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Abstract. When modelling side-effects using a monad, we need to equip
the monad with effectful operations. This can be done by noting that each
algebra of the monad carries interpretations of the desired operations. We
consider the analogous situation for graded monads, which are a general-
ization of monads that enable us to track quantitative information about
side-effects. Grading makes a significant difference: while many graded
monads of interest can be equipped with similar operations, the algebras
often cannot. We explain where these operations come from for graded
monads. To do this, we introduce the notion of flexibly graded monad, for
which the situation is similar to the situation for ordinary monads. We
then show that each flexibly graded monad induces a canonical graded
monad in such a way that operations for the flexibly graded monad carry
over to the graded monad. In doing this, we reformulate grading in terms
of locally graded categories, showing in particular that graded monads
are a particular kind of relative monad. We propose that locally graded
categories are a useful setting for work on grading in general.

Keywords: graded monad · graded algebra · flexible grading · relative
monad · computational effect · locally graded category

1 Introduction

Computational effects are often modelled, following Moggi [18,19], using (strong)
monads. The structure of the monad is used to interpret sequencing of compu-
tations, but to interpret the constructs that cause effects we need additional
data—usually a collection of algebraic operations in the sense of Plotkin and
Power [21]. For example, finite nondeterminism can be modelled using the usual
list monad on Set; nullary and binary nondeterministic choice are modelled as
the empty list and concatenation of lists. Presentations of theories correspond-
ing to monads are an important source of these algebraic operations. For a given
presentation, an algebra consists of an object together with interpretations of its
operations, subject to its equations. The corresponding monad T (if it exists) is
defined to be such that the T-algebras are the algebras of the presentation. Every
T-algebra therefore admits interpretations of the operations of the presentation,
and for free T-algebras these interpretations give rise to algebraic operations in
the sense of Plotkin and Power. For example, if we start with the presentation
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of monoids with a constant and a binary operation and the unitality and as-
sociativity equations, then T will be the list monad; free T-algebras have lists
as carriers, and the empty list and concatenation of lists provide the monoid
structure of these free algebras.

We consider the analogous situation for the graded monads of Smirnov [22],
Melliès [16] and Katsumata [9], focusing in particular on their application to
tracking quantitative information about effects of programs [9,20]. (There are
other applications, such as in process semantics [2,17], and in probability the-
ory [3].) Instead of assigning a single object TX to each object X, a graded
monad assigns an object TXe to each object X and grade e. The quantitative
information is represented by e. For example, the grades could be natural num-
bers, upper-bounding the number of alternative outcomes from nondeterministic
computations. We can model these computations using the graded list monad
T = List where TXe = ListXe is the set of lists over X of length at most e.

At first glance, the situation with operations for graded monads seems similar
to the situation for ordinary monads. The empty list () ∈ ListX0 and concate-
nation ListXe1 × ListXe2 → ListX(e1 + e2) make ListX into a graded monoid.
We might expect that this graded monoid structure arises because List-algebras
are graded monoids. But this is not the case, as we show below: graded monoids
are not the algebras of the graded monad List, or indeed of any graded monad.
The same phenomenon occurs also with other examples: the free algebras TX of
a graded monad can often be equipped with some algebraic structure of interest,
even when the general algebras cannot. (We also consider graded arithmoids as
an example below.)

We explain this phenomenon via a new notion of flexibly graded monad. Flex-
ibly graded monads should be thought of as more general than graded monads
(though constructing a flexibly graded monad with the same algebras as a given
graded monad relies on existence of certain colimits). The point is that flexibly
graded monads often do capture these algebraic structures, for example, there
is a flexibly graded monad Listflex whose algebras are graded monoids. We show
that every flexibly graded monad T induces a graded monad bTc; the latter
may not have the same algebras as T, but does satisfy a universal property
(Lemma 2) formulated in terms of algebras. Moreover, every free bTc-algebra
forms a T-algebra. For example, we obtain List as the graded monad bListflexc,
and hence also the graded monoid structure of the free algebras ListX. This
paper should be viewed as a step towards developing notions of presentation
and algebraic operation for graded monads that can include, for example, the
operations of a graded monoid. The graded presentations considered from the
literature [22,17,2,12] are not flexible enough to present graded monoids. The
appropriate notions of flexibly graded presentation and flexibly graded algebraic
operation are discussed in the sequel paper [10].

As part of the development, we formulate graded monads in terms of locally
graded categories of Wood [26]. (He used a different name, we use Levy’s [13]
terminology). These are a particular instance of enriched categories, and so they
enable us to use constructions and results that apply to enriched categories in



Flexibly Graded Monads and Graded Algebras 3

general. Still, here we use an explicit description of locally graded categories to
avoid assuming knowledge of enriched category theory. We show that graded
monads and flexibly graded monads are just instances of relative monads [1]
on functors between locally graded categories; we rely heavily on general facts
about relative monads in our other results. Locally graded categories also enable
us to simplify some previous work (such as Fujii et al.’s [4], which uses actegories
instead). For this reason, we propose that locally graded categories are a useful
setting for work on grading in general.

Contributions We begin by reviewing the existing notions of graded monad
(Section 2) and locally graded category (Section 3). We then do the following.

– We define the appropriate notion of relative monad for locally graded cat-
egories, and develop some of the associated theory (Section 4). We show
that graded monads are relative monads, and introduce our notion of flex-
ibly graded monad. We show that flexibly graded monads capture algebraic
structures we are interested in, such as graded monoids.

– We show that every flexibly graded monad T induces a graded monad bTc
satisfying a universal property (Section 5). This construction canonically
equips free bTc-algebras with additional structure (for example, equips ListX
with the structure of a graded monoid).

– We discuss the reverse direction: that of constructing a canonical flexibly
graded monad dTe from a graded monad T (Section 6). We use this to show
that graded monads do not capture certain algebraic structures (e.g. graded
monoids), we characterize the existence of dTe in terms of existence of certain
colimits.

2 Graded Monads

We begin by reviewing the existing notion of graded monad. The grades e are
the objects of a category E, one example being the poset N≤ of natural numbers
with their usual ordering. Various other examples can be found in the literature
on graded monads.

Definition 1. An E-graded object of C, where E and C are categories, is a
functor X : E → C. These form a category [E,C], with natural transformations
as morphisms.

To assign suitable grades to the unit and Kleisli extension of a graded monad,
we need a unit grade 1 and multiplication operator (·) on grades. For the rest of
the paper, we suppose a monoidal category (E, 1, ·) that we assume to be small
(for technical reasons) and strict (for convenience). For example, multiplication
of natural numbers makes N≤ into a strict monoidal category N×≤ = (N≤, 1, ·).
We often omit the prefix E- from E-graded.

Definition 2 ([22,16,9]). An E-graded monad T on a category C consists of
the following data:
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– a graded object TX : E→ C for each X ∈ |C|;
– a unit morphism ηX : X → TX1 for each X ∈ |C|;
– a Kleisli extension operator (−)

†
that maps every morphism f : X → TY e

and grade d ∈ |E| to a morphism f†d : TXd→ TY (d · e).

Kleisli extension is required to be natural in d and e, and to satisfy the following
unit and associativity laws.

f†1 ◦ ηX = f for each f : X → TY e

idTXd = (ηX)
†
d for each X ∈ |C|, d ∈ |E|

(g†e ◦ f)
†
d = g†d·e ◦ f

†
d for each f : X → TY e, g : Y → TZe′, d ∈ |E|

2.1 Examples

We use the following three examples throughout the paper. In each case, we
define a graded monad T, and then show that the T arises canonically from
some class of (graded) algebraic structures. The latter fact provides a way of
equipping the free algebras TX with the corresponding algebraic structure.

– The graded monad List (Definition 3) arises canonically from graded monoids
(Definition 4), and so ListX forms a graded monoid. Despite this, graded
monoids are not the algebras for any graded monad (Theorem 4).

– For each graded monoid M, the graded writer monad WrM (Definition 5)
arises canonically from M-actions (Definition 6). Differently from the List
example, WrM-algebras are exactly M-actions (Example 7).

– We define a graded monad Count for modelling computations that increment
and decrement a counter (Definition 7). In this case, the corresponding alge-
braic structure is our notion of graded arithmoid (Definition 8), so CountX
forms a graded arithmoid for each set X. Graded arithmoids are not the
algebras for Count or for any other graded monad (Theorem 5).

In this section, we define each of the graded monads, and the corresponding
algebraic structure.

Graded Monoids and List We begin with the example of the graded list
monad.

Definition 3. The N×≤-graded monad List on Set maps each set X to the graded
object ListX of lists over X of bounded length: ListXe is the set of lists of length
at most e ∈ N, and for e ≤ e′ ∈ N the function ListX(e≤e′) : ListXe→ ListXe′

is the inclusion (where we write e≤e′ for the unique element of N≤(e, e′)). The

unit ηX : X → ListX1 and Kleisli extension f†d : ListXd → ListY (d · e) of
f : X → ListY e are similar to those of the usual list monad on Set: they are
defined by

ηXx = (x) f†d(x1, . . . , xk) = fx1 ++ · · ·++ fxk

where (++) is concatenation of lists.
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For every set X, the graded object ListX forms a graded monoid in the sense
of the following definition, with

() ∈ ListX0 (++) : ListXe1 × ListXe2 → ListX(e1 + e2)

as unit and multiplication.

Definition 4. We write N+
≤ for the strict monoidal category N+

≤ = (N≤, 0,+).

A N+
≤-graded monoid A = (A, u,m) on Set consists of a graded object A :

N≤ → Set (the carrier), a unit element u ∈ A0, and a family of multiplication
functions me1,e2 : Ae1 × Ae2 → A(e1 + e2) natural in e1, e2 ∈ N≤, such that
multiplication is unital and associative:

m0,e(u, x) = x = me,0(x, u)

me1+e2,e3(me1,e2(x, y), z) = me1,e2+e3(x,me2,e3(y, z))

A homomorphism h : A→ A′ is a natural transformation h : A⇒ A′ such that

h0u = u he1+e2(me1,e2(x, y)) = me1,e2(he1x, he2y)

(This definition can easily be generalized to grades other than natural numbers
with addition and to monoidal categories other than Set, but for simplicity we
consider only N+

≤-graded monoids in Set.) An example is the following grading
of the additive monoid of natural numbers:

Ne = {0, . . . , e} N(e≤e′)n = n u = 0 me1,e2(n1, n2) = n1 + n2

We give an informal explanation of why the algebras of the graded monad List
are not graded monoids (for the proof, see Theorem 4). A List-algebra consists of

a carrier A : N≤ → Set, and an operator (−)
‡

that maps functions to functions
as follows:

f : X → Ae

f‡d : ListXd→ A(d · e)
These are required to satisfy some laws; we defer the full definition to Section 4.1.
Every graded monoid induces a List-algebra, by defining

f‡d [x1, . . . , xk] = m(fx1,m(fx2, · · ·m(fxk−1,m(fxk, u)) · · · ))

(where we omit the subscripts of m). If List-algebras were graded monoids,
then this construction would be a bijection (by Corollary 1 below), so we

should be able to recover m from (−)
‡
. This is not the case, intuitively be-

cause f‡d [x1, . . . , xk] is an iterated multiplication of elements of A that all have
the same grade, while the two arguments of m can have different grades. For a
concrete example, we cannot recover the additive graded monoid structure on
N above from

f‡d [x1, . . . , xk] = fx1 + · · ·+ fxk

To see why, let N ′ be the smallest family of subsets N ′e ⊆ Ne closed under the
inclusions N(e′≤e′′) and under (−)

‡
, and such that 2 ∈ N ′2 and 3 ∈ N ′3. The

List-algebra structure on N restricts to N ′, so we can recover m only if m also
restricts to N ′. But it does not, because m sends (2, 3) ∈ N ′2×N ′3 to 5 6∈ N ′5.
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M-actions and WrM Our second example is the following.

Definition 5. Every N+
≤-graded monoid M = (M,u,m) induces a N+

≤-graded

writer monad WrM, with assignment on objects, unit, and Kleisli extension de-
fined by

WrMXe = Me×X ηXx = (u, x)

f†d(p, x) = let (q, y) = fx in (md,e(p, q), y)

For every set X, the graded monoid M acts on WrMX via the multiplication
of M. Precisely, if we define

acte1,e2 : Me1 ×WrMXe2 →WrMX(e1 + e2)

acte1,e2(p, (q, y)) = (me1,e2(p, q), y)

then (WrMX, act) is an M-action in the following sense.

Definition 6. Let M be a N+
≤-graded monoid. An M-action is a pair A =

(A, act) of a graded object A : N≤ → Set and a natural family of functions
acte1,e2 : Me1 ×Ae2 → A(e1 + e2) satisfying

act0,e(u, x) = x acte1+e2,e3(me1,e2(p, q), x) = acte1,e2+e3(p, acte2,e3(q, x))

A homomorphism h : A→ A′ of M-actions is a natural transformation h : A⇒
A′ such that

he1+e2(acte1,e2(p, x)) = acte1,e2(p, he2x)

Graded Arithmoids and Count Our third example is computations that
interact with a counter (which stores a natural number). These computations
are able to either return a value, without changing the counter, or to do one of
the following two operations.

– Increment: increase the value of the counter by 1, and then continue with a
given computation.

– Test and decrement: if the value is 0, then continue with one computation,
otherwise decrease the value by 1 and continue with another computation.

This can be seen as a special case of interaction with a stack of values drawn
from a set V , in the case V = 1 (the stack is determined by its size, which is the
value of the counter). Increment and decrement respectively correspond to push
and pop. The graded monad is a graded version of Goncharov’s stack monad [7],
specialized to V = 1, and our notion of graded arithmoid (Definition 8 below)
similarly arises by grading Goncharov’s presentation of the stack monad.

We only consider finite computations, and in particular each computation can
test the value of the counter only finitely many times (in other words, can interact
with only a finite prefix of the stack, whose size depends on the computation). As
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a consequence, computations cannot always learn the exact value of the counter.
This restriction is captured by the conditions involving ρ below.

Grades are integers, which provide an upper bound on the net amount the
counter increases. (A negative upper bound −e is equivalently a lower bound e
on the amount the counter decreases by.) For example, if the counter is initially
6 and we run a computation of grade 3, then the final value will be at most 9
(but intermediate values can be greater than 9).

Definition 7. We write Z≤ for the poset of integers with their usual ordering,
which forms a strict monoidal category Z+

≤ = (Z≤, 0,+) using addition of inte-

gers. The Z+
≤-graded monad Count on Set is defined as follows. Given a set X,

the graded object CountX is given by

CountXe = {t :
∏
i:N [0..i+ e]×X |
∃ρ ∈ N.∀k, j ∈ N, x ∈ X. t ρ = (j, x)⇒ t(ρ+ k) = (j + k, x)}

where [0..n] = {0, 1, . . . , n} (empty for negative n). Thus computations t are
dependent functions that map each initial counter value i to a pair (j, x) of a
final counter value j such that j − i ≤ e and a result x. (There are no such
dependent functions if e < 0, i.e. CountXe is empty in this case.) The unit of
the graded monad leaves the counter unchanged, and the Kleisli extension uses
the final counter value of one computation as the initial counter value of another:

ηXx = λi. (i, x) f†d t = λi. let (j, x) = t i in f x j

The increment and decrement operations described above are captured by
the following functions:

ince : CountXe→CountX(e+1) dece : CountXe×CountX(e+1)→CountXe
ince t = λi. t(i+ 1) dece(t1, t2) = λi. if i= 0 then t10 else t2(i−1)

and these form graded arithmoids in the following sense.

Definition 8. A graded arithmoid is a triple A = (A, inc,dec) of a graded object
A : Z≤ → Set and natural families of functions

ince : Ae→ A(e+ 1) dece : Ae×A(e+ 1)→ Ae

satisfying

ince(dece(x, y)) = y dece(x, incex) = x

dece(dece(x, y), z) = dece(x, z)

A homomorphism h : A → A′ of graded arithmoids is a natural transformation
h : A⇒ A′ such that

he+1(incex) = ince(hex) he(dece(x, y)) = dece(hex, he+1y)
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3 Locally Graded Categories

Locally graded categories are similar to ordinary categories, except that each
morphism has a grade e in addition to a domain and codomain. An example
of this situation appeared already in the definition of graded monad. While
morphisms f : X ⇒ Y in the ordinary category [E,C] preserve the grades
of elements (f sends elements of Xd to elements of Y d), Kleisli extensions f† :
TX ⇒ TY (−·e) multiply by a grade e; in the locally graded category GObjE(C)
of graded objects (Definition 10), f† is a morphism from TX to TY of grade e.

Definition 9 ([26]). A locally E-graded category C consists of

– a collection |C| of objects;
– for each X,Y ∈ |C| and e ∈ |E|, a set C(X,Y )e of morphisms from X to Y

of grade e; we write f : X e Y to indicate f ∈ C(X,Y )e;
– for each X ∈ |C|, a morphism idX : X 1 X;
– for each f : X e Y and g : Y e′ Z, a morphism g ◦ f : X e · e′ Z;
– for each ζ ∈ E(e, e′) and f : X e Y , a morphism ζ∗f : X e′ Y (the

coercion of f along ζ);

such that composition is unital (idY ◦f = f = f◦idX) and associative ((h◦g)◦f =
h ◦ (g ◦ f)); coercions are functorial (id∗ef = f and ξ∗(ζ∗f) = (ξ ◦ ζ)∗f); and
such that composition commutes with coercion ((ξ · ζ)∗(g ◦ f) = ξ∗g ◦ ζ∗f).

(In Wood’s terminology [26, Definition 1.1], these are large Eop-categories.) We
systematically use blackboard bold letters like C for ordinary categories and
calligraphic letters like C for locally graded categories.

We define a locally graded category of graded objects, which we use through-
out the paper, and then give some further examples.

Definition 10. Let C be an ordinary category. The locally E-graded category
GObjE(C) is defined as follows.

– Objects X ∈ |GObjE(C)| are E-graded objects of C (Definition 1).
– Morphisms f : X e Y are natural transformations f : X ⇒ Y (− · e).
– The identity idX is the identity natural transformation X ⇒ X.
– The composition g ◦ f : X e · e′ Z of f : X e Y and g : Y e′ Z is

X
f
=⇒ Y (− · e) g−·e

==⇒ Z(− · e · e′).
– The coercion ζ∗f : X e′ Y of f : X e Y along ζ ∈ E(e, e′) is

X
f
=⇒ Y (− · e) Y (−·ζ)

====⇒ Y (− · e′).

Example 1. Just as monoids in Set are categories with one object, N+
≤-graded

monoids A in Set are locally N+
≤-graded categories with one object (morphisms

of grade e are elements of Ae).

Example 2. Using both the multiplicative and additive monoidal structures on
N≤, there is a locally N×≤-graded category GMon that has N+

≤-graded monoids as
objects. Morphisms f : A e A′ in GMon are homomorphisms f : A→ A′(−·e),
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where A′(− · e) is the graded monoid (A′(− · e), u,m−·e,−·e) for A′ = (A′, u,m).
Identities, composition, and coercions are as in GObjN×≤

(Set).

We have similar locally graded categories for our other two examples. For a
fixed N+

≤-graded monoid M, the M-actions form a locally N+
≤-graded category

GActM, in which morphisms A e A′ in GActM are homomorphisms A →
A′(−+e), where A′(−+e) = (A′(−+e), act−,−+e). The graded arithmoids form
a locally Z+

≤-graded category GArith in which morphisms A e A′ are similarly
homomorphisms A→ A′(−+ e).

We also need to consider functors between locally graded categories, and
natural transformations between these functors.

Definition 11 ([26]). A functor F : C → D between locally graded categories
consists of an object mapping F : |C| → |D| and a mapping of morphisms as on
the left below; these are required to preserve identities, composition and coercion
as on the right below.

f : X e Y

Ff : FX e FY

F idX = idFX
F (g ◦ f) = Fg ◦ Ff
F (ζ∗f) = ζ∗(Ff)

A natural transformation α : F ⇒ G between functors F,G : C → D consists of
a morphism αX : FX 1 GX for each X ∈ |C|, such that αY ◦ Ff = Gf ◦ αX
for every f : X e Y .

We of course have identity functors IdC : C → C, and functors F : C1 → C2
and G : C2 → C3 have a composition G · F : C1 → C3. There are also horizontal
and vertical compositions of natural transformations.

Example 3. There is a forgetful functor GMon → GObjN×≤
(Set) that sends

each graded monoid A to its carrier A, and each morphism f : A e A′ to itself.
We similarly have forgetful functors GActM → GObjN+

≤
(Set) and GArith →

GObjZ+
≤

(Set).

If A,A′ are two locally graded categories that can similarly be equipped
with forgetful functors U : A → C and U ′ : A′ → C, we say that a functor
G : A → A′ is over C when U ′ · G = U , i.e. when G preserves carriers and
sends morphisms to themselves. For example, since addition of natural numbers
is commutative, there is a functor GMon → GMon over GObjN×≤

(Set) that

swaps the arguments of the multiplication of each graded monoid.
Locally graded categories induce ordinary categories and vice versa. We use

these constructions in our formulation of graded monads in terms of locally
graded categories.

Definition 12. Every locally graded category C has an underlying ordinary cat-
egory C with the same objects; morphisms f : X → Y in C are morphisms
f : X 1 Y in C, and these compose as in C. Every functor F : C → D between
locally graded categories restricts to an ordinary functor F : C → D.
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In the other direction, every ordinary category C induces a locally E-graded
category FreeE(C), defined by:

|FreeE(C)| = |C| FreeE(C)(X,Y )e = E(1, e)× C(X,Y )

idX = (id1, idX) (ξ′, g) ◦ (ξ, f) = (ξ · ξ′, g ◦ f) ζ∗(ξ, f) = (ζ ◦ ξ, f)

FreeE(C) is free on C in the following sense. Let HC : C → FreeE(C) be
the ordinary functor defined on objects by HCX = X and on morphisms by
HCf = (id1, f). Then every ordinary functor F : C → D induces a unique F ] :
FreeE(C) → D such that F ] ·HC = F ; this is given on objects by F ]X = FX,
and on morphisms (ξ, f) : X e Y by F ](ξ, f) = ξ∗(Ff) : FX e FY .

We can view FreeE(C) as a full sub-locally graded category of GObjE(C) as
follows, assuming C has enough coproducts. Let X be an object of C (equiva-
lently, an object of FreeE(C)). For each set A, we write A •X for the coproduct
of A-many copies of X, if it exists. (This is the copower of X by A.) In par-
ticular, if E(1, e) • X exists for every e ∈ |E|, then we have a graded object
JCX = E(1,−) •X ∈ |GObjE(C)|; in this way, we can view every object X of
FreeE(C) as an object JCX of GObjE(C). By the Yoneda lemma, morphisms
JCX e Y in GObjE(C) are in bijection with morphisms X → Y e in C:

E(1,−) •X ⇒ Y (− · e) in [E,C]

E(1,−)⇒ C(X,Y (− · e)) in [E,Set]

X → Y e in C

Intuitively, JCX can be thought of as the graded object generated by assigning
the grade 1 to each element of X.

Definition 13. Let C be an ordinary category with coproducts of the form
E(1, e) • X. We define JC : FreeE(C) → GObjE(C) to be unique such that
JC ·HC is the ordinary functor (X 7→ E(1,−) •X) : C→ [E,C] = GObjE(C).

Remark 1. We end this section by mentioning that, as shown by Wood [26,
Theorem 1.6], locally graded category theory can be viewed as an instance of
enriched category theory. Enriched category theory provides a useful source of
concepts and results for grading; for example, the definition of the underlying
ordinary category C is just an instance of the more general definition of the
underlying category of an enriched category (cf. [11, Section 1.3]). In more detail,
[E,Set] forms a monoidal category ([E,Set], I,⊗) with Day convolution:

I = E(1,−) X ⊗ Y =

∫ e1,e2∈E
E(e1 · e2,−)×Xe1 × Y e2

Locally graded categories C are [E,Set]-categories, with coercions making
C(X,Y ) into an object of [E,Set], and identities and composition in C pro-
viding identity and composition morphisms in [E,Set] (with composition in di-
agram order). Functors between locally graded categories are [E,Set]-functors
between [E,Set]-categories, and similarly for natural transformations, so that
the 2-categories of locally graded categories and of [E,Set]-categories are equiv-
alent.
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4 Flexibly and Rigidly Graded Monads

We next employ locally graded categories to define notions of flexibly graded
monad and rigidly graded monad. Rigidly graded monads turn out to be exactly
graded monads (Definition 2); we say ‘rigidly’ to more clearly distinguish between
these and flexibly graded monads. Flexibly graded monads are intuitively more
general than rigidly graded monads. There is a flexibly graded monad whose
algebras are graded monoids, and one whose algebras are graded arithmoids.

Both notions arise as instances of the following definition of relative monad
for locally graded categories. Relative monads are similar to monads, except
that instead of having free algebras on every object, they only have free algebras
on objects of the form JX where J : J → C is some functor (which should be
thought of as a full sub-locally graded category of C; every J we use below is fully
faithful in the sense that the functions (f 7→ Jf) : J (X,Y )e→ C(JX, JY )e are
bijective). Altenkirch et al. [1] give a definition of relative monad for ordinary cat-
egories; their definition generalizes easily to enriched categories (cf. Staton [23]),
and the definition we give below arises from this via the discussion in Remark 1.

Definition 14. Let J : J → C be a functor between locally graded categories.
A J-relative monad T consists of an object mapping T : |J | → |C|, a unit
ηX : JX 1 TX for each X ∈ |J |, and a Kleisli extension operator

f : JX e TY

f† : TX e TY

which is required to be unital, associative, and natural, as follows:

f† ◦ ηX = f for each f : JX e TY

idTX = η†X for each X ∈ |J |
(g† ◦ f)

†
= g† ◦ f† for each f : JX e TY, g : JY e′ TZ

(ζ∗f)
†

= ζ∗(f†) for each ζ ∈ E(e, e′), f : JX e TY

A morphism α : T → T′ of J-relative monads is a family of morphisms αX :
TX 1 T ′X in C such that αX ◦ ηX = ηX for all X ∈ |J | and such that

(αY ◦ f)
† ◦ αX = αY ◦ f† for all f : JX e TY .

The object mapping of each J-relative monad T extends to a functor T :
J → C by defining Tf = (ηY ◦ Jf)

†
for each f : X e Y ; under this definition,

units, Kleisli extensions, and morphisms of relative monads are natural in the
appropriate sense. The following two instances of the above definition are the
ones that matter for us. Here JC is as in Definition 13.

Definition 15. Let C be an ordinary category with coproducts of the form
E(1, e)•X. A flexibly E-graded monad on C is a monad on the locally graded cat-
egory GObjE(C), i.e. an IdGObjE(C)-relative monad. A rigidly E-graded monad
on C is a JC-relative monad.
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We now prove our claim that graded monads can be formulated in terms of
locally graded categories, by showing that they are just rigidly graded monads
in the sense of the above definition. The following table compares the data the
two definitions (Definition 2, Definition 15) ask for.

Graded monad T Rigidly graded monad T

Object mapping T : |C| → |[E,C]| T : |FreeE(C)| → |GObjE(C)|
Unit ηX : X → TX1 ηX : E(1,−) •X ⇒ TX

Kleisli extension
f : X → TY e

f† : TX ⇒ TY (− · e)
f : E(1,−) •X ⇒ TY (− · e)

f† : TX ⇒ TY (− · e)

The object mappings have identical types (since |FreeE(C)| = |C| and
|GObjE(C)| = |[E,C]|). The units and Kleisli extensions do not have identi-
cal types, but are in bijection via the Yoneda lemma (morphisms X → Y e are
in bijection with natural transformations E(1,−) •X ⇒ Y (− · e)).

Theorem 1. There is a bijection between E-graded monads on C and rigidly
E-graded monads on C for each C with coproducts of the form E(1, e) •X.

From this point onwards, we view List, WrM and Count as rigidly graded
monads.

Remark 2. We can also consider KC-relative monads, where KC : C→ [E,C] is
the functor between ordinary categories defined by KCX = E(1,−) •X. These
are similar to graded monads, but not the same. The Kleisli extension of a KC-
relative monad has the form on the right below (equivalently, the form on the
left below).

f : X → TY 1

f† : TX ⇒ TY

f : E(1,−) •X ⇒ TY

f† : TX ⇒ TY

Compared to the table above, this is missing the quantification over e. The
quantification over e is what locally graded categories (as opposed to ordinary
categories) provide. This is why ordinary categories do not suffice when work-
ing with graded monads, and why we instead consider locally graded categories.
(where e appears as the grade of a morphism). (Fujii et al. [4] instead use cat-
egories equipped with an action of E; the grade e then appears when applying
the action. We discuss this approach further in Section 4.2 below.)

Turning to flexibly graded monads, their data are the following:

T : |GObjE(C)| → |GObjE(C)|

ηX : X ⇒ TX

f : X ⇒ TY (− · e)
f† : TX ⇒ TY (− · e)

We use the following examples.
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Example 4. We define a flexibly N×≤-graded monad Listflex on Set, whose alge-

bras are N+
≤-graded monoids (Theorem 2 below). Informally, ListflexXe is the

set of lists over X : N≤ → Set whose total grade is at most e ∈ N. To define
Listflex formally, let Se be the poset of lists ~n = (n1, . . . , nk) of natural numbers
whose sum is at most e ∈ N. (These lists may be empty, and any number of
elements may be 0.) The ordering is pointwise, i.e. ~n ≤ ~n′ if ~n and ~n′ have the
same length and ni ≤ n′i for all i. Then for each graded object X : N≤ → Set,
we define a graded object ListflexX : N≤ → Set by

ListflexXe = colim~n∈Se
∏
iXni ListflexX(e≤e′) = [in~n]~n∈Se

(Recall that we write e≤e′ for the unique element of N≤(e, e′); we also write
ini for the ith coprojection of a colimit.) Here we use the fact that if e ≤ e′

then Se ⊆ Se′ . For the unit ηX : X 1 ListflexX (i.e. ηX : X ⇒ ListflexX),
we use singleton lists, defining ηX,dx = in(d)(x). Given f : X e ListflexY in

GObjE(C) (i.e. f : X ⇒ ListflexY (− · e)), the Kleisli extension f† : ListflexX ⇒
ListflexY (− · e) is defined by

f†d(in~n(x1, . . . , xk)) = in~m1···~mk(y11, . . . , y1`1 , . . . , yk1, . . . , yk`k)
where in~mi(yi1, . . . , yi`i) = fnixi

Here we use the fact that, if the sum of ~n is at most d, and the sum of each
~mi is at most ni · e, then the sum of the concatenation ~m1 · · · ~mk is at most∑
i(ni · e) = (

∑
i ni) · e ≤ d · e. Informally, f† takes a list, applies f to each

element, and then concatenates the results.

Example 5. Let M be a N+
≤-graded monoid. There is a flexibly N+

≤-graded writer

monad WrMflex defined on objects by WrMflexX = M⊗X where⊗ is Day convolution
(see Remark 1). This turns out to have the same algebras (namely M-actions)
as the rigidly graded monad WrM (see Example 7 below), in contrast to the
situation with Listflex and List.

Example 6. We have a flexibly Z+
≤-graded monad Countflex whose algebras are

graded arithmoids (Theorem 3 below). For each graded object X : Z≤ → Set,
the graded object CountflexX : Z≤ → Set is defined by

CountflexXe = {t :
∏
i:N

∐
j:NX(e− (j − i)) |

∃ρ ∈ N.∀k, j ∈ N, x. t ρ = (j, x)⇒ t(ρ+ k) = (j + k, x)}

The intuition is similar to that of Count above: a computation t takes an initial
counter value i and returns a pair (j, x) of a final counter value j and result
x. Note however that here the increase j − i in the value of the counter may
be greater than e; this is “corrected” by the fact that the grade of x is then
negative. The unit and Kleisli extension are similar to those of Count:

ηX,dx = λi. (i, x) f†dt = λi. let (j, x) = t i in fd−(j−i) x j
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4.1 Eilenberg-Moore and Kleisli

Every relative monad T induces a locally graded category EM(T) of (Eilenberg-
Moore) T-algebras, which is analogous to the usual Eilenberg-Moore category of
a monad. We define EM(T), and prove a few basic properties; as for the defini-
tion of relative monad, these come directly from considering relative monads in
enriched categories more generally (via Remark 1).

Definition 16. Let T be a J-relative monad for some functor J : J → C be-
tween locally graded categories. A T-algebra A = (A, (−)

‡
) is a pair of a carrier

A ∈ |C| and an extension operator

f : JX e A

f‡ : TX e A

which is required to satisfy the following equations:

f‡ ◦ ηX = f for each f : JX e A

(g‡ ◦ f)
‡

= g‡ ◦ f† for each f : JX e TY, g : JY e′ A

(ζ∗f)
‡

= ζ∗(f‡) for each ζ ∈ E(e, e′), f : JX e A

These are the objects of a locally graded category EM(T). Morphisms f : A e A′

in EM(T) are morphisms f : A e A′ in C such that f ◦ g‡ = (f ◦ g)
‡

for each
g : JX e′ A; identities, composition and coercions are as in C. The forgetful
functor UT : EM(T)→ C sends A to A, and morphisms to themselves.

We use this definition as our notion of algebra for rigidly and flexibly graded
monads. Fujii et al. [4] define a notion of graded algebra for a graded monad T.
When T is a rigidly graded monad, the T-algebras as defined as above are in
bijection with graded algebras; see Section 4.2 below.

We characterize the algebras of the three flexibly graded monads defined
above. First, we note that for every flexibly graded monad T, the T-algebras
can be formulated equivalently as a pair of a carrier and a structure map (anal-
ogously to the standard definition of Eilenberg-Moore algebra), rather than in
the extension form above. (This is an instance of a more general result, see
Marmolejo and Wood [15].) The flexibly graded monad T has a multiplication

µ : T · T ⇒ T , defined by µX = id†TX . Each T-algebra A induces a morphism

a : TA 1 A by a = idA
‡, and this gives us a bijection between T-algebras A

and pairs (A, a) of an object A ∈ |C| and a morphism a : TA 1 A compatible
with the unit and multiplication of T (i.e. a ◦ ηA = idA and a ◦ µA = a ◦ Ta).

As our first example, the flexibly N×≤-graded monad Listflex has graded
monoids as algebras.

Theorem 2. There exists an isomorphism GMon ∼= EM(Listflex) over
GObjN×≤

(Set).

Proof. Algebras A of Listflex are, as above, in bijection with pairs (A, a) of a
graded object A and morphism a : ListflexA 1 A (i.e. natural transformation
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a : ListflexA⇒ A) compatible with the unit and multiplication of Listflex. Given
(A, a), we define the multiplication and unit of a graded monoid (A, u,m) by

u = a0(in()()) me1,e2(x1, x2) = ae1+e2(in(e1,e2)(x1, x2))

In the other direction, given a graded monoid (A, u,m), we define a as follows
(omitting the subscripts of m):

a(in(n1,...,nk)(x1, . . . , xk)) = m(x1,m(x2, · · ·m(xk−1,m(xk, u)) · · · ))

Simple calculations show that these form a bijection between Listflex-algebras and
graded monoids, and that a morphism A e A′ in GObjE(C) is a morphism of
algebras if and only if it is a morphism of the corresponding graded monoids.

As an example of this theorem, the free algebra FListflexX forms the free
graded monoid on X : N≤ → Set, with unit u = in()() and multiplication

md,e(in~n(x1, . . . , xk), in~m(x′1, . . . , x
′
`)) = in~n~m(x1, . . . , xk, x

′
1, . . . , x

′
`)

Example 7. As our second example, the rigidly graded and flexibly graded
writer monads have the same algebras: in both cases the algebras are M-
actions, and there are isomorphisms EM(WrMflex) ∼= GActM ∼= EM(WrM) over
GObjN+

≤
(Set). An algebra for the flexibly graded monad WrMflex is (as above)

equivalently a pair of a graded object A : N≤ → Set and a natural transforma-

tion a : WrMflexA ⇒ A compatible with the unit and multiplication. These are
equivalently M-actions by properties of Day convolution. For the rigidly graded
monad WrM, algebras are again in bijection with M-actions, in particular, for
each WrM-algebra A, we have functions [A(ζ + e2)]ζ∈N≤(0,d) : JSet(Ae2)d →
A(d + e2), and using these the graded monoid M acts on the carrier of A with

acte1,e2 = ([A(ζ + e2)]ζ)
‡
e1

.

Finally, for our third example we show that the flexibly Z+
≤-graded monad

Countflex has graded arithmoids as algebras.

Theorem 3. There exists an isomorphism GArith ∼= EM(Countflex) over
GObjZ+

≤
(Set).

Proof. Each algebra A of Countflex comes with a natural transformation a :
CountflexA⇒ A, and forms a graded arithmoid by defining

incex = ae+1(λi. (i+ 1, x))

dece(x, y) = ae(λi. if i = 0 then (0, x) else (i− 1, y))

Conversely, to make a graded arithmoid into a Countflex-algebra, we define a :
CountflexA⇒ A as follows. Let incje : Ae→ A(e+ j) be given by composing inc
with itself j times. Given t ∈ CountflexAe, let ρ be a witness to the side-condition
in the definition of CountflexAe, and set (ji, xi) = t i. We then define

aet = dec(incj0x0,dec(incj1x1, · · · (dec(incjρ−1xρ−1, incjρxρ)) · · · ))

(Here it does not matter which witness ρ is chosen because of the graded arith-
moid law dece(x, incex) = x. We can take for example the smallest such ρ.)
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We frequently look at relative monads in terms of their algebras; this is
justified by the fact that each relative monad is completely determined by its
algebras. For example, Listflex is (up to isomorphism) the only flexibly graded
monad that has graded monoids as algebras. To make this precise, if α : T′ → T
is a morphism of J-relative monads, then we let EM(α) : EM(T) → EM(T′)

be the functor over C that sends (A, (−)
‡
) to (A, (−)

‡′
) where f‡

′
= f‡ ◦α. The

following is a general fact about relative monads, specialized to locally graded
categories:

Lemma 1. Let T and T′ be J-relative monads where J : J → C. For every func-
tor G : EM(T) → EM(T′) over C, there is a unique relative monad morphism
α : T′ → T such that EM(α) = G.

The assignment α 7→ EM(α) is therefore a bijection between morphisms T′ → T
and functors EM(T) → EM(T′) over C. It follows that, if T′ and T have the
same algebras, in the sense that there exists an isomorphism EM(T) ∼= EM(T′)
over C, then there also exists an isomorphism T′ ∼= T of relative monads.

Remark 3. Lemma 1 relies on considering locally graded categories of algebras
instead of the underlying ordinary categories: in general, there are ordinary func-
tors EM(T) → EM(T′) over C that are not of the form EM(α). In particular,

there are examples of this in which T and T′ are rigidly graded monads.

If T is a J-relative monad (where J : J → C), then the free T-algebra FTX

on X ∈ |J | has TX as carrier and Kleisli extension (−)
†

as extension operator.
Since X ranges over objects of J , these alone do not provide a left adjoint to
the forgetful functor UT : EM(T) → C. Instead, the free algebras form the left
J-relative adjoint FT : J → EM(T) of UT : EM(T)→ C.

Definition 17 ([25]). Let J : J → C be a functor between locally graded cate-
gories. A J-relative adjunction consists of functors L : J → D (the left adjoint)
and R : D → C (the right adjoint), and a family of bijections

θX,Y,e : D(LX, Y )e ∼= C(JX,RY )e

natural in X,Y, e in the sense that the following hold for all f : LX e Y :

θX′,Y,e′·e(f ◦ Lg) = θX,Y,ef ◦ Jg for each g : X ′ e′ X
θX,Y ′,e·e′(g ◦ f) = Rg ◦ θX,Y,ef for each g : Y e′ Y ′

θX,Y,e′(ζ
∗f) = ζ∗(θX,Y,ef) for each ζ ∈ E(e, e′)

Each J-relative adjunction induces a J-relative monad, with object mapping
X 7→ R(LX). Conversely, EM(T) forms a resolution of T, i.e. a J-relative ad-
junction that induces the relative monad T. This is the terminal resolution of T,
analogously to the situation with ordinary monads. In fact, many of the usual
properties of monads carry over to relative monads in general and to flexibly
and rigidly graded monads in particular. Each relative monad also has an initial
resolution, given by the Kleisli construction.
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Definition 18. Let T be a J-relative monad, where J : J → C. The Kleisli
locally graded category Kl(T) of T has the same objects as J . The morphisms
f : X e Y in Kl(T) are morphisms f : JX e TY in C, the identity on X
is ηX : JX 1 TX, the composition of f : JX e TY and g : JY e′ TZ is
g† ◦ f : JX e · e′ TZ, and coercions are as in C.

In the special case where T is a rigidly graded monad, Kl(T) is (isomorphic to)
the Kleisli locally graded category defined by Gaboardi et al. [5].

4.2 E-actegories

Previous work on graded monads, in particular by Fujii et al. [4], uses E-
actegories instead of locally E-graded categories. We outline the connection be-
tween the two settings, and show that our locally graded categories of T-algebras
are in some sense the same as Fujii et al.’s actegories of graded algebras.

A strict E-actegory is an ordinary category C equipped with a bifunctor
∗ : E × C → C that is compatible with the monoidal structure of E strictly,
i.e. up to equality. Every strict E-actegory (C, ∗) induces a locally E-graded
category Ψ(C, ∗): objects are the same as C, and morphisms X e Y in Ψ(C, ∗)
are morphisms X → e∗Y in C. This construction extends to a 2-functor Ψ (with
appropriate notions of 1- and 2-cell between actegories), and Ψ is 2-fully faithful
(see [16,6]). In this way, we can view strict actegories as a special case of locally
graded categories. An example of a locally graded category that arises in this way
is GObjE(C): we can make [E,C] into an actegory by defining e ∗X = X(− · e),
and then GObjE(C) is exactly Ψ([E,C], ∗).

Eilenberg-Moore locally graded categories EM(T) of rigidly graded monads
also arise in this way. The ordinary category EM(T) forms a strict E-actegory
by assigning to each grade e ∈ |E| and T-algebra A the T-algebra e ∗ A whose
carrier is A(− · e), and whose extension operator is the restriction of that of A.
The locally graded category Ψ(EM(T), ∗) is then exactly EM(T). Moreover, the
actegory (EM(T), ∗) is isomorphic to Fujii et al.’s actegory of graded algebras.
In this sense, the latter, viewed as a locally graded category, is just our EM(T).

Not all of the locally graded categories we define above arise in this way
however: FreeE(C) and Kl(T) do not. (Fujii et al. [4] define Kleisli actegories of
graded monads; applying Ψ to these does not yield Kl(T).)

5 Rigidly Graded Monads from Flexibly Graded Monads

We turn to the relationship between flexibly and rigidly graded monads. In
this section, we show that every flexibly graded monad induces a rigidly graded
monad that is in some sense canonical. We use this construction to explain where
the graded monoid structure on ListX comes from. Throughout this section, we
suppose an ordinary category C with coproducts of the form E(1, e) •X.

Let T be a flexibly E-graded monad on C. The rigidly graded restriction bTc of
T is the rigidly E-graded monad bTc on C defined by restricting the structure of



18 D. McDermott and T. Uustalu

T to objects of FreeE(C) (viewed as a sub-locally graded category of GObjE(C)
via the functor JC). Explicitly, bTc is given on objects by bT cX = T (JCX), and
the unit and Kleisli extension are restrictions of those of T. This construction
is functorial: every morphism α : T → T′ of flexibly graded monads restricts to
a morphism bαc : bTc → bT′c of rigidly graded monads, so we have a functor
between the ordinary categories of flexibly E-graded monads on C and rigidly
E-graded monads on C:

b−c : FGMndE(C)→ RGMndE(C)

We also have a functor RT : EM(T)→ EM(bTc) over GObjE(C), which sends
each T-algebra A to the bTc-algebra RTA whose carrier is A, and whose extension

operator (−)
‡

is the restriction of that of A.
We record two crucial facts about bTc. The first is that the graded objects

bT cX form T-algebras. More specifically, the free bTc-algebra functor FbTc is
equal to

FreeE(C)
JC−→ GObjE(C)

FT−−→ EM(T)
RT−−→ EM(bTc)

so in particular, bT cX is the carrier of the T-algebra FT(JCX). This is where,
for example, the graded monoid structure on ListX comes from; see Example 9
below.

The second fact is that bTc is canonical, in that it satisfies the universal
property expressed in the following lemma. Informally, the Eilenberg-Moore res-
olution of bTc is as close as possible to the Eilenberg-Moore resolution of T.
From this it follows that, if there is any rigidly graded monad T′ with the same
algebras as T, then T′ is actually bTc (Corollary 1).

Lemma 2. Let T be a flexibly E-graded monad on C. For every rigidly E-graded
monad T′ on C and functor R′ : EM(T) → EM(T′) over GObjE(C), there is
a unique morphism α : T′ → bTc of rigidly graded monads such that R′ =
EM(α) ·RT.

EM(T) EM(bTc) bTc

EM(T′) T′
R′

RT

EM(α) α

Proof. For each X ∈ |C|, the T′-algebra R′(FT(JCX)) has carrier bT cX =
T (JCX), so ηJCX

‡ : T ′X 1 bT cX. Commutativity of the triangle above on
FT(JCX) ∈ EM(T) implies αX = ηJCX

‡, hence uniqueness of α. For existence,
define αX = ηJCX

‡.

Corollary 1. Let T be a flexibly E-graded monad on C. If there exists a pair
of a rigidly E-graded monad T′ on C and isomorphism R′ : EM(T) ∼= EM(T′)
over GObjE(C), then RT : EM(T) → EM(bTc) is an isomorphism, and there
is an isomorphism T′ ∼= bTc of rigidly graded monads.

Proof. The functor R′ induces a morphism α : T′ → bTc by Lemma 2. Another

application of Lemma 2 shows that R′
−1 · EM(α) is the inverse of RT, so that
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RT is an isomorphism. Since both RT and R′
−1

are isomorphisms, EM(α) must
be too, and then Lemma 1 implies α is an isomorphism T′ ∼= bTc.

Example 8. Corollary 1 implies that WrM ∼= bWrMflexc, because WrM and WrMflex

have the same algebras (Example 7).

Example 9. The rigidly graded restriction of Listflex is List. Indeed, the following
defines an isomorphism ψ : List ∼= bListflexc of rigidly N×≤-graded monads:

ψX,e : ListXe → colim~n∈Se
∏
i E(1, ni) •X

(x1, . . . , xk) 7→ in(1,...,1︸︷︷︸
k

)(inid1
x1, . . . , inid1

xk)

Recall from Theorem 2 that Listflex-algebras are graded monoids. Each graded
object ListX is isomorphic to the carrier of the free bListflexc-algebra FbListflexcX,
which as above forms a Listflex-algebra, and hence a graded monoid. One can
calculate that this graded monoid structure is given by concatenation of lists.
In summary, the graded monoid structure on ListX arises by starting with the
locally graded category GMon of graded monoids, constructing free graded
monoids, which form the flexibly graded monad Listflex, and then showing that
the restriction of Listflex is List.

Lemma 2 provides a universal property for List. Every graded monoid induces
a List-algebra via the following functor over GObjN×≤

(Set):

R : GMon
(Theorem 2)

−−→ EM(Listflex)
RListflex

−−→ EM(bListflexc)
EM(ψ)
−−→ EM(List)

For every rigidly N×≤-graded monad T′ and functor R′ : GMon → EM(T′)
over GObjN×≤

(Set), there is a unique morphism α : T′ → List of rigidly graded

monads such that R′ = EM(α) · R. Hence, while no rigidly graded monad has
graded monoids as algebras (Theorem 4 below), List is as close as we can get.

Example 10. We have bCountflexc ∼= Count. To see this, note that JSetXd =
∅ for negative d, and JSetXd ∼= X otherwise. Hence, if λi. (ji, xi) ∈∏
i:N

∐
j:N JSetX(e− (j − i)), then, for each i, we must have e− (ji − i) ≥ 0, so

ji ∈ [0..i+ e].
This fact has analogous consequences to the list example above. It provides

an explanation for where the graded arithmoid structure of the graded object
CountX comes from. We also obtain a functor GArith → EM(Count) that
provides a universal property for Count in terms of graded arithmoids.

6 Flexibly Graded Monads from Rigidly Graded Monads

We also consider going in the opposite direction: constructing a flexibly graded
monad dTe from a given rigidly graded monad T. Ideally, we would like to
construct dTe so that it has the same algebras as T. (This uniquely identifies
dTe up to isomorphism by Lemma 1.) In general, there does not exist a dTe with
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this property, but we show below that there often does, by reducing existence of
dTe to existence of certain colimits. Modulo existence of these colimits, flexibly
graded monads are therefore more general than rigidly graded monads.

Throughout this section, we again suppose an ordinary category C with co-
products of the form E(1, e) •X.

Definition 19. If it exists, the flexibly graded extension of a rigidly E-graded
monad T on C is a flexibly E-graded monad dTe on C equipped with an isomor-
phism QT : EM(dTe) ∼= EM(T) over GObjE(C).

Example 11. The flexibly graded extension of WrM is WrMflex. The isomorphism
QWrM : EM(WrMflex) ∼= EM(WrM) is defined in Example 7.

A basic result is that the rigidly graded restriction bdTec is T itself, and
RdTe : EM(dTe) → EM(bdTec) is an isomorphism; this is immediate from
Corollary 1. We show that, if dTe exists, then it is the free flexibly graded monad
on T (Lemma 3 below). Existence of dTe for all T would imply that extensions
would form an ordinary functor d−e : RGMndE(C) → FGMndE(C) that is
left adjoint to b−c : FGMndE(C) → RGMndE(C). Moreover, since φT in the
following lemma is an isomorphism, d−e would then make RGMndE(C) into a
coreflective subcategory of FGMndE(C).

Lemma 3. Let T be a rigidly E-graded monad on C that has a flexibly graded
extension dTe. There is a unique morphism φT : T → bdTec of rigidly graded
monads such that EM(φT) ·RdTe = QT. The unique φT is an isomorphism, and
witnesses dTe as the free flexibly graded monad on T (with respect to b−c).

Proof. By Corollary 1, the functor RdTe : EM(dTe) → EM(bdTec) is an iso-
morphism, so Lemma 1 implies that there is a unique φT such that EM(φT) =
QT · R−1

dTe, and that φT is an isomorphism. To show that dTe is free, suppose a

flexibly E-graded monad T′ on C and morphism ψ : T→ bT′c of rigidly graded

monads. We show that there is a unique morphism ψ̂ : dTe → T′ of flexibly

graded monads such that ψ = bψ̂c ◦ φT. For every morphism ψ̂ : dTe → T′ of
flexibly graded monads we have

ψ = bψ̂c ◦ φT
⇔ ψ ◦ φ−1

T = bψ̂c φT is an isomorphism

⇔ EM(φ−1
T ) ·EM(ψ) = EM(bψ̂c) Lemma 1

⇔ EM(φ−1
T ) ·EM(ψ) ·RT′ = RdTe ·EM(ψ̂) Lemma 2

⇔ Q−1
T ·EM(ψ) ·RT′ = EM(ψ̂) RdTe is an isomorphism

So the result follows from Lemma 1, using the last line to define ψ̂.

Example 12. The rigidly N×≤-graded monad List on Set has a flexibly graded
extension dListe, which can be constructed as follows. Recall from Example 4
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that Se is the poset of lists of natural numbers that sum to at most e ∈ N. We
define a family of full subposets S′e ⊆ Se inductively by three rules: (e) ∈ S′e;
if ~n1, . . . , ~nk ∈ S′e for k ≥ 0, then the concatenation ~n1~n2 · · ·~nk is in S′k·e; and

if ~k ∈ S′e and e ≤ e′, then ~k ∈ S′e′ . For example, (2, 1, 1) ∈ S′4 but (3, 1) 6∈ S′4.
Then dListe is defined in exactly the same way as Listflex (Example 4), except
with S′ instead of S. In particular, dListeXe = colim~n∈S′e

∏
iXni. The unit,

Kleisli extension, and functoriality of dListe are well-defined because of the three
rules that define S′. The isomorphism QList : EM(dListe) → EM(List) sends a

dListe-algebra (A, (−)
‡
) to the List-algebra (A, (−)

‡′
), where f‡

′
: ListX e A

is defined for f : JCX e A by

f‡
′
(x1, . . . , xk) = f‡(in(1,...,1)(inid1x1, . . . , inid1xk))

The inclusions S′e ⊆ Se induce a morphism α : dListe → Listflex of flexibly
graded monads. This is not an isomorphism. For example, let N : N≤ → Set be
the graded object Nn = {0, . . . , n}, where N(n≤n′) is the inclusion Nn ⊆ Nn′.
Then in(3,1)(3, 1) ∈ ListflexN4 is not in the image of αN,4, so αN,4 is not a
bijection. In fact, there is no isomorphism dListe ∼= Listflex at all. Existence of such
an isomorphism would imply GMon ∼= EM(Listflex) ∼= EM(dListe) ∼= EM(List)
over GObjE(Set), and would therefore contradict the fact that no rigidly graded
monad has graded monoids as algebras, which we prove as the following theorem.

Theorem 4. There is no rigidly N×≤-graded monad T on Set such that
GMon ∼= EM(T) over GObjN×≤

(Set).

Proof. By Theorem 2, to give an isomorphism GMon ∼= EM(T) over
GObjN×≤

(Set) is equivalent to giving an isomorphism EM(Listflex) ∼= EM(T)

over GObjN×≤
(Set), so, by Corollary 1, it suffices to show that RListflex :

EM(Listflex) → EM(bListflexc) is not an isomorphism. We can calculate that
QList · EM(α) = EM(ψ) · RListflex where α : dListe → Listflex is as above, and ψ
is the isomorphism List ∼= bListflexc from Example 9. Both QList and EM(ψ) are
isomorphisms, but EM(α) is not (by Lemma 1, since α is not an isomorphism).
It follows that RListflex is not an isomorphism either.

Remark 4. One may ask whether it would make any difference to weaken exis-
tence of an isomorphism GMon ∼= EM(T) commuting strictly with the forgetful
functors, to existence of an equivalence commuting up to natural isomorphism
with the forgetful functors. It does not, because existence of the latter implies
existence of the former. We do not attempt to determine whether there exists
an equivalence GMon ' EM(T) that does not commute with the forgetful
functors. Such an equivalence would not enable us to make the carrier of a given
T-algebra into a graded monoid, so is not useful for what we are trying to achieve.

Example 13. The rigidly Z+
≤-graded monad Count has a flexibly graded extension

dCounte, defined by

dCounteXe = {t :
∏
i:N

∐
j:NX(e−max{0, j − i}) |

∃ρ ∈ N.∀k, j ∈ N, x.t ρ = (j, x)⇒ t(ρ+ k) = (j + k, x)}
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and with similar unit and Kleisli extension to Countflex.
We construct the isomorphism QCount : EM(dCounte) ∼= EM(Count). Given a

dCounte-algebra (A, (−)
‡
), the corresponding Count-algebra (A, (−)

‡′
) is defined

by f‡
′

d t = f‡dt, where on the left we view t as an element of CountXd, and on the
right we view t as an element of dCounte(JSetX)d. In the other direction, we

construct (−)
‡

from (−)
‡′

. First note that the latter can be seen as an operator

h : Z → Ae

h‡′′ : CountZ ⇒ A(−+ e)

Given f : X ⇒ A(− + e) and t ∈ dCounteXd, let ρ be a witness to the side-
condition on t in the definition of dCounteXd, and set (ji, xi) = t i and mi =
max{0, ji−i}. (It does not matter which ρ is chosen.) Define g : [0..ρ]→ A(d+e)
by

g i = (fd−mi)
‡′′
mi

(λi′. (max{0, i′ + (ji − i)}, xi))

so g‡
′′

0 : Count[0..ρ]0→ A(d+ e), and then define f‡dt by

f‡dt = g‡
′′

0 (λi. (i,min{i, ρ}))

We show that graded arithmoids are not the algebras for any rigidly graded
monad, using a similar argument to the argument for graded monoids above.
There is a morphism β : dCounte → Countflex of flexibly graded monads, given
by

βX,e(λi. (ji, xi)) = λi. (ji, X(e−max{0, ji−i}≤e−(ji−i))xi)

This is not an isomorphism. To see this, define a graded set Z : Z≤ → Set by
Zn = {m ∈ Z | m ≤ n}. Then

(λi. if i = 0 then (0, 0) else (i− 1, 1)) ∈ CountflexZ0

is not in the image of βZ,0. This implies the following theorem.

Theorem 5. There is no rigidly Z+
≤-graded monad T on Set such that

GArith ∼= EM(T) over GObjZ+
≤

(Set).

Proof. By similar reasoning to the proof of Theorem 4, existence of such an
isomorphism would imply that β : dCounte → Countflex is an isomorphism,
which would be a contradiction.

6.1 Constructing Extensions

We turn to the problem of constructing the flexibly E-graded monad dTe for
a given rigidly E-graded monad T on C. It turns out that dTe exists exactly
when certain (small) colimits exist in EM(T). We introduce the following class
of (small) colimits in locally graded categories, which we use to construct dTe.
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Definition 20. Let D be a locally E-graded category, and let Y be an E-graded
object of D. The internalization of Y , if it exists, consists of an object colimE Y
and natural family (λd : Y d d colimE Y )d∈E of morphisms in D, universal in the
sense that, for every e ∈ |E|, Z ∈ |D|, and natural family (fd : Y d d · e Z)d∈E,
there is a unique [f ] : colimE Y e Z such that fd = [f ] ◦ λd for all d ∈ |E|.

Here naturality of a family (fd : Y d d · e Z)d∈E means fd′ ◦Y ζ = (ζ · e)∗fd for
all ζ ∈ E(d, d′). The universal property of colimE Y can be succinctly written as

D(colimE Y,Z)e ∼=
∫
d∈E
D(Y d, Z)(d · e) naturally in Z, e

where the naturality in Z is locally graded and the integral on the right is an
end in Set; the elements of the right-hand side are the natural families (fd :
Y d d · e Z)d∈E.

Example 14. Every graded objectX : E→ C of an ordinary category C induces a
graded object JC(X−) of GObjE(C). A natural family (fd : JC(Xd) d · e Z)d∈E
is a family of morphisms fd,d′ : E(1, d′)•Xd→ Z(d′ ·d ·e) natural in d, d′; by the
Yoneda lemma, these are in bijection with natural transformations X ⇒ Z(−·e),
i.e. morphismsX e Z in GObjE(C). Hence the internalization colimE(JC(X−))
is just X equipped with the family λ corresponding to idX : X 1 X.

More generally, let F : FreeE(C) → D be a functor. Then, for each X :
E → C, we have a graded object F (X−) : E → D. If colimE(F (X−)) exists for
all X, then they form a functor (X 7→ colimE(F (X−))) : GObjE(C)→ D. The
latter is exactly the (pointwise) left Kan extension of F along JC (in the enriched
sense). We can therefore compute left Kan extensions along JC as small colimits
(even though FreeE(C) might not be small). Example 14 above, where we take
F = JC, shows that LanJCJC is the identity functor; in other words, that JC is
dense.

We can now construct dTe as follows. First construct the left Kan extension
of the free T-algebra functor FT : FreeE(C) → EM(T) along JC, to obtain the
left adjoint F̄T : GObjE(C) → EM(T) of the forgetful functor UT. Then the
composition UT · F̄T forms a flexibly graded monad; this is dTe. (Here we mean
left adjoint in the usual enriched sense, in other words, the IdGObjE(C)-relative
left adjoint.)

Theorem 6. A rigidly E-graded monad T has a flexibly graded extension dTe if
and only if colimE(FT(X−)) exists in EM(T) for every X : E→ EM(T). When
these exist, the functor

F̄T : X 7→ colimE(FT(X−)) : GObjE(C)→ EM(T)

forms the left adjoint of UT, and dTe is the flexibly graded monad induced by
this adjunction.

Proof. The extension exists exactly when UT : EM(T)→ GObjE(C) is strictly
monadic, and, by a general result about relative monads, this is the case exactly
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when UT has a left adjoint. (If the left adjoint exists, the adjunction induces a
flexibly graded monad dTe, and functors QT : EM(dTe) → EM(T) and Q−1

T :
EM(T)→ EM(dTe) can be constructed and shown to be inverses using the fact
that Eilenberg-Moore resolutions are terminal.) Consider the following:

EM(T)(F̄TX,A)e

∼=
∫
d∈E EM(T)(FT(Xd),A)(d · e) universal property of colimE

∼=
∫
d∈E GObjE(C)(JC(Xd), UTA)(d · e) FT left JC-relative adjoint to UT

∼= GObjE(C)(colimE
d(JC(Xd)), UTA)e universal property of colimE

∼= GObjE(C)(X,UTA)e Example 14

The first isomorphism exists when F̄TX does, the others always exist. Hence the
left adjoint must necessarily be F̄T.

Remark 5. To justify our use of the word “colimit” for the internalization
colimE Y of Y : E → D, we note that, if we view D as an [E,Set]-category
(using Remark 1), then internalizations are a special case of weighted colimits
in D. To be more specific, let Erev be the monoidal category E but with the ar-
guments of the tensor swapped. By the universal property of free locally graded
categories, there are unique functors W : FreeErev(Eop) → GObjErev(Set)
and Y ] : FreeE(E) → D such that W · HEop = HomE : Eop → [E,Set] and
Y ] · HE = Y . (Recall that HC : C → FreeE(C).) Then colimE Y is the colimit

of Y ] weighted by W . This is a small colimit in D, so it exists whenever D is
cocomplete in the enriched sense. (Here the enriching category is not symmetric
in general; for a definition of weighted colimit that does not assume symmetry,
see [8].)

7 Related Work

Relative monads Relative monads were defined for ordinary categories by Al-
tenkirch et al. [1], and generalized to V-categories (for V symmetric monoidal)
by Staton [23]. Our definitions of relative monad, algebra, and Kleisli (locally
graded) category are generalizations of theirs. Our definition is not an instance
of Lobbia’s [14] generalization of relative monads to arbitrary 2-categories. Al-
tenkirch et al. [1] studied the problem of extending a J-relative monad to a
monad—as we do in Section 6. They defined a notion of well-behavedness for a
functor J , which provides a sufficient condition for the extension to exist; when
J is well-behaved, the extension dTe of T has as underlying functor dT e the
left Kan extension of T along J . We cannot use this result to construct flexibly
graded extensions, because JC is not well-behaved (in the appropriate locally
graded sense). Hence we give an alternative construction of dTe (involving the
Kan extension of FT instead of T ). In our case, the underlying functor of dTe is
not LanJCT in general (dListe is a counterexample).
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Graded monads Graded monads were introduced independently by Smirnov [22],
by Melliès [16], and by Katsumata [9]. A formal theory for graded monads was
first developed using actegories by Fujii et al. [4] (based on Street’s [24] formal
theory of lax functors). Presentations of graded monads have been studied by
various authors [22,17,2,12], but these are all rigid, in that they present algebras
of rigidly graded monads (so are not general enough to capture graded monoids
or graded arithmoids).

Locally graded categories Locally graded categories were first introduced by
Wood [26], who proved that they are enriched categories. We use the terminology
of Levy [13]. They were also used in connection with grading by Melliès [16] and
by Gaboardi et al. [5]. The latter in particular define the Kleisli locally graded
category of a graded monad. The formulation of graded monads within locally
graded category theory, which enables our development, is new here.

8 Conclusions

Graded monads cannot capture certain structures, such as graded monoids, as
their algebras. This is the case even if their free algebras form instances of these
structures. We show however that even when these structures are not captured
exactly, we can often characterize the graded monad by a universal property,
from which we can extract the structure of the free algebras. The proof of this
involves the notion of flexibly graded monad. We introduce these primarily as a
graded-monad-like tool for capturing these structures, though they may be useful
in their own right as a generalization (modulo existence) of (rigidly) graded
monads. We work within locally graded category theory, which provides a rich
source of results for reasoning about grading.

As we state in the introduction, our primary motivation for this work is to
develop a notion of presentation for graded monads that captures, for example,
the operations of a graded monoid. This paper lays the groundwork for such a
development, which we present in the sequel paper [10].
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