-blade
calibration. The visualization approach introduced with this work infers a 3D plant shape from the graph-like structure by assuming that by

default, there are no drastic local changes to the rotation.

2. METHODS
2.1. Modelling CPlantBox in Unreal Engine

As one of the cornerstones of our synthetic plant data
pipeline, this section will detail our 3D meshing and the mod-
eling framework for texturing plants in SynavisUE.

For the generation of the CPlantBox geometry, as seen in
Fig. 1 on the right, we implemented a visualization module that
produces triangulated meshes from the CPlantBox data. For this,
we needed to write a geometrization scheme that could convert
the point/edge graph structure into a mesh. The mesh is then
rendered in UE as object that can be placed in the scene using
Synavis.

Generally, models of the leaf surface should incorporate its
morphological properties. It greatly enhances the realism and
visual quality of the rendering, as was shown by Wang et al.
(2006). While there are different established ways of produc-
ing and texturing leaves in graphics engines, one of the more
common methods is masking. This technique displays a rectan-
gle that contains a texture with an binary mask that describes
the leaf area. As exemplified in Bailey (2019), masking the leaf
surface as a texture is a good tool of fast creation of varying
plant shapes as the masking is very cheap in both ray-tracing and
rasterization renderers. It has drawbacks, however, as modern
graphics engines such as UE might introduce additional geo-
metric features, for example, Nanite Hierarchical Culling (Karis,
2021), which might change masked geometries more than their

unmasked counterparts, or their rendering does not accurately
reflect the geometry of the plant as optimizations are made. This
leads to a discrepancy between the masked leaf shape and what
is visible in the scene. Another approach is to declare a full trian-
gulated geometry for the shape of the plant, such as performed
by Yun et al. (2019) for simulated Light Detection and Ranging
(LiDAR) data (Behroozpour et al.,, 2017). In this work, we use
the latter approach for producing leaf shapes. The advantage of
this is that there exists a pre-rendering correct geometry that DL
approaches can train against. Our approach infers an orientation
from the point position by either assuming that the local forward
vector (ie. in growth direction) is upright or by branching off
from the parent organ. For leaf meshing, this orientation must be
robust, as the inferred orientation at the origin point of the leaf
blade has more extreme effects at the sides of the leaf. The leaf
blade is scaled using the CPlantBox parameter sets that also con-
tain its description. We detailed the CPlantBox geometrization
approach in Appendix E. Fig. 1 also shows how the leaf area tem-
plates are saved in the parameter file, either as linear description
as distances from the midline or as radial distance-angle pairs.
Leaf blade distances are generally shape-only parameters and
are pending the scaling using the leaf area parameters or growth
stage.

For the visualization of CPlantBox plants, textures are warped
onto the geometry. This means that there is an internal rela-
tive coordinate system spanning the leaf surface. This projection
of the surface onto the texture is similar to some world map
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Figure 2. (A) We model the material, that is, the shader language graph representation, in UE for sample textures to make sure both
dynamically set parameters and operations on textures are feasible. (B) Starting from this graph, we dynamically instantiate not only surface
colour textures but also additional effects, such as normal maps or opacity masks. Example shows use of composition, with discolouration
masks and parameters set to 0 by default (such as in A), which can by used during runtime to generate additional effects, such as
discolouration. (C) UE is capable of handling a lot of geometries. While there are diverse geometry pipelines supported, Synavis uses
procedural meshes as they directly accept geometry buffers. To differentiate between organs, their individual geometries have to be transmitted

separately into mesh sections.

projections. This allows for more pixels at the leaf tip and the
start of the leaf, where often more complex surface properties are
exhibited as structures merge and leaf veins flow together. Leaf
textures either stretch the whole leaf length or are automatically
repeated by the UE. However, graphics engines also support the
creation of rectangular textures that again provide more resolu-
tion along the leaf length. Masking the leaf texture comes at the
cost of potentially not allowing for enough pixel space at poten-
tially crucial parts of the leaf. With the warping of the leaf texture,
we also make maximum use of the texture resolution and the tex-
ture buffers on the GPU. Moreover, there is an obvious midline
on the leaf, which is exactly the m : R 3 x — (0.5,x) € R?
coordinate line in the texture. For masked textures in contrast,
there always needs to be a fixed starting point and the midline
of the leaf might not be obvious. Positioning leaf sickness effects
or structural defects such as holes can be done by generating the
appropriate discoloration and transmitting the texture as buffer
to SynavisUE.

Stem textures are similarly warped, but the texture coordi-
nates for cylindrical plant organs are wrapped around the axis
counter-clockwise. Generally, this behaviour of the system can
be adapted by changing the geometrization, but mapping dis-
colourations onto parts of the plant is easier when using a nor-
malized coordinate space.

Fig. 2 gives an overview over the individual steps involved.
Users can achieve clearer data mapping and visualization when
using warped data-containing textures as opposed to vertex
colours. The surface modelling approach for the Synavis frame-
work mainly rests on the material shaders in UE as shown in
Fig. 2A. The structure of the surface descriptions allows for dy-
namic parameters that can be set during runtime, such as in
Fig. 2B. Parameter ranges can be investigated within UE, such as
how discolourations are projected onto the surface, while actual
data augmentation is done through Synavis. Parameters intro-
duced in shaders will be available for runtime adaptation. Visual
editing modes in UE are helpful for validating value ranges and
assessing how the material reacts to changes in values. This tem-
plated material increases the possible training data space signif-
icantly. Fig. 2B shows this with the example of a simplistically
generated texture mask that is superimposed onto the leaf, gen-
erating a discolouration of the leaf surface. Field settings, such
as Fig. 2C rely heavily on stochastic augmentations of either ge-
ometry or material, which are alterations of the basic parameters
with random chance. Plant textures used in this example were
generated using simple generative color filters and calibrated
based on image data from experiments shown in Fig. S. Soil and
environment texture choice depends on what is being trained. If
it serves only secondary purpose, we refer to either free-to-use
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Figure 3. Overview of the total workflow setup. Synavis is a coupling framework that utilizes standardized communication across a
supercomputing network. Oftentimes, different applications must run on specific architectures. This include highly parallelizable algorithms
such as backpropagation for DL model training. In contrast do visualization, these can also run on accelerator compute nodes that mainly
provide tensor cores, which, in turn, cannot provide rendering support.

scanned textures (examples include Quixel Megascans), or paid
custom asset collections (Unreal Engine Marketplace).

The main difference of this work, separating it from all previ-
ous approaches, are three main points. Synavis enables a versatile
workflow that works well on plant data generation, but is not
restricted to it, as it can be added to any existing project. Further-
more, our approach is provable to be scalable, with its primary
design being catered towards its use on HPC systems. Finally, we
aimed to make it more accessible by using the default protocols
and behaviours of UE, such as WebRTC (Jennings et al., 2021).
An overview of the framework components can be seen in Fig. 3.

Asshownin Fig. 3A, Synavis handles the connection and com-
munication between UE and the DL training frameworks. Fur-
thermore, Synavis was designed as bridge service similar to the
one described in Reddy et al. (2020), connecting compatible
endpoints in a modular supercomputing architecture where soft-
ware might run most optimally on specialized hardware (Suarez
et al,, 2019). An important feature is the steering of the virtual
scene using JavaScript Object Notation (JSON) commands, as
in Fig. 3B. Synavis also integrates well with UE without requir-
ing a direct coupling to it. The network interfacing used by this
method follows a standard and provides simple tools. More-
over, this framework allows the coupling of UE to many differ-
ent endpoints—providing simulation data, geometry, textures,
commands, information for training or communication with the
simulation.

During our investigation of current practice, we uncovered
some key workflows that we wanted to support, with tangible
applications either in demand, or already in use: Firstly, we pro-
vide access to otherwise inaccessible data for training workflows

using synthetic data, such as depth estimation (McCormac et al.,
2017) with UE, as was already shown to integrate well with the
underlying rendering pipeline (Jansen et al.,, 2022). Secondly, we
use UE to digitally mimic the environment for synthetic data
such as light interception (Kim et al., 2020), or scalable work-
flows to meet the rising demand for high-quality data (Scharr
et al., 2016; Pound et al.,, 2017; Qiu et al., 2017; Zhang et al,
2020).

The central theme in these use cases is the combination of
complex frameworks and very domain-specific workflows. Es-
pecially in plant sciences, in combination with visualization and
DL, it can be a challenge to overcome the technical requirements
of different systems and users. Synavis is a pathway for collab-
orative use of these techniques. Incorporating a specific visual-
ization for an FSPM, plant scientists can dictate the look and
structure of the virtual scene at runtime.

2.2. Central concepts of Synavis

Synavis uses the standardized WebRTC communication
method as well as a command structure based on JSON. Gener-
ally, WebRTC is a framework to couple participants in real-time
communication. This means that the communication is always
non-blocking and reception, while possibly assured through cer-
tain protocols, does not occur in any predictable order. This
setup is preferable when messages are sent by peers at the same
time and an ordering might not be possible.

Fig. 3C shows that CPlantBox is connected to UE via a Data
Connector, which is the main component that accommodates
the possibility of transferring data to and from UE. The data
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connector also introduces the possibility of connecting mod-
els directly to each other or to the DL framework. For commu-
nication with UE, the data connector provides functionalities
consisting of a base set of commands that are pre-integrated to
enable many simple workflows. As a method of communication,
the data connector uses a WebRTC concept called data chan-
nel, which is the direct peer-to-peer message passing connection
that is the minimum required setup for a connection with the
framework. Enhancing the data connector with a media track
yields a setup similar to a video conference client receiving a
video stream, which in Fig. 3D serves as a UE-DL connection.
This type of coupling class is called Media Receiver in Synavis
and its added functionality is the capturing of video frame pack-
ages (Schulzrinne et al., 2003). The media receiver also offers an
easy coupling to decoding services that work with streams, such
as OpenCV with GStreamer (Nimmi et al.,, 2014). The setup of
such an example can be found in Appendix C.

Finally, communication through the Synavis framework uses
JSON. This method of communication encapsulates data well
without requiring a lot of meta text and is the default for the Pixel
Streaming Plugin as well. An example of a simple prompt would
be {"type":"query"} , which prompts UE to relay the list
of objects within the virtual scene. All objects are accessible that
are present within the reflection system of UE. This system is a
separate data structure generation system that contains meta in-
formation on classes, properties and objects of code definitions
in UE.

2.3. SynavisUE visualization

UE is a graphics engine that has been in development since
1995 (Sanders, 2016). Apart from game development, it has uses
in scientific and industrial disciplines (Qiu ef al., 2017; Bondi
et al,, 2018; Zhang et al., 2020). We are using UE in combina-
tion with Synavis to generate virtual scene data. Using a graph-
ics engine such as UE has a number of advantages. Focusing
on the ones that are directly relevant to our workflow, we want
to highlight that (i) UE is capable of handling scripted run-
time manipulation while offering a system for fast prototyping
through editors. Whereas digital twin models require transfer-
ence of measurements, the engine itself further enables the de-
sign and use of virtual environments that are designed rather
than programmed—the user interface will make it much easier
for most users to arrive at a visually realistic environment. Large-
scale environments produced by the engine have already seen
some synthetic data uses, such as the Unmanned Aerial Vehicle
(UAV) approach by Bondi et al. (2018). (ii) UE, furthermore,
uses a reflection system, which this framework makes heavy use
of, as highlighted in Fig. 3E. Reflection systems are generally
helpful in counting or selection tasks, retrieving properties of
objectsand tracking objects. UE also grants access to the GPU
buffers that contribute to the rendering of the final image, such
as distance buffers. These buffers provide an expedient way of
accessing distance and segmentation information, which has al-
ready been taken advantage of by approaches such as by Jansen
et al. (2022).

PixelStreaming is a plugin that also changes the render
pipeline of UE to include an encoding step, providing a video
stream of the virtual scene. Typically, the final image bufter is

the last step of the rendering scene, preceeded by pixel shaders.
This image is usually transmitted to the display and discarded.
The plugin handles the final image in an another step, encoding
a video stream on the graphics card using the H264 (ISO/IEC
14496-10:2022, 2022) or H265 (ITU-T H.265, 2023) encod-
ing standards. There are alternate CPU-based encoders that have
performance drawbacks but increased compatibility, such as an
arbitrary number of encoders. The encoded image is transported
using Real-Time Protocol (Schulzrinne et al.,, 2003) packages.
The plugin enables easy and web-based access to a stream from
a data centre’s backend. We are using this pipeline to enable our
coupling between the visualization with UE and the DL pipeline.
We developed a managed way of coupling video streams with DL
frameworks through a framework akin to a kind of relay server
(Reddy et al., 2020). This standard also provides us with means
of inserting data into UE.

2.4. Training with Synavis

The central techniques we will illustrate in this work, which
enable workflows driven by Synavis, are tracking, segmentation
and mapping. This relates to Fig. 3F.

Tracking is a method of obtaining frame-wise information
about elements of the virtual world at each point in time. The
temporal resolution of this information is ultimately dependent
on the frame time of the engine. However, the temporal res-
olution of the tracked information always matches the tempo-
ral resolution of the world. Prompting tracked information is
done using a JSON prompt that triggers the transmission of the
tracked information through the data channel. The information
is sent every frame, and to compensate unordered arrival of the
data channel messages relative to the video track frames, a times-
tamp is added to the messages to provide ordering information.
As this timestamp is also present in the video track messages
(Schulzrinne et al.,, 2003), the messages can be ordered. In our
use-cases, we train through the use of an intermediate image
buffer. This allows the training to progress through the data set at
any speed, decoupled from the rate of image production. While
this is not practically an issue, it does alleviate some scheduling
and fetching delay concerns for supervised learning,

Segmentation and mapping are both techniques that require
pixel-level information. UE can deliver semantic segmentation
maps via multiple techniques, specifically a separate depth ren-
dering pass for segmentation maps. This way, objects can be as-
signed an ID that will be rendered to ground truth by Synavi-
sUE. Mapping on the other hand, is largely related to mapping
properties onto the scene, on the geometry level or on popula-
tion level. Plant surfaces can contain values mapped onto colours
much like in standard visualization pipelines. In Synavis, these
additional information carriers are then marked as visible only
to the information camera. Alternatively, the information can also
be mapped on patches of the image rather than the actual plant
geometry. This way of generating ground truth is also possible
remotely within Python.

Opverall, Synavis offers direct callbacks for frame reception
or alternatively, rerouting into decoding frameworks, such as
GStreamer, which is commonly used for remote video platforms
(Nimmi et al., 2014; Ahmadi et al., 2016). The base implemen-
tation to couple Synavis to a DL framework is implemented as a
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buffering of images, such that the reception and decoding does
not limit throughput in the training framework. This handling,
however, is implemented within the DL framework and while
Synavis offers a template on how to handle this, there are many
hyperparameters that limit generalization capacity of any single
implementation, such as output resolution, or whether images
or a video stream is needed. Image augmentations that are be-
ing considered best practice (Kuznichov et al., 2019) should still
be used, albeit as a precursor to fetching the next image as op-
posed to an operation on the data set. In this way, the actual
image is drawn from a selection of equally likely possibilities
I € {I, 17, (—«, y)x’ya, (x, —y)x’ya, } This augmentation
should be random depending on rank, such that the individ-
ual instance will not usually receive the same image during
training.

3. RESULTS

The creation of synthetic data for model training is useful be-
cause it is scalable (Scharr et al,, 2016; Qiu et al., 2017). The
strongest advantage, even surpassing any potential synthetic-to-
real data gap, as exemplified by Zhang et al. (2020), is the ability
to generate varying data of different visual properties, while re-
taining exact information on training labels. A non-exhaustive
list of randomization options can be found in the Appendix A,
where remarks are included on how and when to introduce
stochasticity to virtual scenes.

We generally recommend making as much use of stochasticity
as possible. A strong reason for this is the fact that previous inves-
tigations into learning behaviour of DL models found that more
general pre-training greatly improves later out-of-distribution
performance (Jitsev, 2021).

We note that for entirely custom scenes, UE provides a full-
featured 3D editor as well as integration of common architectural
data types, such as computer-aided design (CAD) drawings. Our
framework, furthermore, targets runtime-creation of scenes. Ini-
tializing and coupling Synavis to UE, or its respective Synavi-
sUE plugin, the data channel connection provided is capable of
handling operations such as spawning and scene manipulation.
SynavisUE allows a combination of pre-made assets and scenes
with runtime generation of objects, and anything on the scale of
purely one or the other. Steering of the scene is done using the
Python bindings of Synavis, which allows for the direct interac-
tion of the DL framework with the virtual scene, including the
training of agents using reinforcement learning.

3.1. Setting up data generation for scalable use cases

Important aspects of the rendering should be changeable. It
is important to note that in a lot of cases, such as UnrealPer-
son (Zhang et al.,2020), synthetic-to-real transfer learning yields
better results than simple application of a synthetically trained
model onto real-world data. As such, we setup HPC-targeted
workflows and highlight how the different aspects of the scene
can be changed to target scalability rather than exact replication.
UE uses a game loop that constantly produces new images as part
of the rendering.

Through the reflection system, any registered parameter and
function can be accessed. Parameters can be changed, and
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Synavis can spawn geometries as well as textures. Synavis was
further designed to make educated guesses as to the properties
of objects, so that scene setup is fast while retaining versatility.

Users should change positions, materials, geometries if appli-
cable as well as the camera properties, as this further introduces
data diversity. More possibilities and descriptions can be seen in
Appendix A.

3.2. Pipeline performance on the JUWELS Booster

In our measurements, we focused on the performance of
the individual pipeline components that contribute to the to-
tal performance. As such, we measured the field-filling capacity
of CPlantBox, meaning the timing of the generation of enough
plants to realistically fill a plant field in Table 1.

Furthermore, we measured the performance of Synavis for
different message passes. We measured the performance of Un-
real Engine in dealing with the rendering of a large-scale plant
field, as is also shown below in Section 3.3. The results of the
frame time measurements can be seen in Fig. 4.

Queries for objects or properties are delegated to either the re-
flection system or the object management system. Many modern
game engines run such a system under-the-hood, and specifically
in the case of UE, this allows for a functionality extension that is
otherwise not possible.

An important factor of scalability is making use of the net-
work topology, namely using the fastest network available on
the supercomputer. This means that all services have registered
their expected communication via the InfiniBand network inter-
face (Pentakalos, 2002). We refer to literature (Krause, 2019;
Alvarez, 2021; Kesselheim et al., 2021) for an in-depth overview
of the supercomputing system that we are using. One the Jiilich
Wizard for European Leadership Science (JUWELS), one clus-
ter compute node has two Intel Xeon Platinum 8168 CPUs.
Booster compute nodes additionally have four NVIDIA V100
GPUs. Furthermore, the JUWELS supercomputer has, in ad-
dition to its Ethernet network, an InfiniBand high-performing
high-throughput network that is entirely unrestricted. The sig-
nalling server included in the Synavis framework also contains
methods of automatically detecting and using the InfiniBand
network. Overhead is introduced by the layers of application
management. These layers are the PixelStreaming plugin it-
self, the transport layer using WebRTC, and also the mes-
sage passing management by Synavis and its handling on the
Python side. This amounts to an average of 0.1 s per message
(0 =7.79E—05,n = 1000). The low standard deviation shows
that the main delays are in fact the traversal of the communica-
tion layers. This average is also a total of diverse messages, but the
individual categories are not very different, such as for a simple
query in ~ N(0.1003,8.771E—05,n = 250) seconds in con-
trast to transmitting geometry in ~ N(0.1004, 8.01E—05,n =
250) s.

For complex scenes and geometries, it is also important to un-
derstand the underlying processes that happen within UE during
scene generation. To showcase UE performance on JUWELS,
we ran a measurement of the complete engine tracing (Unreal
Insights Tracing) on the JUWELS booster module. The setup for
this tracing is simple and can be seen in the listing in Appendix B.
The timings of certain UE processes can be seen in Table 2.
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Table 1. Timing of CPlantBox generation of plant structures. For this experiment, the plant parameters from Section 3.3 were used. The
visualizations were taken into account for the stem and leaf part, as for the field scene, the roots are not visible. Note that these measurement
were done using a descriptive callibration of CPlantBox for experimental measurements and thus only capture the structure and morphology
of a maize plant as observed in the laboratory. Coupled simulations will take longer. CPlantBox simulations were run on 4 CPU nodes with 192
MPI instances total (48 cores each). Timings were wallclock timings before simulation run until after geometrization was completed.

Task Simulation of one plant Parallel total Num cores
1 M plants/7 days 0.01Ssu = 0.005 121.40's 192
1 M plants/14 days 0.067 s u = 2.6E—4 353.34s 192
1 M plants/28 days 0.1s u=3E—4 535.44s 192
I
:0.0lms
F————{::]——*OGD@D O @O O o©o

1071

Time (ms)

Figure 4. Performance measurement on field scene in Unreal Engine, see Fig. 6. This measurement was done on the JUWELS Booster with
about 340 K plants and a total of 80 M triangles. The average frametime is measured for each call of the field drone’s update method. There are
spikes in the framerate for initialization and geometry loading. The maximum frame time is 0.4 s.

Table 2. Timing statistics of UE runtime on a JUWELS Booster node, total time of experiment was 6 min, and measurements were taken per
frame. This table shows the most significant timings that were relevant to the game performance. Lumen Screen Probes are used for dynamic
shadowing and global illumination, whereas the scene captures are separate full render passes. Timings were taken using Unreal Insights, an

application shipped with Unreal Engine.

Task

Average time per call (s) Total seconds

Time until rendered image is encoded to video
Rendering of the synthetic data onto the image
Raytracing steps for the image composition
Cumulated two-sided rendering of the image
Full run of the application loop

0.0366 19.3
0.006 54.3
0.00S 70
0.018 163
0.052 360

The configuration of this test can be seen Appendix B. UE
performs on the JUWELS cluster using the installed compat-
ible graphics interfaces and NVIDIA drivers. The program is
packaged in Windows and only uploaded to the cluster. Alter-
natively, UE packages can also be generated within the cluster
environment, using the shared memory as build directory.

For larger fields, plant generation might be an issue. We
measured how long the FSPM CPlantBox, callibrated on lab-
experiment grown plants, needs to generate one million indi-
vidual geometries. This includes the loading of the parameters
and full FSPM simulation, which also creates a single realization
of the stochastic parameter set, as well as our geometry genera-
tion module. The measurements can be seen in Table 1 and were
performed on the JUWELS CPU module.

3.3. Synavis for augmentation of a Rhizotron experiment

To validate the Synavis framework and showcase that it
correctly replicates experimental (Data Source: Repository of
CPlantBox) data, we first produced a virtual replica of a rhizotron
experiment seen in Fig. 5 and then scaled the CPlantBox model

up to field scale in Fig. 6. There is a strong bottleneck in data ac-
quisition for rhizotron experiments as the effort to produce data
is very high: Rhizotrons need to be filled, seeded and stored dur-
ing the measurements and most of the processes must still be
done manually. This causes a large overhead for the data acqui-
sition that is not comparable to field data, as field data can be
seeded in bulk and the restrictions on how to grow the plants
are less limiting. To repeat a rhizotron experiment many times,
either a lot of resources are needed to run the experiments in
parallel, or an long time is needed for the back-to-back repeti-
tions of the individual experiments. Moreover, it is necessary to
achieve the proper environmental conditions for each experme-
ntal run. Therefore, often only a very limited number of shoot
and root images can be obtained from rhizotron experiments.
Since it is of huge interest to have data of shoot and root from
the same plant, a precise segmentation of all organs is required.
Consequently, labelled image data from rhizotron experiments
are both needed and scarce. The scarcity of the data makes train-
ing a segmentation network based on this kind of data very hard.
Assuch, itis necessary to implement methods that make optimal
use of rhizotron images. To approach these challenges, we design
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Figure 5. Overview of experiment setup. For this setup, we chose to model the soil within UE by making use of the modelling toolkit. From the
material properties, we can change this dynamically similar to how the plant is positioned (middle). Synavis allows us to change properties of
the plant as well as what measurements we make, whether pixel-based (right) or quantitative, as presented here by examples of leaf instances,

root segmentationand depth mask.

avirtual rhizotron experiment using the FSPM CPlantBox, cou-
pled via Synavis to the UE. In the course of this section, we will
highlight how the setup works, how data are produced, how to
fetch the data and furthermore, present a variety of test scenarios
to use for training. The experiment setup for this example is pub-
licly available and we encourage the tuning and customization of
all content we produce.

3.4. Setting up CPlantBox for the laboratory scenario

The rhizotron used as baseline has an interior measurement of
(20 X 60 X 2)cminw X h X d aswell as a distance of 138 cm
to the camera. In the UE scene, for the sake of generating syn-
thetic data, some of these measurements might be varied. While
the orientation of the camera to the rhizotron matters, as it, of
course, must be directed at the object, the measurements are not
impactful and, in fact, should be changed for the training. The
base setup can be seen in Fig. 5 (left).

However, root growth must happen within the constraints of
the rhizotron, which can be done using signed distance functions
to limit root growth (Zhou et al,, 2020). This restriction helps
with the visualization in this instance, but does not detract from
the stochasticity of the simulation. The seed position of the plant
is put on top of the rhizotron box, and the simulation time is 25
days in steps of 0.5 days.

3.5. Integrating the geometry into UE

Simulation of the CPlantBox plants is done sequentially: in-
dividual plant geometries are inserted into UE uniquely and
regularly to exchange the data. This is shown in Fig. S in the
middle, where a plant is rendered within the otherwise empty
rhizotron. For this implementation, we automatically add cer-
tain textures to the geometry, by using a container class in UE
that can separately receive a stem, leaf, and root geometry group.

This separation of the organ parts allows the use of different ma-
terials for the individual organs. This is not strictly necessary, but
it is much easier to separate the individual components both on
the Python endpoint as well as in UE.

Geometry generation is handled in the same script as the cou-
pling, as the generation is done in regular intervals. This is a
hyperparameter for training: more regular exchanges of the ge-
ometry might help in some circumstances. For feature extrac-
tion tasks where the orientation of the shoot to the root does
not matter, we can further randomize shoot orientation for more
images.

We note that the segmentation is done by using an alternate
depth rendering pass within UE, which makes sure that we have
a separation of the roots from the rest. However, it is also impor-
tant to only show the root system that is actually visible, which
is being taken into account during soil rendering. In Fig. 5, we
highlight now this part of the rendering pipeline works by con-
trasting the root rendering. There is a possibility of estimating the
whole biomass or leaf area from a drone perspective, but there is
a strong distinction between the tasks estimate total leaf area and
segment and calculate visible leaf area, which depends on the label
sets and the measurements of the accompanying real-world data,

if applicable.

3.6. Randomizing the laboratory scene

Scene randomization in laboratory settings is challenging, but
not impossible. A lot of robustness also stems from changing
camera properties. Lens properties, such as shutter speed, ISO
factor and aperture, can be configured in UE through Synavis to
allow for some more physically based randomization. UE also
offers features such as film grain to allow for more augmenta-
tion. This is a filter that would introduce noise that does not
correspond to what the information rendering is seeing, similar
to depth of field. Distance measures through UE can be altered
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but will be exact by default. Users might choose to artificially
decrease data quality through selection or filtering algorithms,
as LiDAR data can be imperfect as well (Zhao et al., 2022). At
this point, image-based augmentation usually done on image
datasets should still be employed, even on streams. We calibrated
leaf surface colours in the direct comparison using average colour
measurements.

3.7. 'Training concepts

In this framework, the active camera in the scene continuously
emits an encoded video stream, much like a webcam would. The
other data transport method is the data channel—a direct mes-
saging pathway with low latency and minimal overhead. The data
channel is also the minimum required communication channel
to setup a WebRTC connection.

Fig. 5 on the top-right shows an example of leaf instance seg-
mentation that was handled via the data camera. Note that this is
not necessary if the training algorithm also has access to the plant
data, from CPlantBox, along with its orientation and position on
the map. There, leaf instances on regions of the image can also be
inferred directly from the plant data. However, ultimately it de-
pends on how the real-world data are labelled, and the synthetic
data should be labeled the same. In this case, pixel labels can be
acquired much faster than any other type.

3.8. Upscaling the simulation to field level

Large-scale examples of the Synavis framework are possible,
but require a lot of resources. In our case, the best way to uti-
lize the scalable aspects of the framework is to make use of the
modular supercomputing architecture. We present a large-scale
example of synthetic field data generation using Synavis and the
FSPM CPlantBox. The setup is shown in Fig. 6. For the setup
of the field, usually a boundary definition is sufficient. The addi-
tion of geometries for the soil can be done premeditated in the
editor or at runtime through Synavis. When generating plants us-
ing CPlantBox dynamically, we refer to the measurements of the
associated processes in Section 3.2.

Randomization between compute nodes is done using JSON
descriptions that are generated based on local rank, as exempli-
fied in Fig. 6. This can be included in the runscript, or explicitly
in the python environment. Generally, it is possible to have both
varying (SynavisUE Lighting Management or Dynamic Volu-
mentric Sky Lighting Management) as well as static-property
scenes for comparison between compute nodes of model robust-
ness. This is especially shown in Fig. 6.

The setup is aimed at producing high stochastic variability
while allowing for cross-comparison between the individual data
extractions. As such, we utilize a large field that is centrally pop-
ulated by the FSPM with plant geometries. UE uses primarily
GPU resources, but will also have a lot of CPU work to do, as
the virtual world has to be simulated and UE needs to respond
to inputs through the Synavis framework. As such, UE can run
either on the booster module or the visualization module of a
supercomputer. This is only true for booster modules that allow
rendering, such as JUWELS. Training frameworks and extrac-
tion tasks are best run on the booster module and connected to
UE via a common network interface or through tunnelling. The

CPlantBox generation is best run on pure CPU nodes, as the gen-
eration of plant models can be run in parallel or, in the case of
coupled simulations, would use too many resources to be used
together with UE on the same node. In our approach, we do not
compute the CPlantBox geometries locally on the UE node. One
bottleneck, however, is that the spawning of geometries occurs
in batches for each frame, resulting in a warm-up time until the
scene is loaded and present.

4. DISCUSSION

We developed a novel framework for a direct and scalable cou-
pling of an FSPM visualization with UE. This framework, Synavis
and its plugins SynavisUE, are primarily designed to allow for a
loose coupling of data generation with synthetic data training on
HPC systems. The framework is designed to allow the transport
of FSPMs to UE, while also allowing easy access to objects in the
scene as well as their properties. Synavis automatically conveys
information from UE and is extremely suitable for people who
develop their own applications in UE, especially building on top
of existing projects.

4.1. Analysis of the synthetic data

Synthetic data must, most of all, convey the information and
retain the measurable properties that the experimental data also
exhibits. To analyse the performance of SynavisUE in the exam-
ple use-case, the rhizotron experiment, we ran the data through
the extraction pipeline that is also used for the model calibration
on rhizotron experiments (Bauer et al.,, 2023). Using the skele-
tonization and subsequent topological analysis, we extracted leaf
blade length measures from UE as well as the experiment, as seen
in Fig. 7.

‘We want to highlight that, in general, it is more beneficial to
create diversity rather than exact replicas. Nonetheless, the syn-
thetic data should be targeted at the use-case. Scalability can be
targeted while training problems that are closely related to the
target measurements. We see in Fig. 7 that the synthetic mea-
surements are lower, in general, with a higher standard devia-
tion. Lower measurements might be caused by the flatness of the
leafs. The comparison of the synthetically generated data and the
experimental data in Fig. 7 right shows that relevant plant mea-
sures are replicated and are not distorted by the synthetic data
generation pipeline.

4.2. Comparison to other approaches

For comparison, we highlight the use of Unreal CV (Qiu et al.,,
2017) in science. An example of this is the data set generation for
UnrealStereo by Zhang ef al. (2018). Conceptually, Unreal CV
is not dissimilar to SynavisUE, with the distinction that Synavi-
sUE is based on PixelStreaming and loose coupling rather than a
direct interaction. Furthermore, we put more emphasis on real-
time data generation than writing data sets. The loose coupling
on our end also enables us to separate technologies and make use
of a system where interaction of the DL models with the scene
mimic a robotics environment with all its latencies, as the world
continues to simulate and does not wait for input. Moreover, we
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Figure 6. (A) Overview of the field data generation pipeline. We also show scene property change can lead to significant changes in acquired
data. The setup for a field visualization with a cluster is used to assess robustness of models against influences of the image. In this example, the
field is not randomized to allow for a comparable result in all compute nodes. Influences on the image can be numerous, and here we primarily
showcase the change of weather that impacts image rendering. For more direct management, the SynavisUE plugin also contains methods of
quickly altering lighting effects. Since all assets have UE accessible properties, the JSON description for the rank automatically manages the
condition. This can be done preemptively using a JSON file, or through Synavis dynamically. The prime advantage of using the pipeline is
versatility, as measurements as well as data labels can be generated very easily. The field scene is especially impactful for a number of aspects,
such as conditional instance segmentation by using prior knowledge on which parameter set was used for the plant generation. Rule for
calculating the relative leaf area is extracting by channel and then by threshold.

expand on the concept of synthetic data generation and present
awhole-plant rendering approach together with data generation
in UE as well as a coupling to training algorithms.

We especially highlight the embedding of Synavis into a mod-
ular supercomputing system (Suarez et al.,, 2019). BothJUWELS
(Alvarez, 2021; Kesselheim et al., 2021; Krause, 2019) and JU-
RECA supercomputers (Krause and Thérnig, 2018; Thérnig,
2021) are modular supercomputers. Newer systems, such as
LUM], further developed this concept to focus their accelerator

systems on general compute-based programming paradigms
(Markomanolis et al., 2022). For these systems, it is more op-
timal to separate the visualization and training component onto
different modules, which for modern tensor core GPUs is even
necessary as they do not provide rendering infrastructure. We
designed Synavis with this concept in mind.

Moreover, we would like to make the important distinction
between the generation of a virtual environment and algorithms
such as by Gao et al. (2023). These approaches make the images
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Figure 7. Comparison of parameter extraction pipeline between synthetic and real-world data. Real-world data, a total of 23 plant images at
this growth stage and angle, were acquired in controlled rhizotron experiments. Bottom: Analyzed skeletons of shoot organs, starting with the
pseudo-stem. Right: Comparison of blade lengths in mm, compared across samples sorted by longest first. The error bars indicate the standard

deviation on each axis.

more realistic and the training more robust, but ultimately flatten
the virtually generated environment to images by augmenting
them unpredictably. These approaches have also been reported
to be unable to retain the geometric qualities of the virtual scene
as described as CycleGAN failure cases by Hartley et al. (2021)
and Zhu et al. (2017). SynavisUE is a framework that lets train-
ing models interact with the virtual scene by steering and ma-
nipulation. Furthermore, our scalability setup utilizes the fact
that manipulating settings in the scene creates augmented images
whose main advantage is the fact that one can interpolate set-
tings between a success and a failure case while always retaining
a coherent and well-annotated image.

4.3. Synavis: possibilities and limitations

Synthetic data are not the final training step, if fine-tuning has
to be performed. We believe that the main strength in synthetic
data training is its scalability rather than exactness.

Transfer learning approaches such as ImageNet (Deng et al.,
2009) based encoders have exhibited good performance in many
use-cases, as analysed by Huh et al. (2016) and Morid et al.
(2021). The reason behind this is that a lot of tasks in computer
vision are re-usable and generalize well. This concerns individual
feature maps as well as activation weights that are transferable.
One example of this is presented by Chen et al. (2020), who anal-
yse transfer learning performance in image-based plant disease
detection.

Synavis and SynavisUE are most comfortably usable between
a pre-trained network and the final tuning. Synthetic data pro-
vide a lot of variety when given proper stochasticity commands,
and its use in training DL models is potentially very impactful.
Synavis is created with strong data augmentation in mind, as
scene properties can be changed at runtime, changing the visual
properties of the data.

WebRTC is a video real-time communication experience
standard. For our user-less framework, this means that the video

information might not be in lossless format. On HPC machines,
we usually circumvent this by scaling up the image size and
downsample on the DL side. Formats like H264 (ISO/IEC
14496-10:2022, 2022 ) are very light in network usage, as shown
by Van der Auwera et al. (2008), but might impact the cus-
tomizability of the framework because the numbers of encoding
sessions are limited, or by the aspect ratio of supported image
formats.

4.4. Outlook

In this article, we showed the promise and practical use of
our coupling framework, together with a visualization of the
FSPM CPlantBox. Visualization of more morphological features
is needed in the future to push the limits of the visualization. We
also aim for calibration measurements such as light metring in
comparison to UE lights, as currently we can make only relative
but not absolute statements about how plants would behave in
the simulated scenes.

WebRTC is inherently interactive, which means that data are
sent both ways (Jennings ef al,, 2021). We will build on this
concept further by allowing the steering of the data generation
during training.

There are possibilities in advancing algorithm robustness that
are both depended on scene variety as well as training strategies.
We will explore both those options in the near future.

Incorporation of different data sources is also possible within
Synavis, but more fine-tuning should be done to arrive at a
successful scene visualization.

5. CONTRIBUTIONS BY THE AUTHORS

D.H. has implemented the FSPM visualization, the coupling
framework, the Unreal Engine implementation and authored
this paper primarily. F.B. has contributed to the scientific work-
flow, the calibration of the FSPM model to plant data, the
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implementation of the analysis pipeline used in this paper and
contributed input about field measurements. He has contributed
to the text of this paper. A.S. supervises the CPlantBox FSPM
development, has contributed to the text of this paper, and has
given input on scientific workflows. M.G. has implemented large
parts of features and analysis pipelines used within the FSPM
used in this paper. She has implemented calibration workflows
for the FSPM and contributed scientific counsel to this paper.
She has contributed to the text of this paper. JH.G. has con-
tributed to the text of this paper, implemented functions and
methodology used within the HPC environment, is responsi-
ble for the implementation of new visualization packages and
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APPENDICES

A. VARIATION OF VIRTUAL SCENES

Table Al. Selection of scene variation possibilities to improve larger-scale data augmentation using Unreal Engine and Synavis. The list is not
exhaustive, but should give a good impression that stochastic augmentation should be applied wherever possible.

Object Property Description

Sun Position 2DoF ¢,n € [0, ]

Sun Strength [Lumen]

Sun Ambient light Intensity [Lumen]

Field Plant position Varying position 2 DoF, dependent on scene and placing, interior experiment
scenes have less potential variability here

Field Plant density Handled via position, this would be a good way of targeting different DL models
that also react sensitively towards changes in complexity

Plant Plant age determined by parametrization, usually within T € [0, 30]

Plant Plant leaf bending Partly visual feature—leaf bending is influenced by environmental conditions.
When rendering a wet scene, leaf bending should be increased. For accuracy, it
should be determined how large the impact of additional weight is on the leaf
structure. If it can be assured that the leaf bending is not taken into account to
solve the target problem, this can be estimated.

Room Room lights and diffusion For digitized experiments, lights should be calibrated to actual brightness values
as stated by the bulb manufacturer.

Room Room wall material RGB texture X X Y X R X B X G, Specularity, Roughness

Camera Camera lens properties A collection of scalars describing the cameras lense and depth-of-field effects in
UE

Camera Camera position Camera paths throughout the scene might further reveal critical insight into
algorithm performance in specific and extraordinary circumstances.

Post processing Colour and screen effects Film grain, movement effects, and more effects can be introduced using Post
Process Materials. Not that encoding effects would be captures using the style of
encoding and if finetuning towards those effects should be done, the reference
should produce effects that might be affected by the encoding the strongest.

B. UNREAL ENGINE CLUSTER CONFIGURATION

1 m = syn.MediaReceiver ()

2 ...

3 tracefile = "trace_" + str(int(time.time())) + ".utrace"

4 m.SendJSON({"type":"console", "command":"trace.File "+ tracefilel})

S start_time = time.time ()

6 runtime = 360

7 while time.time() < start_time + runtime

8 time.sleep(0.05)

9 pos = np.random.rand(3) * 100 + np.array([0, 0, 01)

10 size = np.random.rand() * 0.9 + 0.1

11 v, i, n = cube_geometry(size, pos)

12 v = v.flatten(); i = i.flatten(); n = n.flatten()

13 m.SendGeometry(v, i, "cube", n, None, None, True)

14 m.SendJSON({"type":"console", "command":"trace.stop"})

15 m.SendJSON({"type":"console", "command":"quit"})

Listing B.1. Setup for the scalability test performed with an increasing number of cube geometries within the scene. These were randomly

spawned through Synavis.
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Table B1. Configuration for unreal engine runtime on JUWELS Booster.
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Property Value Info

Encoder H264 GPU-Encoding

Resolution 3860 X 2160 4k UHD

Keyframe interval 1 Triggers transmission of the full image every second

Scene capture virtual shadow map size 4096 This allows the scene capture components, the Info-
Cam and SceneCam of the Synavis Drone, to have larger
shadow maps than in a classical setting (default $12)

Render offscreen true Needed for cluster headless mode

Max GPU count 4 Allows unreal to make use of NVLink

PixelStreaming degradation preference Maintain qualitry Prevents UE from subsampling the encoding

C. MEDIA RECEIVER IN SYNAVIS

1 import Synavis as sv

2

3 media = sv.MediaReceiver ()

4 media.Initialize()

S media.SetConfig({"SignallingIP":"625.174.856.321", \
[ "SignallingPort": 8080})

7 media.SetTakeFirstStep(False)

8 media.StartSignalling()

9 media.SetMessageCallback( \

10 lambda message : message_buffer.append(message) \
1)

12

13 while media.GetState() != sv.EConnectionState.CONNECTED
14 time.sleep(0.1)

Listing C.1. Simple coupling with media receiver.

D. OVERVIEW OF PIPELINE COMPONENTS

Table D1. Short overview of all pipeline component mentioned in this article, their function, and where to find out more and/or download

them.

Pipeline component  Function

Futher information

CPlantBox )
« Generation of plant model
« Provision of geometry
Unreal Engi
nreal Engine « Visualization of the plant in a virtual scene
« Scene variation
« Streaming of images
Synavis UE . . . L .
« Reception and integration with PixelStreaming
« Dynamic command handling
« Integration with UE system
Synavis .
« Coupling between frameworks/software
« Connection handling and signalling server
« JSON format parsing and python binding
OpenCV/Pytorch

« Reception of images
« Random image augmentation
« Data analysis

see Giraud et al. (2023), https:// github.com/Plant-Root-
Soil-Interactions-Modelling/CPlantBox

www.unrealengine.com

gh/dhelmrich/synavisue

gh/dhelmrich/synavis

pytorch.org, opencv.org
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https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox
https://github.com/Plant-Root-Soil-Interactions-Modelling/CPlantBox
https://www.unrealengine.com/en-US
https://github.com/dhelmrich/SynavisUE
https://github.com/dhelmrich/Synavis
https://pytorch.org/
https://opencv.org/
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E. GEOMETRIZATION

Generally, for a complete geometry as seen in Fig. E1, we compute vertices V C R?, vertex-assigned normal vectors N : V 3 x
n(x) € R3, triangles (with an ordered set V): T C VX V' X V, as well as texture coordinates A : V 3 x > a(x) € R? and tangents.
For a full introduction to geometry modelling, we refer to Hughes et al. (2014).

We extended CPlantBox with a geometrization pipeline based on its graph formalism and common assumptions. In this section, we
describe how the plant data are used to create the plant morphology. Moreover, some characteristics of the plant morphology are not
simulated by CPlantBox. Default geometrization schemes have, therefore, been setup while keeping the resulting geometry mainly
sensitive to the CPlantBox outputs, as seen in Fig. 1 and further in Fig. E1.

Stem geometrization is based on generating a continuous space of ordered circles in a 3D-space that is connected by triang]es.
Their orientation has to be inferred from the graph structure, which means that their rotation Quaternion q*~! € H is defined by
the angle between two consecutive segments i — 1, i on the organ o. The rotation operator is defined as Rot(q, x) 1= q-(0,x) - q_l
where g € Hand x € R>. To prevent ambiguity of the local geometry, we generate the circle in local space P;" and transfer it to
world space by using the new direction and the axis of the previous segment. The transformation from local to world space can be
described as

P;o,’i) — 40D . Rot (Pio,i)’ q(o,i,i—l)) + o) (E1)

where Py, and Py are the positions in world and local space, respectively, d is the local diameter, g is the world orientation quater-
nion and Cis the position of the segment i on organ 0. We compute a quaternion by the vector of two subsequent points i and i + 1 as
well as the last coordinate system vectors u (forward), v (right) and w (up). When using splines, that is, smooth curves in 3D space, to
interpolate points, we can also compute rotation using the curve derivative. Within our rotation space H, we can use spherical interpo-
lation by applying 44 (g0, 41, @) 1= q;-(q] ' -q,)* witha € [0, 1] being the interpolation factor, which we use for angular smoothing.
Triangles are computed by connecting subsequent pairs of vertices with their predecessors. To update the coordinate system with a
new forward vector u®, we compute the new up vector w® = 30D x 4D and the new right vector v = 0 x 4O,

For leaf geometrization, we interpolate the graph structure of the underlying FSPM by using a series of splines. For the leaf struc-
ture specifically, we employ two distinct techniques to describe its surface: Linear and radial description. A linear leaf description is
a geometrization that assigned each point p; on the midline of the leaf a distance to the edge of the leaf blade in each direction. In
contrast, radial geometrization is a kind of template that describes a shape by the distances d; at specific angles ¢; from a centre point
of the leaf, such as the end of the petiole. For the leaf structure, we are rendering the leaf as two-sided flat surface. This means that all
leaf variants are rendered into a series of triangles spanning the top and bottom part of the plant. Within UE, we can also simulate this
by not culling the backface triangles of the geometry, and instead rendering the backfaces like frontfaces.

Additional structural features of the plant geometry can be inferred from texture as well: UE can render plants with additional
world position offset, which changes where the vertices are rendered in the scene, regarding a displacement vector given in the ma-
terial shader. This is especially useful when simulating wind, especially in conjunction with our texture warping technique as we can
prescribe forces at specific positions relative to the leaf surface. Masked leafs might behave somewhat unpredictably with this addition,
as it is not always clear where the first leaf point connects to the stem.

Normal

Tangent

Cotangent

Vertex

Triangle

Figure E1. Leaf-level geometry, applied texture onto texture coordinate map, as well as local coordinate spaces. Texture image axes correspond
to tangent directions. A local coordinate system is essential for a robust geometrization of the leaf; otherwise instabilities cause significant
visual artifacts. Local coordinates are not always guaranteed to be right-handed but uniform across the leaf surface. The surface normal is also
the local z-axis, while the surface tangent in the direction of the leaf is the local x axis while the cotangent (to the right) is the local y axis. By
default, we heavily punish the z component of the cotangent vector while updating with each new CPlantBox point information.
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