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ABSTRACT
In this paper, we report the first discovery of Arabidopsis thaliana in Iceland. In May 2015, the plants were 
located growing on warm geothermal soil around the hot spring Deildartunguhver in Reykholt, West Iceland. 
Flower buds and leaves were collected and used for subsequent cytogenetic analyses and DNA sequencing. 
Whole plant specimens were deposited at the Icelandic AMNH herbarium and were assigned accession number 
VA21379. The accession was found to be diploid with 2n=2x=10, as expected for this species. At meiosis I 
(diakinesis) it formed five normal bivalents. Ribosomal FISH mapping revealed two pairs of 5S rDNA loci 
and two pairs of NORs. Fine-scale chromosome painting using BAC clones specific for chromosomes At1 and 
At4 confirmed the standard structure of these chromosomes. Furthermore, the painting revealed an absence of 
the 1.17-Mb paracentric inversion on the At4 short arm in the Icelandic accession, in contrast to the inversion-
bearing A. thaliana accessions more prevalent in North America. The sequencing of multiplexed whole-genome 
libraries identified the Swedish accession Ham-1 as the closest relative of the Icelandic accession, with, 
however, a markedly low SNPmatch score. We conclude that although the Icelandic accession appears to be 
more genetically related to populations from Scandinavia than to other European accessions, it did not originate 
from any of the populations represented in the global collection of the 1001 Genomes accessions of A. thaliana.

Keywords: Brassicaceae; chromosome painting; comparative cytogenomics; geothermal soil; meiosis; 
ribosomal FISH; paracentric inversion; SNPmatch

YFIRLIT
Stofn gæsamatar (Arabidopsis thaliana) frá Íslandi greindur með aðferðum frumuerfðafræði og raðgreiningu 
erfðamengis. 
Hér verður greint frá fyrsta fundi gæsamatar  (Arabidopsis thaliana) á Íslandi. Tegundin fannst í maí 2015 
á jarðhitasvæði við Deildartunguhver. Blómknöppum og laufblöðum var safnað fyrir litningagreiningu og 
raðgreiningu erfðamengis. Einnig var eintökum safnað til þurrkunar og þeim síðan komið fyrir í plöntusafni 
AMNH þar sem þau fengu númerið VA21379. Eins og fyrri rannsóknir gæsamatar hafa leitt í ljós reyndust 
sýnin vera tvílitna (2n=2x=10) og við greiningu á rýriskiptingu komu í ljós fimm eðlileg tvígilda litningapör. 
Þáttatenging flúrljómandi rDNA (FISH) þreifara á litningum í mítósu leiddi í ljós tvö 5S ríbósóm genapör og 
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tvö pör NOR svæða sem jafnframt eru dæmigerð fyrir arfgerð tegundarinnar. Nánari greining með notkun BAC-
FISH þreifara á litningunum At1 og At4 sýndi að uppbygging litninganna úr sýnunum frá Deildartungu væri 
eðlileg. Greiningin leiddi jafnframt í ljós vöntun á 1.17-Mb þráðhefta umhverfu á At4 litningi en þessi umhverfa 
er algeng meðal stofna gæsamatar í Norður-Ameríku. Raðgreining erfðamengis íslensku sýnanna leiddi í ljós 
mestan skyldleika við sýni frá Svíþjóð en þó með lágum skyldleikastuðli. Því er niðurstaða þessarar greiningar 
sú að þótt plöntur sem fundust á Íslandi séu skyldari stofnum frá Skandinavíu en stofnum annars staðar frá, hafa 
þær upphaflega ekki borist frá neinum af stofnum í þekktu safni 1001 erfðamengja gæsamatar víðsvegar að úr 
heiminum.

INTRODUCTION
Arabidopsis thaliana (L.) Heynh.  is an 
important model organism for studying plant 
genetics and for elucidating physiological, 
cellular and molecular processes of plant growth 
and development (Rédei 1975, Meyerowitz 
& Pruitt 1985, Koornneef & Meinke 2010). 
In laboratories, the species can easily be 
cultivated in a controlled environment. By far 
the most common ecotypes adopted for research 
purposes include Columbia (Col), from which 
the first A. thaliana genome was sequenced 
(The Arabidopsis Genome Initiative, 2000), 
Landsberg erecta (Ler), and to a lesser extent, 
Wassilewskija (Ws) and Cape Verde Islands 

(Cvi).
Since the emergence of A. thaliana forty 

years ago as a model organism for research in 
plant biology, numerous collections of natural 
accessions and inbred lines of A.  thaliana 
have been established. To date, a total of 1,135 
accessions from a worldwide hierarchical 
collection, representing both the native Eurasian 
and North African range, and recently colonized 
North American, have been sequenced or 
re-sequenced. The impressive dataset has 
revealed, for example, considerable genetic 
and phenotypic variation within species, post-
glacial evolutionary history and expansion 
of the species, and has provided insights into 

Figure 1. Arabidopsis thaliana plants growing on warm geothermal soil around the hot spring Deildartunguhver 
in Reykholt, West Iceland.
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the genetic basis of adaptation to different 
environments (The 1001 Genomes Consortium 
2016).

Arabidopsis thaliana is an annual herb, a 
member of the mustard family (Brassicaceae), 
with its native distribution range covering 
almost all of Europe to central Asia, and is now 
naturalized worldwide (Ball 1993, Al-Shehbaz 
& O’Kane 2002). The plant grows readily 
and often pioneers open or disturbed habitats, 
sandy soil, river banks, roadsides, rocky slopes, 
waste places, cultivated ground, meadows, and 
slightly alkaline flats, growing under shrubs and 
in open areas, from sea level to 3,400 m, under a 
broad range of climatic conditions (Al-Shehbaz 
& O’Kane 2002, Hoffmann 2002).

Iceland is not on any of the distribution 
maps of A. thaliana (e.g. Ball 1993, Al-Shehbaz 
& O’Kane 2002, NPGS 2016). Although 
Arabidopsis lyrata subsp. petraea (L.) O’Kane 
& Al-Shehbaz [Arabidopsis petraea (L.)] is 
common, A. thaliana is absent in the vascular 
flora of Iceland (Kristinsson 2008, Flora of  
Iceland 2016a). During our botanical 
excursion in May 2015, however, we found 
A. thaliana growing in Iceland (Figure 1). 
Numerous individual plants were found 
growing on a geothermal soil around the hot 
spring Deildartunguhver, Deildartunga region 
in Reykholt, West Iceland, at 64.6638° N/ 
21.4104°  W, about 30 ma.s.l. The site was 
revisited one month later to collect whole 
plant samples for herbarium preparation. The 
specimens from this discovery were deposited 
by the authors of this paper at the AMNH 
Herbarium of the Icelandic Institute of Natural 
History, Akureyri Division, and were collectively 
assigned accession number VA21379.

The objective of the present study was to 
confirm the species identity using molecular and 
cytogenetic approaches.

MATERIALS AND METHODS
Whole Arabidopsis thaliana plants were 
collected in the field, pressed and dried for 
preparation of herbarium specimens, and 
two were sent to the Gregor Mendel Institute 
in Vienna for sequencing. For chromosome 
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preparations, inflorescences with young flower 
buds were collected in fixative (3:1 ratio of 
ethanol 96% and glacial acetic acid) and kept 
cold until analysis. Seeds of the Icelandic 
accession will be made publically available to 
the scientific community via the Nottingham 
Arabidopsis Stock Centre (NASC).

Chromosome preparation and cytogenetic 
analysis
Mitotic and meiotic chromosome preparations 
were prepared as described in Mandáková & 
Lysak (2016a). Chromosome preparations were 
treated with 100 μg/ml RNase in 2× sodium 
saline citrate (SSC; 20× SSC: 3 M sodium 
chloride, 300 mM trisodium citrate, pH 7.0) for 
60 min and with 0.1 mg/ml pepsin in 0.01 M 
HCl at 37° C for 5 min; then post-fixed in 4% 
formaldehyde in 2× SSC for 10 min, washed 
in 2× SSC twice for 5 min, and dehydrated 
in an ethanol series (70%, 90%, and 100%, 2 
min each). A. thaliana BAC clone T15P10 
(AF167571) bearing 45S rRNA gene repeats 
was used for in situ localization of 45S rDNA, 
and A. thaliana clone pCT 4.2 (M65137), 
corresponding to a 500-bp 5S rRNA repeat, 
were used for localization of 5S rDNA loci. For 
painting of chromosome 1 (At1) and the upper 
arm of chromosome 4 (At4), chromosome-
specific BAC clones of A.  thaliana were used 
(Arabidopsis Biological Resource Center, 
Columbus, OH). All DNA probes were labelled 
with biotin-dUTP, digoxigenin-dUTP, or 
Cy3-dUTP by nick translation as described in 
Mandáková & Lysak (2016b). Selected labelled 
DNA probes were pooled together, ethanol 
precipitated, dissolved in a 20 µl mixture 
containing 50% formamide, 10% dextran 
sulphate and 2𝗑 SSC, and pipetted onto each of 
the microscopic slides. The slides were heated at 
80°C for 2 min and incubated at 37°C overnight. 
Hybridized probes were visualized either as 
the direct fluorescence of Cy3-dUTP (yellow) 
or through fluorescently-labelled antibodies 
against biotin-dUTP (red) and digoxigenin-
dUTP (green) as in Mandáková & Lysak 
(2016b). Chromosomes were counterstained 
with 4,6-diamidino-2-phenylindole (DAPI, 2 



32     ICELANDIC AGRICULTURAL SCIENCES

µg/ml) in Vectashield antifade. Fluorescence 
signals were visualized in a Zeiss Axioimager 
epifluorescence microscope and images 
with 1,360 x 1,024 pixels were captured 
using CoolCube1m camera (MetaSystems). 
Individual images were merged and processed 
using Photoshop CS software (Adobe Systems).

Multiplexed library preparation
DNA from two Icelandic plants was extracted 
by the NucleoMag Plant Kit (Macherey Nagel). 
Libraries were prepared as described in Baym 
et al. (2015). Briefly, 2.5 ng of DNA was 
fragmented and adapter-(tagmentation-based) 
ligated in a 2.5 µl reaction volume using the 
Illumina NexteraTM Kit. Libraries were amplified 
by Illumina TrueSeq Primers and VeraSeq High 
Fidelity DNA Polymerase (BiozymTC). Size 
selection and PCR clean-up was performed 
with Agencourt AMPure Beads (Beckman 
Coulter). Libraries were validated with a 
Fragment Analyzer™ Automated CE System 
(Advanced Analytical), pooled in equimolar 
concentration and spiked into 96x-multiplex 
flow cells. Libraries were then sequenced on 
the Illumina HiSeq™ 2000 Analyzer using the 
manufacturer’s standard cluster generation and 
sequencing protocols in 125 bp PE mode.

Sequencing analysis
We aligned the sequencing results to the 
TAIR 10 reference genome (The Arabidopsis 
Information Resource 2016) and called single 
nucleotide polymorphisms (SNPs) using GATK 
Haplotype Caller with suggested best practices. 
We filtered for biallelic SNPs and performed 
the genotyping using SNPmatch (Pisupati et 
al. 2017). Briefly, SNPmatch calculates a score 
(probability of match) with each accession 
present in the database (The 1001 Genomes 
Consortium 2016). We also performed this 
algorithm across 300 kb windows along the 
genome.

RESULTS AND DISCUSSION
Botanical identification, ecology and site 
description
Arabidopsis thaliana plants at Deildartunga 

were found in a patch approximately 4 m 
long and 2 m wide, where the highest density 
of plants was alongside and on a gravel path, 
up to about 50 plants per square metre. The 
botanical description of the Icelandic accession 
of Arabidopsis thaliana from Deildartunga 
(Figure 1, accession no. VA21379) corresponds 
correctly with the description in florae (e.g. 
Ball 1993, Flora of China 2016). A. thaliana is 
an erect annual (rarely biennial) plant, usually 
growing to 20-25 cm tall. Basal leaves form a 
rosette, where one to a few simple or branched 
flowering stems develop. The basal leaves are 
shortly petiolate, up to 4.5 cm long and 15 mm 
wide, have trichomes, and their margins are 
entire to dentate. Stem leaves are sessile, up to 
2.5 cm long and 10 mm wide, and their margins 
are usually entire. Petals are white and 2-3.5 mm 
long. Siliques are 5-20 mm long and glabrous.

Deildartunguhver is Europe’s most powerful 
hot spring, providing around 180 L/sec of 
97°C hot water. Most of the water used for 
central heating in the towns of Borgarnes and 
Akranes is taken from this hot spring (Náttúran 
2016). The geothermal area around this hot 
spring supports a relatively rich herbaceous 
vegetation that is typical of moist habitats such 
as bogs and marshes. In this hot spring area, 
mosses are the most prevalent component of 
the vegetation (Figure 1). According to the 
thorough survey commissioned by the Icelandic 
Institute of Natural History (Kristinsson et al. 
2007), mosses and bryophytes together formed 
50 – 84 % of the total vegetation, whereas 
the most common vascular plants included 
alpine marsh violet (Viola palustris L.), marsh 
pennywort (Hydrocotyle vulgaris L.) and 
autumn hawkbit (Leontodon autumnalis L.). 
The latter species was found more peripherally, 
in an open, somewhat disturbed habitat. Due to 
the geothermal activity and the occurrence of 
rare species, the area has been visited regularly 
and its flora investigated (e.g. Kristinsson et al. 
2007); however, no A. thaliana was ever found, 
not even in visits in 2012 and 2013 (Rannveig 
Thoroddsen pers. comm.). In late summer 2015, 
a visitor reported to the Icelandic Institute of 
Natural History the occurrence of A.  thaliana 
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at exactly the same location as we did (Pawel 
Wasowicz, pers. comm.). As A. thaliana is 
known to be successful at colonizing areas that 
have undergone human-mediated disturbance, it 
is suspected that the establishment of the species 
in this location is quite recent. The area is 
becoming increasingly more disturbed, a result 
of horticulture, experimental drilling for thermal 
water and the growing of lawn grass for access 
to the hot spring, essentially for tourism.

Geothermal soil is usually a few to several 
degrees warmer than the ground in nearby 
areas, due to radiated heating from geothermal 
water channels that are present in the bedrock. 
Moderate soil warming promotes plant growth 
through an active root system and a healthy 
underground network of microorganisms, but 
too much will have negative effects, as shown, 
for example, in the study of soil warming at 
Reykir in Ölfus, South Iceland (O’Gorman et 
al. 2014). It is therefore expected that many 
plants growing on geothermal soil are either 
not able to grow in colder environments or 
they are species particularly adapted to a 
geothermal habitat. Thermophilic species, such 
as scabiosa (Succica pratensis Moench), require 
a higher average summer temperature with a 
long growing season, i.e., the growth begins 
earlier in the spring and lasts longer into the 
autumn (Kristinsson 2015). Some thermophilic 
species grow exclusively on geothermal soil, 
for example, marsh pennywort (Hydrocotyle 
vulgaris), found also at Deildartunga. This type 
of species depends more on ground than on air 
temperature. In most natural habitats, A. thaliana 
is a winter annual. Its seeds germinate in the 
autumn and the young plants survive the winter. 
Floral meristems emerge in the spring and only 
the seeds survive the summer months (Baskin 
& Baskin 1972). The growth of A. thaliana in 
Iceland may be due to the winter survival of 
seedlings in the warm, geothermal soil.

Identity of the Icelandic accession confirmed
To corroborate the identification of the Icelandic 
Arabidopsis accession, the plants were analysed 
cytogenetically. In DAPI-stained mitotic and 
meiotic chromosome spreads, ten chromosomes 

and five chromosome pairs were confirmed, 
respectively (Figures 2A, E). Meiotic 
chromosome pairing was normal, forming five 
bivalents (Figure 2E). FISH with probes for 
5S and 45S rDNA identified two pairs of 5S 
rDNA loci and two pairs of nucleolar organizing 
regions (NORs); one pair of NORs co-localized 
with two 5S rDNA loci (Figure 2A). This pattern 
is congruent with the distribution of rDNA major 
loci in the A. thaliana genome (Maluszynska 
& Heslop-Harrison 1991, Murata et al. 1997, 
Fransz et al. 1998, Koornneef et al. 2003). 

The karyotype of the Icelandic accession was 
further characterized by chromosome painting 
(CP) using BAC clones specific for chromosomes 
At1 and At4. Pachytene CP analysis showed that 
both large-scale (Figure 2B) and detailed BAC-
by-BAC structures of chromosome At1 (Figure  
2C) fully corresponded to the BAC tiling path of 
this chromosome (Pecinka et al. 2004). CP also 
revealed the structure of the upper (short) arm of 
chromosome At4 and showed that the Icelandic 
accession does not belong to the group of 
A. thaliana ecotypes bearing a paracentric 1.17-
Mb inversion on the short arm of At4 (Figure  
2D, Fransz et al. 2016).

This paracentric 1.17-Mb inversion has 
led to the formation of a knob-like structure 
(heterochromatic knob hk4S) on the short arm 
of chromosome At4, and among the laboratory 
accessions, it is present in Col-0 and Ws-2, but 
absent in Ler and C24 (Fransz et al. 1998). 
As the Icelandic accession does not carry the 
inversion, it is termed “knobless”. The SNP 
study and examination of the RegMap panel 
and the 1,001 Arabidopsis genomes (Fransz et 
al. 2016) revealed an historical, single origin of 
the hk4S inversion. Its global distribution was 
shown to be particularly concentrated in Central 
and North-West Europe and in North America, 
with the ancestor of the inversion originating 
from Southern Europe about 5,000 years ago. 
The same study found polyphyletic knobless 
accessions widespread in Eurasia, apparently 
with a high density in Southern Europe (Fransz 
et al. 2016). Thus, the Icelandic accession is 
unlikely to have originated in North America, as 
knobless accessions are very rare there.

ICELANDIC ACCESSION OF ARABIDOPSIS THALIANA
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Figure 2 (page 34). Cytogenetic study of the Icelandic accession of Arabidopsis thaliana. (A) Fluorescence in 
situ localization of 5S (red) and 45S (green) rDNA on ten mitotic chromosomes. (B-D) Chromosome painting 
(CP) on pachytene chromosomes in meiosis. (B) CP of the entire chromosome At1 using 171 BAC clones. Capi-
tal letters A to E correspond to three ancestral genomic blocks. (C) A detailed CP analysis of block A (~6.7Mb) 
on the upper arm of chromosome At1 using ten differently labelled BAC contigs (total 66 BAC clones). (D) 
Fine-scale CP along a~2.5-Mb region corresponding to the upper arm of chromosome At4 using nine differently 
labelled BAC contigs (total 24 BAC clones). The position of individual BAC clones used for CP is shown for the 
Col-0 ecotype, bearing a 1.17-Mb paracentric inversion, and the Icelandic accession without the inversion. All 
pericentromeric regions were labelled by repeats contained in one of the BAC clones used. (E) Five bivalents in 
diakinesis and metaphase I. Chromosomes were counterstained with DAPI. Scale bars = 10 μm.
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Figure 3. Neighbour joining tree for the Icelandic accession (ISL) together with 38 accessions presented with 
their respective country codes. Different colours represent different continents, with Iceland highlighted in red.
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Genome sequencing and comparison of 
accessions
Two Icelandic Arabidopsis plants were prepared 
for Illumina short read sequencing and the 
SNPmatch algorithm was used to genotype the 
samples and to identify their closest relatives. 
We found that the two Icelandic plants matched 
perfectly with each other with a score of 0.99, 
indicating and confirming that they are from the 
same population. The SNPmatch identified the 
Swedish accession Ham-1 with a score of 0.86 
as the closest match for both plants (Figure 3). 

This low score of 0.86 suggests that (i), the 
plants are not A. thaliana, (ii), the plants are A. 
thaliana but derived from a recent cross instead 
of an inbred line or, (iii), the plants are A. thaliana 
but not present in the global panel of the high-
quality sequenced genomes from natural inbred 
lines (The 1001 Genomes Consortium 2016). 
We can exclude option (i), based on the botanical 
description, the cytogenetic investigation and 
the divergence analysis. We also performed 
genotyping analysis to identify homozygous 
windows in search of potential parent(s) in case 
of a recent cross. As we found no windows 
that perfectly match accessions in the global 
genomes panel, option (ii) can also be excluded. 
The only explanation left is option (iii), that the 
Icelandic A. thaliana and a representative of 
its origin are not present in the 1,001 Genomes 
panel of global A. thaliana accessions.

The present study reveals a closer 
relationship between the Icelandic accession and 
Swedish populations (representing Scandinavia) 
than to mainland European accessions (Figure 
3). It is not surprising that northern populations 
of A. thaliana are differentiated genetically 
from other European clusters (Nordborg et al. 
2005, Francois et al. 2008, Long et al. 2013). 
Molecular studies (e.g. Alsos et al. 2015) have 
shown that numerous European vascular plant 
species migrated, post-glacially, northward and/
or westward from Scandinavia across the North 
Atlantic islands, including Iceland, for example 
Arabis alpina L. However, it seems unlikely 
that the Icelandic accession has only recently 
arrived from Scandinavia, due to the poor match 

with present-day Swedish accessions in the A. 
thaliana 1001 set mentioned above. The species 
may have either previously existed in Iceland 
for a very long time and thus it has diverged 
considerably from the mainland accessions, or 
the Icelandic accession originates from a place 
where no representative sequence currently 
exists. 

The possibility that A. thaliana has existed in 
Iceland for any length of time is very unlikely, 
as, prior to the present discovery, it has never 
been found anywhere in Iceland. The Icelandic 
Institute of Natural History (www.ni.is) has, 
for several decades, regularly mapped the 
occurrence and distribution of all 452 natural 
vascular plant species in 10×10 km2 grids 
(Icelandic Institute of Natural History 2016). 
Furthermore, the whole vegetated area of Iceland 
was density-mapped (Flora of Iceland 2016b) 
based on the system of 5×5 km2 grids (National 
Land Survey of Iceland 2016). No record of 
A.  thaliana exists in these lists. No record of 
A. thaliana existed in the Icelandic AMNH and 
ICEL herbaria either (Pawel Wasowicz, pers. 
comm.), until the present study.

Taking into account the strong isolation 
by distance described among A.  thaliana 
populations across Europe (Platt et al. 2010, 
The 1001 Genomes Consortium 2016), the 
genetic similarity of the Icelandic and Swedish 
accessions suggests that the origin of this new 
population is most likely located in Northern 
Europe. However, given the substantial 
differentiation found between the Icelandic 
accession and all accessions included in the 
current panel of sequenced accessions, the 
geographical location from which the Icelandic 
accession originated remains unknown.
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