4
v <
'qVI'K UN\“

Multivariate combinatorial exploration with
regular strategies

by

Emile Nadeau

Dissertation submitted to the School of Technology,
Department of Computer Science
at Reykjavik University in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

November 2022

Thesis Committee:

Henning Ulfarsson, Supervisor
Assistant Professor, Reykjavik University, Iceland

Christian Bean, Examiner
Postdoctoral Researcher, Reykjavik University, Iceland

Jay Pantone, Examiner

Assistant Professor, Marquette University, United States
Karen Yeats, Examiner

Professor, University of Waterloo, Canada

ISBN 978-9935-9694-6-0 Print version
ISBN 978-9935-9694-7-7 Electronic version
Author ORCID: 0000-0002-3410-5244

Copyright
Emile Nadeau
November 2022

ii

The undersigned hereby certify that they recommend to the School of Technol-
ogy, Department of Computer Science at Reykjavik University for acceptance this
dissertation entitled Multivariate combinatorial exploration with regular strate-
gies submitted by Emile Nadeau in partial fulfillment of the requirements for the
degree of Doctor of Philosophy (Ph.D.) in Computer Science .

HQ\/WW\S U\Jw‘gs@w

Henning Ulfarsson, Supervisor
Assistant Professor, Reykjavik University, Iceland

C{/W(S]’"Lan @w./\

Christian Bean, Examiner
Postdoctoral Researcher, Reykjavik University, Iceland

0 ot

Ja% Pa\%t({ne, Examiner

Assistant Professor, Marquette University, United States

Y N~

Karen Yeats, Examiner _/

Professor, University of Waterloo, Canada

iv

The undersigned hereby grants permission to the Reykjavik University Library to
reproduce single copies of this Dissertation entitled Multivariate combinatorial
exploration with regular strategies and to lend or sell such copies for private,
scholarly or scientific research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the dissertation, and except as herein before provided, neither the
dissertation nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatsoever without the author’s prior written per-
mission.

20 nov, 2022

date

Emile Nadeau
Doctor of Philosophy

Vi

Multivariate combinatorial exploration with
regular strategies

Emile Nadeau

November 2022

Abstract

In this thesis, two methods for automatic enumeration of permutation classes are
studied.

The first method extends on the theory of combinatorial exploration. We review
how combinatorial exploration works as a two phases process: the first phase cre-
ating a universe of rules and the second one searching that universe for a solution
to a given enumeration problem. After that, we identify a situation where the
search step does not succeed to provide an answer despite the universe “contain-
ing” (in some sense) one. We present a way to overcome this shortcoming by de-
veloping a new theory that allows to find these “answers”. Then, we demonstrate
how combinatorial exploration can be extended to apply to problems where some
additional statistics are involved. This theory is applied to enumerate permuta-
tion classes for which we introduce a new decomposition strategy called fusion.
Combining all the tools discussed so far, we provide the first direct enumeration
of Av(1342).

For the second method, we study the staircase encoding of permutations, which
maps a permutation to a staircase grid with cells filled with permutations. We
study the restriction of the staircase encoding to many permutation classes where
the encoding becomes a bijection. For each of these classes, we describe the image
of the bijections using independent sets of graphs weighted with permutations.
We then enumerate the permutation classes by deriving the generating function
for the independent sets and then for their weighted counterparts. We use our
results to uncover some unbalanced Wilf-equivalences of permutation classes.

Keywords: combinatorics, permutation, enumeration, algorithm, graph

Fléttufraedileg konnun med reglulegum
kenskum i moérgum breytisteerdum

Emile Nadeau

névember 2022

Utdrattur

[pessari ritgerd er fjallad um tveer sjalfvirkar adferdir vid ad telja umradanaflokka.

Fyrri adferdin utvikkar freedin um fléttufreedilega konnun. Vid rifjum upp hvernig
fléttufreedileg konnun virkar i tveimur skrefum: fyrsta skrefid byr til heim af regl-
um, og seinna skrefid leitar 1 peim heimi ad lausn ad talningarvandamali. Ad pvi
loknu finnum vid adsteedur par sem leitin skilar engri nidurstodu, jafnvel pé heim-
urinn ,,innihaldi” ({ &kvednum skilningi) lausn. Vid synum hvernig megi yfirstiga
petta vandamal med pvi ad préa nyja freedi sem leifir okkur ad finna pessar , lausn-
ir”. Sidan synum vid hvernig nota megi fléttufreedilega konnun megi ttvikka til
ad takast 4 vid vandamal par sem margar tolfraeedir koma vid sogu. Pessari freedi er
beitt 4 umradanaflokka, og par skilgreinum vid nyja keensku sem kallast samruni.
Med pvi ad nota allar pessar nidurstodur tekst okkur ad gefa fyrstu beinu talning-
una 4 Av(1342).

Seinni adferdin byggir 4 stigakddun umradana, sem varpar umrédunum i stigalaga
kédun par sem hvert holf inniheldur umrédun. Vid rannsokum einskordun pess-
arar stigak6dunar 4 umradanaflokka par sem kédunin er gagnteek vorpun. Fyrir
pessa flokka lysum vid mynd vorpunarinnar med pvi ad nota 6had mengi i netum
vigtud med umrédunum. Vid teljum umradanaflokkana med pvi ad finna fram-
leionifoll pessara 6hddu mengja, med og 4n vigtun. Vid notum pessar nidurstodur
til pess ad finna 6jofn Wilf-jafngildi umradanaflokka.

Efnisord: fléttufreedi, umrédun, upptalning, reiknirit, net

viii

A la mémoire de mon grand-pere, Fernand, qui m’a toujours dit qu'il aurait aimé aller a
I'école passé I'dge de 12 ans.

In memory of my grandfather, Fernand, who always told me he’d have liked to go to
school past the age of 12.

Acknowledgements

Id like first to thank Henning my supervisor for his support and the continuous
stream of new ideas. Your support along the way was essential to the completion
of this project. I want to thank Christian for introducing me to all the nitty-gritty
details of the codebase as well as the numerous sessions of peer coding. Those
definitely made both of us better coders. Thanks to Jay for solving (almost) all
my systems of equations and keeping me on my toes with endless feature re-
quests. Thanks to Asta from the department office for the administrative support
throughout the immigration process.

Merci a Myllie qui m’a encouragé a tenter cette expatriation. Sans tes encour-
agement, jamais, je ne me serais lancé dans cette aventure. Merci & Tristan et
Laura, mes premiers amis en Islande. C’est avec vous que j’ai en premier décou-
vert ce nouveau pays. Merci a tout le monde de Reykjavik Accueil de créer ce
super réseau pour les nouveaux arrivants francophones.

Takk Yrsa og Kolbeinn fyrir méttaka 4 landid. Eg verdur endalaus pakklat
fyrir ad hafa komid ad seekja mig og allt d6tid mitt pegar ég lenti 4 Islandi. Takk
keerelaga J6honnu fyrir studningin { sidasta koflunum af petta verkefni. Pa var
alltaf til stadar til ad kenna mér eitthvad islenskt ord eda réa mér pegar stess var
adeins oft mikid.

Finalement, merci a toute ma famille pour votre support constant. Mention
spéciale a ma sceur Sandrine avec qui je peux toujours échanger sur les hauts et
les bas de la vie académique.

The research in this thesis was supported by Reykjavik University Research
fund, the Natural Sciences and Engineering Research Council of Canada and the
Fonds de recherche du Québec.

xii

Preface

This dissertation is original work by the author, Emile Nadeau. Portions of the
text are used with permission from Bean, Nadeau and Ulfarsson [1] of which I am

an author.

Contents

Acknowledgements
Preface

Contents

List of Figures

List of Tables

1 Introduction

1.1 Enumerative combinatorics 0 L.
12 Permutationpatterns 0L
1.3 Automatic methods of enumeration
1.3.1 Finite enumerationschemes
1.3.2 Insertionencoding
1.3.3 Substitution decomposition L.
1.3.4 Combinatorial exploration and the Tilescope algorithm . . .
14 Overview e

Forests
2.1 Background on combinatorial exploration
2.1.1 Strategies and combinatorial specifications
212 Finding the specification,
2.1.3 Finding a good specification
2.2 Limitation of the prunemethod
2.3 Enumerablesubset L.
24 Regularstrategy
241 A fully enumerable universe
242 Aseparating function
243 Enumerablesubset
2.5 Computing the enumerablesubset
2.6 Enumerable subsets for permutation patterns
2.6.1 The requirement insertion strategy
2,62 Thefactorstrategy
2.6.3 The point placement strategy

Xiv

xi

xiii

Xiv

xvi

Xix

W oo NI O N

2.6.4 Otherstrategies
2.6.5 Applying reverse strategiesinasearch

3 Combinatorial exploration with catalytic variables
31 Thefusionstrategy
3.2 Tracked combinatorialsets
33 Backtothefusion
3.4 Other tracked strategies
3.5 Using tracked combinatorial sets in combinatorial exploration . . .

4 Enumeration of permutation classes and weighted labelled indepen-
dent sets
41 Background
411 Meshpatterns L L
4.2 Encoding permutations on a grid with the staircase encoding
43 Going from size 3tosize4 patterns
4.4 Weighted independent sets of the up-core and the down-core
45 Inflating theupdown-core
46 Newcores e
47 Generalizing thefillings
4.8 Avoiding the row-down and column-up patterns
49 Avoidingrgand 2134 oo
410 Avoidingr,and2143o Lo
411 Unbalanced Wilf-equivalence
412 Implementation o

5 Future directions
5.1 Extraction of combinatorial specifications
52 Randomsampling.
5.3 Extensions of the coremethod

Bibliography

61
61
66
69
71
73

List of Figures

1.1

1.2
1.3
1.4
1.5
1.6

2.1

2.2

23
24
2.5
2.6
27
2.8
29
2.10

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

The permutation 194532678 with an occurrence of the pattern 4321 (cir-

cdedinred). 3
Interval in a permutation.o 0 0L 7
Inflation the permutation213. 8
Twosimpletilings., 10
Example tiling. 10
A Tilescope proof tree for Av(132). 11
Two incomplete combinatorial specifications which together contain

sufficient information to compute the counting sequence of the tiling

T 24
A productive combinatorial specification using “flipped” rules. Tilings

in green are verified while red is used to highlight flipped rules. 25
Reliance graph of the combinatorial specification in Figure 2.2. 28
An application of the strategy ReqIns (13 (0,1))}- - -« -« - - - - - - - - 49
An application of reverse requirement insertion. 51
Example of a factor decomposition. oL 52
An example of reverse factorrule. 0L, 57
Placing the leftmost 1 in a 12 on a 123-avoiding tiling. 58
Placing the leftmost point in Av(1234,1243,1324,1423,2134,2314).. . . 59
A reverse requirement insertion rule where the parent is the second

child of theregularrules. 60
Simplest example of a fusionrule. o L. 62
(a) Fusion with a longer pattern. (b) Fusion with more than one pattern. 63
Two columns of a three column tiling fusing together. 63
A 123 crossing having its 23 in all possible way in the two fusing columns. 65
Examples of applying the FuseCol; map that lead to invalid rules. . . . 66
Pictorial representation of a tracked tiling. 67
Application of the ColFusion strategy. 70
Inserting the requirement (1, (0,0)) in a tracked tiling. 71
Factoring a tracked tiling. 72
Placing the bottommost point in cell (0,0) of a tracked tiling. 72
Fusion strategy applied to a tiling with tracking. 73
Combinatorial specification for Av(1342). The full specification can be

viewed at https://permpal.com/tree/12/. 75

Xvi

4.1

4.2

43

44

4.5

4.6

4.7

4.8

49

4.10

411

4.12
4.13
4.14

4.15

4.16
417

4.18

4.19
420
4.21

4.22
4.23
4.24

4.25
4.26

The sum and skew-sum of two permutations. 80
Two classical occurrences of 132 in the permutation 35142. On the left
the classical occurrence is an occurrence of p whereas the one on the

rightisnot. L 81
(a) The plot of & = 659817432. (b) The permutation ¢ drawn on the

staircase grid. (c) The staircase encodingofo. 82
The up-core U(By) on the left and the down-core D(By4) on the right. . 83
A typical decreasing row. There are no points in the shaded regions. . 84

(@) The row-up pattern on the left and the column-up pattern on the
right. (b) The row-down pattern on the left and the column-down pat-

ternontheright. L o oL 86
Two cells connected by an edge of the up-core. The blue, the red and
the green points are distinct left-to-right minima. 87
A permutation that contains 7, or ¢, contains m; or my, as well as m3
10 77 88
The graph UDC(By). The up-edges are blue, the down-edges are red
and the column-edges aregreen. 91
The mesh pattern that is contained in the permutation ¢ if it contains
anoccurrence of Cz. 94

A staircase grid with an active cell marked by a black point. The shaded
cells are the cells that cannot be added to make an independent set.
Cells marked with a circle are disconnected from the graph induced by

removing the shaded cells. 95
An occurrence of ¢, = 3124 spanning across twocells. 96
Decomposition of an occurrence of 77 in a square region. 99

Decomposition of an independent set according to the rightmost vertex
in the top row. The picture on the left shows the whole staircase. The
picture on the right shows the induced subgraph of the hook with a

cornerinthebluecell. 101
The structure of an independent set in the hook. The only active cells

are in the regions that arenotshaded. 101
The pattern2134. 102
The graph U(Bs) on the staircase grid Bg. The black vertices form an

independent set of U(Bs) for the grid Bg. 103
The merge of U(Bs), R(Bs) and D(Bg). The green edges come from

R(Bs), the blue ones from U(Bs), and the red ones from D(Bg). 103
The labelling of an independent set with ¢p. 104
Themap ffromZ,toS. o 105
Decomposition of the rectangular region containing the occurrences of

2 105
Mesh patterns that donot occurino. L L 106
A typical column for a permutation avoiding 2143 and 74.. 107
The decomposition of an independent set of D(B,,) V UR(B,,_1) when

a cell in the topmost row isactive. 108
The pattern2143. L 109

The labelling with ¢ of an independentset. 110

427 Themap ffromZ,toS. 110
4.28 Decomposition of the rectangular region containing the occurrences of

Tl e e 111
4.29 Mesh patterns that donotoccurino. L 111
4.30 A typical column for a permutation avoiding 2143 and r;,. 112
4.31 The decomposition of an independent set of U(B,,) V DR(B,,_1) when

a cell in the topmostrow isactive. 113
5.1 Patterns of size 5 that enforce the up-core constraint. 119
5.2 Boundary encoding of the permutation 95(10)1632748. 120

xviii

List of Tables

2.1

2.2
23

24

3.1

3.2

3.3

4.1

Example of the rules in a small universe with their reliance functions. . 31
The functions f(()u) to féu) for the universe U of Table2.1. 31
A universe where elements of the enumerable subset are not in any
specification. L 36
The function f(()u) to féu) as well as () for the universe U consisting of
therulesinTable2.3. 36
Correspondence between valid gridded permutations on the tilings A
and Bviathe FuseColymap.. 64
Gridded permutations of size 4 on 7 and their contributions to the fifth
term of the counting sequence. 68
Link to combinatorial specifications for all principal size 4 permutation
classes except Av(1324). 76

Overview of the permutation classes we cover in the upcoming sections. 87

XX

Chapter 1

Introduction

1.1 Enumerative combinatorics

Enumerative combinatorics is the most classical branch of combinatorics. It fo-
cuses on finding the number of certain combinatorial objects. Words, partitions,
graphs, permutations, posets and chess piece arrangements are among the struc-
tures that are often studied. This variety of objects makes the field strongly con-
nected to other areas of mathematics. At the heart of every problem in enumera-
tive combinatorics is the combinatorial set (often called “combinatorial class” in the
literature). A combinatorial set is a possibly infinite set of objects associated with
a size function such that the number of objects of each size is finite. In Flajolet and
Sedgewick [2], a combinatorial set is formally defined as follows:

Definition 1.1 (Definition 1.1 in [2]). A combinatorial set is a finite or denumerable
set on which a size function is defined, satisfying the following conditions:

1. the size of an element is a non-negative integer;
2. the number of elements of any given size is finite.

The size of an element 4 in a combinatorial set A is denoted as |a|. Axiomati-
cally, a combinatorial set is thought of as a pair (A, | - |) giving the set and the size
function. Though in theory the same set could be studied with different size func-
tions, the size function to use is usually clear from context. Therefore, we mostly
refer to a combinatorial set by only referring to the set A itself.

The typical problem of enumerative combinatorics consists of counting the
objects of each size in a combinatorial set. The notation .4, is used to denote the
set {a € A : |a] = n},ie., the set of objects of A that are of size n. We use |A,| to
denote the number of elements in the set A,,.

Definition 1.2 (Definition 1.2 in [2]). The counting sequence of a combinatorial set is
the sequence of integers (| Anl|)n>0-

The typical problem is therefore, given a combinatorial set, compute the count-
ing sequence. As an example, we consider all words over the alphabet {0,1} as

2 CHAPTER 1. INTRODUCTION

a combinatorial set where the size function | - | gives the number of letters in the
word. For this combinatorial set, the counting sequence is (2"),,>0.

In his book Enumerative Combinatorics [3], Stanley gives a short list of stan-
dard ways to give the counting sequence of a combinatorial set.

1. Closed form formula: |A,| is given as the result of well-known functions
and operations.

2. Recurrence relation: |A,| is given in terms of previously calculated values
of smaller size.

3. An algorithm is given to compute |.Ay|.

= 1. That

4. Asymptotic behaviour: We give a function g such that nlgn |g/?7711)|
tells us that the counting sequence behaves as g for large enough sizes.

5. Generating function: We give a formal series representation

Y [Anlx"

n>0
of the counting sequence.

In the example we used above, the generating function for words over the alpha-
bet {0,1} is

1
ZZ”x":l+2x+(2x)2+(2x)3+~~~: T

n>0

In this work, we focus on automatic methods to obtain the counting sequence
using 2. and 5. with an emphasis on applying it to permutation classes that are
introduced in the next section.

1.2 Permutation patterns

Despite some earlier appearances, e.g., in the work of MacMahon [4] in 1915, the
modern study of permutation patterns is usually dated to its appearance in Exer-
cise 5 of Section 2.1.1 of Knuth’s The Art of Computer Programming [5]. In this ex-
ercise, the reader is asked to show that a sequence of distinct numbers py, ..., pu
can be sorted using a single stack if and only if there are no indices i < j < k such
that py < p; < p;.

The standardisation of a sequence s of distinct numbers is the sequence obtained
by replacing the i-th smallest entry by i. The result of the standardisation of a se-
quence of n elements is always a permutation of size n, i.e., an arrangement of the
numbers 1,2,...,n. For example, 43251 is a permutation of size 5. The set of all
permutations is S, and the subset of permutations of size 1 is S,. We denote by ¢,
the permutation of size 0 and |¢| the size of . A permutation ¢ contains a permu-
tation 7t if 7 is the standardisation of a (not necessarily consecutive) subsequence

1.2. PERMUTATION PATTERNS 3

s of 0. In this context, we say that 7 is a (classical) pattern in ¢. The subsequence
s is called an occurrence of 7 in 0. If o does not contain the pattern 77, we say
that o avoids 7t. We represent the permutation ¢ on a grid by placing points at
coordinates (i,0(i)). For example, the permutation o = 194532678 is pictured in
Figure 1.1. The pattern 7t = 4321 is contained in ¢ since it is the standardisation
of the subsequence 9532 of o. We denote the containment of 77 in by m < . The
permutation ¢ avoids the pattern 54321 since it does not contain any decreasing
subsequence of size 5.

14

@

T

Figure 1.1: The permutation 194532678 with an occurrence of the pattern 4321
(circled in red).

Given a pattern 71 we define Av, (77) as the set of permutations of size n that
avoid 7t. For example, Av3(123) = S3\{123}. The set Av(7) is the set of all the
permutations that avoid 7t. Formally,

Av(m) =] Avy(m).
n>0

For a set of patterns P, we let Av,,(P) = Nzep Avy(71), and Av(P) = U, >0 Avy,(P).
Hence, Av(P) is the set of permutations that avoid all the patterns in P. The per-
mutations in Av(12) are called the decreasing permutations and the permutations in
Av(21) are called the increasing permutations.

Definition 1.3. A permutation class is any set of permutations defined by the avoidance
of a set of (classical) patterns.

The minimal set of patterns needed to describe a permutation class is called
the basis of the permutation class. Together with the size function, a permutation
class is a combinatorial set as defined in Definition 1.1. The counting sequence of
a permutation class Av(B), is (| Av,(B)|),>0 and its generating function is

Fix)=) xlol,
c€AvV(B)

In the last decades, a lot of research focused on finding the counting sequences of
permutation classes. In 2018, Miner and Pantone [6] found the generating function
for the counting sequence of the permutation class Av(2413,3412) which was the
last permutation class avoiding two size 4 patterns for which no generating func-
tion or recurrence relation was known. This paper completed an effort from the

4 CHAPTER 1. INTRODUCTION

permutation pattern community that spanned across two decades and numerous
articles [6]-[25]. The counting sequences of permutation classes avoiding a single
size 4 pattern has been studied by Gessel [26], Béna [27] and Stankova [28]. At
the moment, no polynomial time algorithm is known for the counting sequence
of Av(1324) and finding this counting sequence remains one of the main open
problems in the field. A few automatic methods have been developed to find the
counting sequences of permutation classes. Attention to those methods is given
in Section 1.3.

1.3 Automatic methods of enumeration

Many techniques to compute the counting sequence of permutation classes have
been developed throughout the years. One of the first automatic methods to ap-
pear was the idea of finitely labelled generating trees, used by Chung, Graham,
Hoggatt and Kleiman [29] in 1978. Followed, in 1998, by the finite enumeration
schemes introduced by Zeilberger [30]. The year 2005 saw the introduction of the
insertion encoding by Albert, Linton and Ruskuc [31] and the substitution decom-
position by Albert and Atkinson [32]. In 2018, Bean [33] introduced the Tilescope
algorithm that was developed further in [34] of which I am an author. The fol-
lowing section takes a deeper look into finite enumeration schemes, the insertion
encoding, the substitution decomposition and, the Tilescope algorithm.

1.3.1 Finite enumeration schemes

Finite enumeration schemes were developed by Zeilberger [30]. We give a quick
overview using the notation of Vatter [35]. Broadly speaking, the method con-
sists of breaking a permutation class into smaller parts and deriving recurrence
relations for those parts.

Definition 1.4. Given a basis B, 1 € Sy and a gap vector g € N1, we define
Z(B;m;g) as

{p € Aviy g (B) s p(g1+1) = (1), p(81 + - - + gk + k) = 7(k)},
where ||g|| is the sum of the components of g.

In words, Z(B; t;g) is the set of permutations avoiding B where the pattern
formed by the k smallest entries is determined by 7 and the number of entries
between each of those k smallest entries is given by g. In this context, 7t is referred
to as a downfix. As an example, we consider 7 = 132 and g = (2,3,0,2) then

Z(B, 132; (2, 3,0, 2)) = {x1x21x3x4x532x6x7 S AVl()(B)}.

For a fixed basis B, we define 7 (7r) as the set of entries of g that must be zero
in order for Z(B; 7; g) to be non-empty. Formally,

Jm)y={je{1,...,|n|+1}: Z(B;m; g) = @ for all g with g; > 0}.

1.3. AUTOMATIC METHODS OF ENUMERATION 5
Consider the basis B = {1432}. The permutations 4132, 1342 and 1324 are
respectively in
Z(B;132;(1,0,0,0)), Z(B;132; (0,0,1,0)) and Z(B;132; (0,0,0,1)).

Adding any entry between the 1 and the 3 in 7w would create a 1432 pattern.
Hence, J(132) = {2}. In general the set J(7r) can be computed by looking at
all the ways to add a new maximum to 7. A gap vector g that obeys J(7) is a
vector g such that g; = 0 for all j € J (7). If g does not obey J (7r) then Z(B; 7t; g)
is guaranteed to be empty.

The reduction of the r-th entry of a permutation 7 is obtained by removing
n(r) and standardizing. We denote it d,(7r). The reduction of the r-th entry of a
gap vector is obtained by merging two gaps as shown below

dr(8) = (81, -, 8r—1,8r + &r+1,8r4+2/ - - -+ Gk+1)-
We say that the entry 7(r) is enumeration-scheme-reducible for 7t with respect to B if
|2(B; 7 8)| = |Z(B; dy(77);dr(8))],

for all gap vectors g that obey J (7). For conciseness, we just say that the entry
nt(r) is ES-reducible. Zeilberger showed that it can be decided with a finite check:

Proposition 1.5. The entry 7t(r) of 7t is ES-reducible if and only if
|2(B; 7t 8)| = |2(B; dr(70); dr(8))],

for all gap vectors g that obey [J (7t) and satisfy ||g|| < ||B||s — 1, where ||B||, is the
size of the longest permutation of B.

We complete this section with the computation of | Av,(132)| from Vatter’s
paper [35]. We first have that

Av,(132) = Z({132}; ¢ (n))

and
81—1
|Z({132};¢; (81))| = 20 |Z({132};1; (i, g1 —i—1))] forg; >0,
g1—1
1Z({132};1;(81,82))| = ;) 1Z({132};21; (i, g1 — i — 1, 82))|
§2—1

+ Y 1Z({132};12; (81,1, 82 — i — 1))| for g1,92 > 0.
i=0

6 CHAPTER 1. INTRODUCTION

One can verify 7 (12) = {2} and J(21) = @. Using Proposition 1.5, we obtain
that 1 is ES-reducible in 12 and 21. Then for g1, g» > 0 we get:

g1—1
213250 (3 22)) | = X 12({152):21 1~ = 1g2)|
+1Z({132};12; (1,0,82 — 1))|
g1—1
_ ;) 1Z({132};1; (i, g1 + g2 —i — 1))

+12({132};1; (81,82 — 1))|

81
- ;)|z({132};1,- (i,81+g—i—1))]

1

Those recurrences can be used to compute the values of | Av, (132)| for any n € IN.
No general theory describes when an enumeration scheme can and cannot be
found but a Maple package has been built by Zeilberger to find the schemes. In
2008, Zeilberger’s enumeration schemes were extended by Vatter [35] who intro-
duced gap vectors and covered more permutation classes. Recently a new gener-
alisation was introduced by Biers-Ariel [36]. It recovers everything from Vatter’s
schemes and the regular insertion encoding which will be the topic of the next
section.

1.3.2 Insertion encoding

The insertion encoding of permutations is a way to use formal language theory to
find the counting sequence of a permutation class. The core idea of the encoding
is to describe with a word how a permutation is built by successively adding new
maxima. To do so, we introduce the notion of a slot in a permutation. The slots
are the places where a new maximum can be added to the permutation. We use
a ¢ to mark the slots in a permutation. The notation 123 ¢ 54 ¢ represents the
permutation 12354 where the ¢ holds the guarantee of a point between the 3 and
the 5 and at the end of the permutation. There are four different ways of adding a
maximum # in a slot:

* the slot can be filled: we replace ¢ by n,

¢ the maximum is added on the left of the slot: we replace ¢ by no

* the maximum is added on the right of the slot: we replace ¢ by on

* the maximum is added in the middle of the slot: we replace ¢ by ono

Those operations correspond to the letters f;, I;, r; and m; where i indicates in
which slot the insertion is performed. The insertion encoding of 2647153 is

mylyromy f3fifi.

1.3. AUTOMATIC METHODS OF ENUMERATION 7

The sequence of insertion is shown below:
0 —=010—=2010—=20103 22040103 = 2640153 — 2640153 — 2647153

Given a permutation class, we consider the language of the insertion encod-
ings of the permutations contained in it. Albert, Linton and Ruskuc came up with
a simple criterion to determine if the language of a permutation class is regular.

Theorem 1.6 (Albert, Linton and Ruskc [31]). The insertion encoding of a finitely
based permutation class Av(B) forms a reqular language if and only if B contains at least
one permutation from Av(132,312), Av(213,231), Av(123,3142,3412) and Av(321,
2143,2413).

We say that a permutation class is insertion encodable if the language of its in-
sertion encoding is regular. For an insertion encodable permutation class, the
finite accepting automata can be determined automatically using the method de-
veloped by Vatter [9]. Afterwards, tools of regular languages can be used to find
the generating function. It is worth noting that the generating function of a reg-
ular language is always rational. Hence, permutation classes which are insertion
encodable have a rational generating function.

1.3.3 Substitution decomposition

An interval of a permutation o is a set of consecutive indices i,i +1,...,j such
that the values ¢(i),0(i 4+ 1),...,0(j) are also consecutive. In the permutation of
Figure 1.2, the red region highlight the interval {3,4,5,6} where the values are
4532. The blue region highlights the set of consecutive indices {2,3,4,5,6,7} that
is not an interval since 0(7) = 6, 0(2) = 9 and but 8 = ¢(9). Every permutation

Figure 1.2: Interval in a permutation.

in Sy, has at least one interval of size n containing all of its indices and # singleton
intervals containing one index each. A permutation that has no other interval is a
simple permutation. The first few simple permutations are 1,12,21,2413,3142,

Let o be a permutation of size k and a1, ay, ..., ax be permutations. We define
the inflation of o with the aq,ay, ..., a;, denoted o, ay, ..., ax], as the permuta-
tion obtained by replacing 7r; in 7t by an interval that where the value form the
permutation a; when standardised. The permutation (213)[1,132,1324] is pic-
tured in Figure 1.3 with the inflated intervals in gray.

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Inflation the permutation 213.

Let 01,00 € S. We define o7 & 0, the sum of permutations, as 12[o, 0»]. The
skew-sum of permutations, denoted oy © 07, is 21[07, 03]. If a permutation ¢ cannot
be expressed as the sum or the skew-sum of two non-empty permutations, we say
that o is sum-indecomposable or skew-indecomposable, respectively. Simple permuta-
tions play the role of building blocks for permutations. Any permutation can be
described as the inflation of a simple permutation.

Proposition 1.7 (Albert and Atkinson [32]). Let o be a permutation of size greater than
1. There is a unigue simple permutation 7t of size greater than 1 and a unique sequence
a1, 0,...,0, €S such that

o= ay,an, ..., 0.

If T # 12,21 then aq, ay, . . ., &y is unique. If 1 = 12 or 21 then ay, ay are also unique if
wq is sum-indecomposable or skew-indecomposable respectively.

Hence, any permutation in a permutation class can be described by the infla-
tion of the simple permutations of the permutation class. When a permutation
class has finitely many simple permutations, it is possible to look at all the ways
for the forbidden patterns to stretch across the blocks of a permutation in the per-
mutation class. This type of argument is used by Albert and Atkinson to prove
that:

Theorem 1.8 (Albert and Atkinson [32]). The generating function of every permuta-
tion class that contains finitely many simple permutations is algebraic.

An algorithm that fully automates those techniques has been developed by
Bassino, Bouvel, Pierrot and Rossin [37]. An algorithm to determine if a permu-
tation class has finitely many simple has also been developed by Bassino, Bouvel,
Pierrot, Rossin [38] and is implemented in Permuta [39].

1.3.4 Combinatorial exploration and the Tilescope algorithm

In this section we cover the Tilescope algorithm introduced by Albert, Bean, Claes-
son, Nadeau, Pantone and Ulfarsson [34] and Bean [33]. The Tilescope algo-
rithm is an implementation for permutations of combinatorial exploration, a gen-
eral framework to automatically find counting sequences of combinatorial sets.
Combinatorial exploration was also introduced alongside the Tilescope algorithm
in [34] and [33]. Combinatorial exploration works by systematically applying a

1.3. AUTOMATIC METHODS OF ENUMERATION 9

small set of strategies to combinatorial sets to create rules. We call this set of rules
the universe. In this universe, the algorithm periodically searches for a combina-
torial specification (a set of rules where each combinatorial set appears exactly
once as a left-hand side) and presents it as a proof tree. Combinatorial exploration
and its applications to the domain of permutation patterns will be the main focus
of Chapters 2 and 3. We will for now avoid any technical definitions and give
the reader a feel for combinatorial exploration through an example. For a more
precise definition, we will, as needed, refer the reader to the appropriate sections
of [34] or defer them until Chapter 2. For our example, we derive a proof tree for
Av(132).

To be ready for our example, we first need to introduce some concepts. A
gridded permutation is a permutation where each point lives in a cell of a grid.
We write them as a pair (71, P) where 7 is a permutation of size n and P is an
n-tuple of pairs in IN>. When the gridded permutation is contained in a single
cell ¢ we often abbreviate (7, (c,c,...,c)) to (7,c). Like for permutations, there
is a notion of containment for gridded permutations. We say that the gridded
permutation (o, P) contains the gridded permutation (7, Q) if there is a subse-
quence of (c, P) such that the subsequence of the permutation standardizes to 7t
and the subsequence of cells is exactly Q. For example the gridded permutation
(2143, ((0,0),(0,0),(0,1),(0,0)) contains two occurrences of the gridded permu-
tation ((12, ((0,0), (0,1)). The subsequence of indices corresponding to the occur-
rences are 1,3 and 2, 3. We write G (1) to represent the set of gridded permutations
in the region [0, t) x [0,u). A more detailed introduction to gridded permutations
can be found in Section 6.1 of [34].

A tiling is a way to represent a set of gridded permutations. It consists of a fi-
nite grid together with a set of obstructions and a set of requirements. Obstructions
are a set of gridded permutations that must be avoided by the permutation in the
set represented by the tiling. Requirements are a set of sets of gridded permuta-
tions. To be in the set of gridded permutations represented by the tiling, a gridded
permutation must contain at least one gridded permutation from each of the sets
in the requirements. We always draw obstructions in red and requirements in
blue. Figure 1.4 shows examples of two tilings. The one on the left is the empty
tiling. The red point is a point obstruction. This tiling represents the set of permu-
tations with points in a 1 x 1 grid such that no point of the gridded permutations
are in this cell. In this case, the only gridded permutation is the empty one. For
convenience, we picture a cell with a point obstruction as an empty cell. On the
right, we find the point tiling. We see in red that the cell cannot contain a 12 or a
21 pattern. Hence, the only permutations that can be gridded on this tiling are ¢
and 1 where the 1 lives in cell (0,0). However, this tiling also has a requirement.
The blue point is the point requirement which means that the cell must contain a
point. Hence, the only permutation that can be gridded on this tiling is 1. For
convenience, we represent such a cell with a black point instead of drawing the
two obstructions and the requirement.

Figure 1.5 shows a more complex tiling. We see the 123 obstruction that crosses
from cell (0,0) to cell (2,0), meaning that a 123 occurrence in a permutation on
this tiling cannot have its 1 in the cell (0,0) and its 2 and 3 in cell (2,0). A gridded

10 CHAPTER 1. INTRODUCTION

S0 W

Figure 1.4: Two simple tilings.

permutation on this tiling must also have exactly one point in the cell (1,1) and
an occurrence of 21 in the cell (0,0). The gridded permutation 43512 with cells
(0,0),(0,0),(1,1),(2,0),(2,0) is a valid gridded permutation on this tiling. We
write Grid(7) for the set of such gridded permutations on a tiling 7. We say that
such gridded permutations are griddable on the tiling 7. Formally, a tiling and
Grid(7) are defined as follows in [34].

e
ST

Figure 1.5: Example tiling.

Definition 1.9 (Definition 6.1 in [34]). A tiling is a triple T = ((t,u), O, R) where t
and u are integers, O is a set of gridded permutations that we call obstructions and R =
{R1,Ra,..., Ry} is a set of sets of gridded permutations that we call requirements.

A tiling T represents the combinatorial set of gridded permutations g € GU'*) such
that g avoids all gridded permutations in O and g contains a gridded permutation from
each R; for 1 < i < k. We call this set Grid(T"). In other words, Grid(T) is the
set gridded permutations in the region [0,t) X [0,u) that avoid all of the patterns in
O and contain at least one of the patterns in each R;. We call the individual gridded
permutations in each R; requirements and we call each set R; a requirement list.

A more detailed introduction to tilings can also be found in [34] at Section 6.2.
We now have all the tools we need to look at a tree describing the structure of
the 132-avoiding permutation. This tree is pictured in Figure 1.6. The function F;
represents the generating function for the set Grid (7).

We first have the tiling labelled 7). Tt represents the permutations avoiding
132 gridded on a single cell. We can split this set based on whether the permuta-
tion contains a point or not. Hence, we get

Grid(7TW) = Grid(7®) U Grid(T®)

where T is obtained from 7 by adding a point obstruction and 7) is ob-
tained by adding a point requirement. In the terms of the generating functions,
this means

Fi(x) = Fa(x) + F3(x).

1.3. AUTOMATIC METHODS OF ENUMERATION 11

Smr

Il
)
°
L J

12
<
[]
J

N—==N NE=EN

I
)
[]
L

Il
[

Figure 1.6: A Tilescope proof tree for Av(132).

This rule is called cell insertion.
The only permutation that can be gridded on the tiling labelled 72 is e.
Hence,
Fz(x) =1.

Since its counting sequence is known we say that 7 (2) is verified. Verified tilings
are marked in green in the figure.

From 7 ®), we use a strategy called point placement that consists of forcing the
point of a requirement on its own row and column. We assume that the point is the
topmost one and place it in its own row and column. We still need to avoid 132,
hence we stretch the 132 obstruction in all ways across the new tiling. That gives
us the tiling 7). The latter is equinumerous to 7) in the sense that Grid (7 ®))
and Grid (7)) have the same counting sequence. To get to 7(%), we observe that
the 132 obstruction that has a point in cell (1,1) is equivalent to a 12 obstruction
going from cell (0,0) to cell (2,0) since a point is guaranteed in cell (1,1). We
get to 7(®) by observing that the crossing 12 makes the crossing 132 obstructions
redundant. Finally, T) is obtained with the observation that the crossing ob-
struction forces all the points in cell (0,0) to be above points in cell (2,0). This
strategy is called row separation. All the steps described above do not change the

12 CHAPTER 1. INTRODUCTION

counting sequence of the sets of griddable permutations on each tiling. Therefore,
in terms of the generating functions we have

F3(x) = RBi(x) = F5(x) = Fs(x) = F7(x).

Finally, we observe that the last tiling consists of three unrelated parts that can
be split by a factor strategy. We get

Fr(x) = Fs(x) - Fy(x)*.

We say that 7(®) is verified since we know that the only griddable permutation
is the point. Therefore, F4(x) = x.
From these decompositions, we get a system of equations

F(x) = h(x) + F(x)
BE(x)=1

F3(x) = F7(x)

Fr(x) = Fs(x)Fy(x)?
Fg(x) =x

that can be solved. The solution for F; is the generating function of the Catalan
numbers as expected.

It is also possible to derive counting recurrences from the proof tree presented
in Figure 1.6. After some basic simplifications, we obtain the following system of

recurrences. As we will do later in the text, we use the notation ’771(1:) to denote
Grid(T(l))n, i.e., the set of valid gridded permutations of size n on 7). With this
notation the system is:

D+
ifn=0
0 otherwise

S

>

I

— Q9
—

7 = AT

For readability, we use the fact that |7;(8)\ is 1 if n = 1 and 0 otherwise to avoid
having a double summation in the last equation.

The example above introduced some of the strategies that have been devel-
oped for the Tilescope algorithm. All the strategies used in that proof tree are
introduced in Section 6.3 of [34]. The beginning of Chapter 2 covers in more detail
the general notion of strategies and how combinatorial exploration can find proof
trees like the one we just presented.

1.4. OVERVIEW 13

1.4 Overview

In Chapter 2, we introduce more of the theory underlying combinatorial explo-
ration and the Tilescope algorithm. We also identify some of the limitations of
that theory. A new underlying theory for finding specifications is then introduced
and we prove its correctness. We conclude by showing how it can be applied to
find specifications for permutation classes. Chapter 3 builds on the theory de-
veloped in the previous chapter but extends it to combinatorial exploration with
catalytic variables. We introduce a new strategy called fusion and explain how
combinatorial exploration can be extended to work with combinatorial sets for
which we care about the enumeration with respect to some statistics. We con-
clude by presenting the first direct combinatorial description of Av(1342). This
description is found automatically using the techniques developed in Chapters 2
and 3. Chapter 4 presents a different approach for the enumeration of permu-
tation classes using inflation of independent sets of certain types of graphs. We
slowly build up from simpler to more complex examples and conclude by using
the results derived in the chapter to prove two unbalanced Wilf-equivalences, i.e.,
we show that two permutation classes with bases of different sizes have the same
counting sequence. Chapter 5 concludes the thesis by hinting at different exten-
sions and improvements that could be applied to the method developed in the
previous chapters.

14

Chapter 2

Forests

2.1 Background on combinatorial exploration

2.1.1 Strategies and combinatorial specifications

As mentioned in Section 1.3.4, combinatorial exploration is an automatic frame-
work for the enumeration of combinatorial sets. In practice, the output of combi-
natorial exploration is a proof tree like the one presented in Figure 1.6. A proof
tree is a rooted tree in the sense of graph theory where each vertex represents a
combinatorial set. The combinatorial sets represented in the leaves of a proof tree
must either have a known counting sequence, in which case we say that they are
verified, or be represented as one of the inner vertices of the tree. In the proof tree
of Figure 1.6, we know the counting sequence of the leaves that represent 7(?) and
78) while the other leaves represent 7 (1) which is an internal vertex in the tree
(the root). Each of the parent-to-children relationships in the tree gives a structural
connection between the parent and the children. In the example of Section 1.3.4,
we have shown how this relation translates both in terms of generating function
equations and in terms of counting recurrences.

To formalize this notion of structural relationship, Albert et al. [34] introduced
the concept of a combinatorial strategy. An m-ary combinatorial strategy S is
composed of three components: a decomposition function dg, a reliance profile
function rg and an infinite sequence of counting functions {Csl(n)}nz(). The de-
composition function takes as input a combinatorial set and returns an m-tuple of
combinatorial sets or DNA which stands for “do not apply”. When dgs(.A) = DNA,
it means that the strategy S cannot be applied in a meaningful manner to the set
A. Otherwise, if ds(A) = (B(l), ..., Bm), it means that there is a uniform way of
computing the counting sequence A from the counting sequence of B, ..., B(™).
The way to compute the counting sequence is described by the other two compo-
nents of the combinatorial strategy: the reliance function and the counting func-
tions. It is important to emphasize that those have to be the same no matter what
the input A is. The counting is not dependent on the input of the decomposition
function, A.

16 CHAPTER 2. FORESTS

The reliance profile function is a function from IN to Z™ that records how much
enumerative information from each of the combinatorial sets of the output is re-
quired to compute the number of objects of size n in the combinatorial set being
decomposed. Finally, the counting function cg (,,) indicates how to compute |.Ay|

from the |B]@ |. Formally, a combinatorial strategy is defined as followed.

Definition 2.1 (Definition 3.1 in [34]). Let Z be the collection of all combinatorial sets.
An m-ary combinatorial strategy S consists of three components.

1. A decomposition function dg : Z — 2™ U {DNA} whose input is a combinatorial
set A (the parent set), and whose output is either an ordered m-tuple of combina-
torial sets (B, ..., BU™) (the child sets) or the symbol DNA. When the output is
ds(A) = DNA, short for “does not apply”, we say that S cannot be applied to the
combinatorial set A.

2. Areliance profile function rg : IN — Z"™ whose input is a natural number n and

whose output is an ordered m-tuple of integers. We use réi) (n) to denote the i-th
component of rg(n), i.e.,

3. Aninfinite sequence of counting functions cg (,,) indexed by n € IN, each of whose

input is m tuples of integers w), ..., w (™) and whose output is a natural number.
The counting functions must have the property that if dg(A) = (BW, ..., Bm)

and rg(n) = (rél)(n), o ,rgm)(n)), then for input tuples

)

w(n) = (1B5"),...,18%)

(
Ts

(n)

we have
cs,(ny (@M (n), ..., w"™ (n)) = | Ayl

To be overly explicit, the domain of cg () is NP1 x ... x INPm, where

Dy = max(0,r) (n) + 1),
while the codomain is simply IN.

Again, we stress that the reliance profile and the counting function are inde-
pendent of the input of the decomposition. They have to work for any decompo-
sition produced by the decomposition function.

The concrete application of a strategy to a combinatorial set is called a combi-

natorial rule. We denote it A < (BM,...,BM) as a way to mean that dg(A) =
(BW, ..., BM). When the information about the strategy is not relevant, we often

omit the strategy from the notation and simply write A < (B(1),..., B("™)). Even
if, formally, the strategy applies to a combinatorial set, we will slightly abuse the

2.1. BACKGROUND ON COMBINATORIAL EXPLORATION 17

notation to describe the effect on tilings when talking about permutation patterns.
In this sense, d5 (7)) = (7®) should be read as ds(Grid(7®))) = (Grid(T®)).

A combinatorial specification is a set of rules where each combinatorial set in the
specification appears on the left-hand side of exactly one of the rules. Since each
combinatorial set appearing in the specification is on the left-hand side of one rule,
there is a combinatorial strategy applying to each of the sets in the combinatorial
specification. This gives a sequence of counting functions for each of the combi-
natorial sets. A combinatorial specification is, in fact, another way of representing
a proof tree. Each parent-to-child relationship in a proof tree actually corresponds
to a rule in the combinatorial specification. The combinatorial specification con-
tains a rule for each leaf of the tree for which the counting sequence is known.
These rules are created by a 0-ary strategy, meaning the decomposition function
of the strategy returns an empty tuple when it applies. Such strategies are called
verification strategies. If such a strategy S applies to a combinatorial set A then
ds(A) = (). Hence, the counting function doesn’t need any input to compute
|A;|. The condition of having the combinatorial sets of the other leaves appear
as internal vertices translates into having each combinatorial set on the left-hand
side of a rule. The combinatorial specification representation of the proof tree of
Figure 1.6 is given below.

AA/\A/—\/—\/—\/—\
=
N
=

~—

P
rTT T T T T

The definition of combinatorial specification discussed here is similar to the one
given by Flajolet and Sedgewick [2], though they did not have the formalism of
a strategy. While proof trees refer more to the tree form and combinatorial spec-
ifications to the set of rules, we will use these terms interchangeably in the text
as they are two perspectives on the same object. For a more detailed introduction
to proof trees, strategies and combinatorial specifications, we refer the reader to
Sections 3.1 to 3.3 of [34].

2.1.2 Finding the specification

We have so far covered at length the output of combinatorial exploration but not
said much about how combinatorial exploration finds those specifications. It is,
in fact, a two stage process: the expansion phase and the search phase.

18 CHAPTER 2. FORESTS

In the expansion phase, a set of strategies is used to decompose combinato-
rial sets. Starting with the combinatorial set we are interested in, combinatorial
exploration applies strategies to decompose it into other sets. Every time a de-
composition function applies to a combinatorial set, a rule is created. All the rules
are collected together in a collection of rules called the universe. As new rules are
created, new combinatorial sets appear. Combinatorial exploration then applies
the strategies to those new sets, creating more rules. This process can go on until
there is no new combinatorial set to apply the strategies to or until we pause it to
enter the search phase. Note that, in reality the expansion phase is not as naive as
described above. It is, in fact, governed by a complex system of queues with the
goal of controlling the combinatorial explosion that often occurs at that stage. An
interested reader will find more detail in Section 10 of [34] but the simpler model
introduced here is sufficient to understand the content of this thesis.

The expansion phase is periodically paused to proceed to a specification search
phase where combinatorial exploration identifies the rules that are in a specifica-
tion. To do so it uses the prune method introduced in [34].

Algorithm 1 The prune method (Algorithm 1 from [34]).

1: Input: A set of combinatorial rules U

2: Output: The union of all combinatorial specifications contained in U
3:

4: changed < True

5. while changed do

6: changed < False

7. for A & (BW,...,BM) e Udo

8: if any BU) is not on the left-hand side of any rule in U then
0 U« U~ {4 (BO,. .., BmYy

10: changed < True

11: end if

12: end for

13: end while

14: VU

15: return V

The algorithm works by continuously removing rules that cannot be in a com-
binatorial specification. This happens in the for-loop at line 7. For every rule, it
checks if all the children appear on the left-hand side of another rule in the uni-
verse. If one of the children of a rule does not appear on the left-hand side of
any of the remaining rules in U, then this rule cannot be in a specification built
from rules in U since any combinatorial set in a specification must appear on the
left-hand side of a rule. The prune method therefore removes this rule from the
universe (line 9). The process is repeated until nothing changes (line 5). At that
point every child of every rule in U is on the left-hand side of another rule in
U. As proved in [34], the output is the set of all rules that are in a combinatorial
specification.

2.1. BACKGROUND ON COMBINATORIAL EXPLORATION 19

Theorem 2.2 (Theorem 3.1 in [34]). For any set of combinatorial rules U, the set V
returned by Algorithm 1 is equal to the union of all combinatorial specifications that are
contained in U.

More details on how specification are found can be found in Section 3.4 and 3.5
of [34].

2.1.3 Finding a good specification

Sometimes combinatorial specifications do not contain enumerative information.
This is actually observed by Albert Bean, Claesson, Nadeau, Pantone and Ulfars-
son [34], where the following example of a specification that does not contain
enumerative information is given. Consider

%)

A& (B,0)
B & ({e},€)
¢ ({}.8)

%)

wn

where ¢ is a combinatorial object of size 0. Let S; be a strategy identifying that
|Ay| = |Bu| + |Cul, S3 be a strategy identifying that |C,,| = [{}n| + |Bx| and S
identifies that

n
Bul =)_ Hebil - 1Cu — .
i=0

After simplification, we obtain that

|An| = |Bu| +[Ch|
|Bn| = |Cn|
|Cn’ = |Bn|-

This system of recurrences is of course not sufficient to compute the counting se-
quences of A, B or C. If we want to compute how many elements are in Ag, the
strategy S; tells us to first ask how many objects there are in Bg and Cg. To com-
pute the number of objects in Bg, Sy tells us to ask for the number of objects in
Cg while to find the latter we need to first get the number of objects in Bg. This
is clearly an infinite cycle. We can therefore not compute those counts. Such a
specification is said to be trivial.

The method described above is, however, the general manner a combinatorial
specification should be used to compute counts. If we have a rule

¢ & BW,. .., Bm)

and want to compute |Cg|, the strategy S tells us how much information is needed
from each child (via the reliance function) and how to combine this information
to obtain |Cg| (via the counting function). To obtain the needed counts from each

20 CHAPTER 2. FORESTS

child BY), it recursively looks at the rule with BU) on the left-hand side and uses
it to compute all the needed Bi(])
Consider a combinatorial specification

C(l) (S_l (C(il,l),. . ‘,C(il,m]))

c2 2 (C(iz,l),‘ _.,C(iZ,mz))

C(N) <S_N (C(iN,l), .. ‘/C(iN,mN))

The reliance graph of the specification is an infinite directed graph whose vertices
are the sets Ci(]) for 1 <j < Nandi € N. We draw an edge from a vertex C)

1
to C l.(,] " if there is k such that C(') = ¢Uit) and i < rg;) (7). In other words, there
is an edge if CU/) is on the right-hand side of the rule that has CU/) on the left-
hand side and the reliance function of S j says that the count of C i(]) relies of Ci(,] ,).
The reliance graph perfectly encodes which sizes of which combinatorial sets are
needed to compute the counts of each size of each combinatorial set. Therefore, if
the reliance graph of a specification has no infinite directed walk the specification
can be used to compute the counts as the procedure described above will termi-
nate. In fact, having no infinite directed walk guarantees that the specification
uniquely determines the counting sequence of each combinatorial set it contains.
This fact is proved by Albert, Bean, Claesson, Nadeau, Pantone, Ulfarsson [34] as
Theorem 4.1. Such a specification is called productive.

Since not every specification is productive, we have to be careful with the
prune method since the output could contain trivial specifications. The way Al-
bert, Bean, Claesson, Nadeau, Pantone and Ulfarsson [34] achieve that is by ensur-
ing that any combinatorial specification contained in the universe is productive.
They do so by placing a restriction on the strategies used.

Definition 2.3 (Definition 4.2 in [34]). We call an m-ary strategy S a productive strat-
egy if the following two conditions hold for all combinatorial sets A with corresponding
decomposition ds(A) = (BY,...,B"), and foralli € {1,...,m}.

1. Forall N € N, if Ay relies on B]@, then j < N.

2. If Ay relies on BI(\? for some N € IN, then
(@) |Ay| > |B,(li)|for alln € N, and
(b) |Ag| > |B£i)|for some ¢ € IN.

)

fied way of stating the formal information contained in the reliance profile function of S,

As before, we use the phrase “ Ay, relies on B W or the diagram A, — B](i) as a simpli-

namely that j < rél)(n).

2.2. LIMITATION OF THE PRUNE METHOD 21

Informally, it means that for any given rule A & (BY, ..., BM) if the count of
BJ@ is needed to compute the count of A;, then one of the two following conditions

must be satisfied. Either the size of the objects in B]@ are smaller than those in A,

(ie., j < n)or, if j = n then there are always fewer objects of a given size in B()
than in A. This inequality must be strict for at least one size.

Rather surprisingly, this restriction on a strategy that is local to the rule guar-
antees that any combinatorial specification using these rules will be productive.
Albert, Bean, Claesson, Nadeau, Pantone and Ufarsson proved that specification
where all the rules are come from productive strategies is productive.

Theorem 2.4 (Theorem 4.2 in [34]). Let P be a proof tree, or the equivalent combinato-
rial specification, composed entirely of rules derived from productive strategies. Then the
reliance graph of P has no infinite directed walks.

Therefore, in a universe where all the rules are produced by productive strate-
gies, the prune method returns the union of all productive specifications since all
specifications are guaranteed to be productive.

It is worth noting that one very useful type of strategy is not considered pro-
ductive. Those are the unary strategies that identify that a set A is equinumerous
to a set B. For such a strategy the set 4, relies on B,, and the number of elements
of each size is the same in both sets. Such strategies are called equivalence strategies.
They do not satisfy part 2b of the definition of a productive strategy. An exam-
ple of an equivalence strategy can be found in the combinatorial specification of
Figure 1.6 when we observe that Grid(7(®)) is equinumerous to Grid(77)) using
the row separation strategy. Equivalence strategies are given special treatment
that involves collapsing together into an equivalence class combinatorial sets that
are discovered to be equinumerous by strategies. The prune method must then
be run with respect to rules of those equivalence classes to ensure productivity.
More details on how to handle equivalence strategies with the prune method are
given in Section 4.3 of [34]. Reliance graphs and productive strategies are covered
in greater details in Section 4.1 and 4.2 of the same paper.

The theory of productivity was a great leap forward in the development of
combinatorial exploration as it allowed, with a local condition on the strategies,
to ensure that any combinatorial specification built from it would be productive.
In the next section, we will however study an example of a specification that is
productive but where some of the rules could not be built from productive strate-
gies. The rest of the chapter will be dedicated to building the theory to support
a new algorithm that is more powerful than the prune method introduced in this
section. This algorithm will allow us to work with strategies that do not satisfy
the productivity condition.

2.2 Limitation of the prune method

At the root of the material presented in this chapter was an unexpected discovery
in some of the universes of rules produced by combinatorial exploration. Often,

22 CHAPTER 2. FORESTS

the searcher builds universes that do not contain a combinatorial specification
including the starting combinatorial set. This is easy to verify since, if there is
a specification in the universe, then the prune method is guaranteed to find it.
We however discovered that, if we converted all the rules of the universe into
generating function equations, this system could sometimes be solved to find the
generating function of the combinatorial set of interest.

Those examples were discovered early on by building some small universes of
rules and feeding the corresponding system of equations to Maple. This method
allows us to enumerate combinatorial sets but has two major drawbacks. First, it
does not give any structural information on the combinatorial set. When a com-
binatorial specification is found, it consists of a specific set of decomposition rules
describing how to break down your combinatorial set of interest into other com-
binatorial sets in a tree form. You can then present this decomposition visually as
we have done in the previous section. This decomposition often allows us to do
more than get the generating function. It describes a polynomial-time algorithm
to count, generate the objects in the combinatorial set and also sample the combi-
natorial set uniformly at random. When you are just solving the universe of rules
you do not get such a structural decomposition since all the information is just
fed into a solver that cannot explain how it comes up with a solution. Second,
this method is limited to small universes. Since this method requires us to solve
a system of equations with the same number of equations as the number of rules
in the universe it does not scale to bigger universes. While a typical universe can
contains hundreds of thousands of rules and can be handle without issue by the
prune method, solving the system corresponding to the universe is limited to only
a couple of thousand of rules before the system becomes absolutely unmanageable
for symbolic computation software.

Nonetheless, using this method on small universes provided indications that
there was something more that needed to be investigated in those universes. This
sparked our interest in understanding what was going on that allowed us to com-
pute the counting sequences of some combinatorial sets even if they were not in a
specification. We proceeded to build a pair of partial combinatorial specifications
(in the sense that some of the combinatorial sets were not on the left-hand side of
any of the rules). The method was quite ad hoc but it found pairs of partial speci-
fications where the joint systems contained enough information to enumerate the
combinatorial set of interest. These pairs were slightly closer to qualifying as a
structural description of the combinatorial set but it was still unclear how they
could be used for anything else other than solving the joint systems of equations.

One such pair of specifications appears in the conclusion of Bean’s doctoral
thesis [33] inspired by Claesson [40]. It is a pair of partial specifications for the
permutation class

Av(1234,1243,1324,1423,2134,2314)

for which the combined system of equations solves for the generating function
of the permutation class. The pair of specifications appears at Figure 2.1. The
reader does not need to pay attention to all the details of the specifications but it

is good to observe that the combinatorial set 7 () appears in both specifications

2.2. LIMITATION OF THE PRUNE METHOD 23

on the right-hand side of a rule but never on the left-hand side of any rule. It is
at that point in time that the name forest came into use as that having two trees
is obviously enough to qualify as a “forest”. However, as we will soon see, the
reasoning for this name quickly stopped making sense as the theory developed.

At this point, the main problem we were trying to solve was to find a method
that could figure out whether a universe contained sufficient information to enu-
merate the original combinatorial set even if the universe contained no combina-
torial specification for it. In other words, we wanted to obtain the same answer
as we get when solving the equations for the entire universe but with a method
scalable to much bigger universes. There were many iterations of various theo-
ries and code prototypes that we worked on. Until, at some point, we came to a
realization that turned out to be central to our theory. We realized that we could
sometimes get information from the children of a rule if we knew information
about the parent instead of the other way around.

For example, lets take a look at the rule 70 < (710, 70)) from Figure 2.1.
The rule is created by a cell insertion strategy where the gridded permutation
(1,(0,0)) is inserted. The generating function equation for that rule is To(x) =
Tio(x) + To(x). Equivalently, we have that To(x) = Tp(x) — Tip(x). We will
formalize the strategy later but we can for now interpret the rearranged equa-
tion as the generating function equation for a strategy that would create the rule
TO) (700, 700),

In a similar fashion, we can consider Tg(x) = Ts(x) - Ty(x), the generating
function equation for the rule 7® «+ (76, 7). We can rearrange it to get

T;(x) = %g; , that can, as previously, be thought of as the generating function

equation of a rule 7(7) « (7®), 7)),

The true power of this way of thinking reveals itself when we use it to rear-
range the two partial specification of Figure 2.1 into a single complete specifica-
tion. Consider the rule 7(7) «— (7(®), 7(11)) in the second tree. We can flip it into
the rule 7(©) « (77, 7(11)) and glue it under 7(©) in the first specification. The
first specification is still incomplete but it now misses a rule for 77) and 711
instead of a rule for 7(®). We can take all the rules under 7! in the second tree
and glue it under 7 (1Y) in the first tree. Now, the partial specification is only miss-
ing a rule for 7). We can therefore glue the rule for 77) we derived by flipping
the rule 7 <« (7©®), 7(7)). The specification now misses a rule for 7(®). Since
from the second tree we know that 7(8) and T(°) are equivalent, we can add the
rule 7®) « (7). Finally, we add the rule 7®) « (7,710, 1f we as well
transfer all the verification rules, the new tree is now a complete specification in
the sense that each combinatorial set in the specification is now the left-hand side
of exactly one rule. The full specification can be seen in Figure 2.2. This shows that
even though we did not find a specification in the universe, there was actually one
if we also considered the flipped versions of the rules in the universe as part of it.

It is, however, a risky business to also consider the flipped version of rules
as part of the universe. As discussed earlier, some combinatorial specifications
convey no meaningful enumerative information. The method described earlier

24 CHAPTER 2. FORESTS

Figure 2.1: Two incomplete combinatorial specifications which together contain
sufficient information to compute the counting sequence of the tiling 7(?).

2.2. LIMITATION OF THE PRUNE METHOD 25

Figure 2.2: A productive combinatorial specification using “flipped” rules. Tilings
in green are verified while red is used to highlight flipped rules.

26 CHAPTER 2. FORESTS

guarantees that you always find a productive specification as long as the strategy
used to create the rules are productive. When we allow ourself to rearrange the
rules like above, the productivity condition is broken. In fact, we can create a
specification for any combinatorial set almost instantly. Start by decomposing
the combinatorial set of interest using the rule is-empty-or-not. Then rearrange
this rule like we did above for the rule 7 « (709, 7)), Voila! You have a
specification with two rules where the corresponding system of equations is
Fi(x) =14 E(x)
F(x)=F(x) -1
This of course contains no enumerative information.

In the case of the combinatorial specification of Figure 2.2, the fact that the sys-
tem solves for all the variables can give good hope that the specification actually
contains meaningful enumerative information. Let us however convince ourself
even further by using Theorem 4.1 from [34] that states that a specification is pro-
ductive (i.e., we can use it to count the combinatorial sets it contains) if its reliance
graph contains no infinite directed walks.

To describe the reliance graph of the specification we need to know the reliance
function of each of the strategies. As we have not yet formally defined the strate-
gies used for flipped rules, we will, again stay mostly informal and derive the
edges that need to go into the reliance graph by looking at the counting formulas
the rules have. All the verification rules have no children and therefore no arrow
goes out of the vertices for those combinatorial sets in the reliance graph. Hence,
for any verified combinatorial set T there are no outgoing edges from any of

(i

part of an infinite directed walk and can therefore mostly be ignored for the pur-
pose of applying Theorem 4.1. For all the rules coming from disjoint-union type
strategies, we know from [34] that each component of the reliance function out-

put for size 1 is n. For example, rule 7 « (71, 7(2)) has a reliance function
n +— (n,n). Hence, the edges ’771(0) — 77(1) and 771(0) — 7;(2) are all in the reliance
graph forany 0 <i < n.

For the flipped version of disjoint-union type rules like the rule for 7(®) in

the vertices 7;). Since they have no outgoing edges, such vertices could never be

Figure 2.2, the counting formula is |771(6)| = |771(7)| - \7;1(11) |. Hence, the reliance
function for such a rule is also n — (n,1) and the edges in the reliance graph are
7;1(6) — 7;(7) and 7;,(6) — 7;(11) for0 <i<n.

Consider the factorization rule 7©) « (7®),76), 76) 7G) 7)) Accord-
ing to the definition in Section 6.3.5 of Albert et al. [34], the reliance function for
the strategy giving that rule is n +— (n —1,n —1,n —1,n — 1,n — 1) since T
contains no gridded permutation of size 0. The counting formula is

4 5 (5 6)
= T NPTt e,

i1+ip+iz+ig+is=n

However, we can observe that if i5 is # — 1 or n — 2 then at least one of iy, i3 or
is needs to be zero and therefore the whole term becomes zero. Hence, we can

2.2. LIMITATION OF THE PRUNE METHOD 27

restrict the counting formula to is < n — 3. Similar reasoning shows that we can
restrict to iy < n —3 and ip,13,is < n — 2. Hence, the counting formula becomes

7= RTINS

11+lz+13+14+15 n
0<ip,i3,ig<n—2
0<iy,i5<n—3

and we obtain a slightly more restrictive reliance function
n—mn-3,n—-2,n-2,n—-2,n-3).

This restriction will prove important when we draw the reliance graph and as-
sert the productivity of the specification in Figure 2.2. We will formalize in Sec-
tion 2.6.2 the definition of this more restrictive reliance function for the factor
strategy. For now we will simply add that the reliance function for the 712 ¢+
(T®),76), 7)) can be restricted to n +— (n —1,1n — 1,1 — 2) using similar rea-
soning as we did with the other factorization rule.

Finally, let us consider the reliance of the flipped factorization rule 7(7) «
(7®),7®)). First, consider the regular factorization rule TE — (T7),T6),
The reliance function is n +— (1 — 1, 1) and the counting formula is

n—1
TV = L TN
i=0
If we take this formula for |T +1\ we get
8
T8 = Y TN

We then isolate |7;Z(7) | to obtain

TS - o TN T |
7, 15>|

77 =

This is the counting formula needed for the flipped rule 7) « (7®),70)),
However, as we can see the counting also relies on 7(7) itself but only for shorter
sizes then the size we are trying to compute. This dependency on itself did not ap-
pear previously when we were only considering the generating function equation.
It is in fact more correct to consider the flipped rule as 77) « (7®),76), 7(7)
where the reliance profile wouldben — (n+1,n+1,n—1).

Finally the reliance function of the three equivalence rules 7 « (7)),
TE « (TO) and T « (T12)) is 1+ (n).

We now have all the information we need to draw the reliance graph of this
specification. For readability we will make a few simplifications. First, we do
not draw the vertices for verified combinatorial sets. As mentioned previously,

28 CHAPTER 2. FORESTS

those vertices do not have any outgoing edges and are therefore irrelevant in
the context of proving productivity using Theorem 4.1. Second, we only draw
the edge going to the biggest size for each child. For example the rule 7(©) <
(T, 7®@) would imply the edges (7;(0>, 76<2)), (771<0), T1(2>), ey (Tn(o), 7;,(2)) but
we only draw (771(0), 7;,(2)). The reliance graph is partially pictured in Figure 2.3.

Figure 2.3: Reliance graph of the combinatorial specification in Figure 2.2.
To confirm that the specification is productive we observe that the reliance

graph contains no infinite directed walk. To do so, we first partition the vertices
of the reliance graph into slices S,, where

12 11 6 7 3 2 0 9 8
So= (T T T O T T T T T

2.3. ENUMERABLE SUBSET 29

for n € IN. A slice S;; contains one 7;(1) for each of the 7(!) in the specification. A
slice is highlighted in orange in Figure 2.3. One key characteristic of those slices
(and the reason why they were defined like that) is that all edges originating from
a vertex in a slice S;; must end in the same slice S, or in a slice S; for i < n. This
can be easily checked by looking at the reliance function that we have described
or by inspection of Figure 2.3. One can also easily verify that there is no cycle fully
contained in a single slice.

We prove by contradiction that the graph cannot contain an infinite directed
walk. Suppose an infinite directed walk existed in the reliance graph. Let n be
minimal such that an infinite walk starts in S, and consider an infinite walk start-
ing in S;. The walk can only have finitely many step in S, since S, is finite and
contains no cycle. Therefore, the walk eventually uses node in S;;, with m < n.
This means there is an infinite walk starting in S;,;, contradicting the minimality of
n. Therefore, the reliance graph has no infinite directed walk and the specification
is productive.

Observing, like we have done in this very long example, that rules can be used
in reverse is really the key observation the reader should take from this chapter.
It is an observation that may seem like the obvious way a posteriori but was really
a breakthrough moment in the development of the theory. As we have seen, the
new flipped rules can not come from productive strategies so most of the theory
of Section 2.1 needs to be rethought. The following sections of this chapter are
dedicated to formalizing many of the approximations and hand-waving that took
place in this section and developing an alternative to the prune method that can
find specifications like the one of Figure 2.2.

2.3 Enumerable subset

What truly determines what can be counted in the universe is the reliance profiles
of the strategies. To verify if the term of the counting sequence for a given size and
combinatorial set in the universe can be computed, we only need to use the re-
liance profile function. For a combinatorial set C in the universe, the term |C;| can

be computed from the rules in the universe if there is a rule C <i (B (1), ..., B (k))
with a reliance function rg such that all the terms of the form |B]@\ that are re-
quested by rg can also be computed from the rules in the universe. Formally, it
means that, forall1 < i < kand 0 < j; < rgi)(n), the term \B]gi) | can be com-
puted from the rules in the universe. Though this recursive way of thinking gives
a good intuition, it is unfortunately not very useful in practice as you can quickly
fall into infinite recursion. Imagine you have a rule A & (B) with a reliance func-

tion rg, (1) = (n) and a rule B 2 (A) with the same reliance function. Then, if
you were trying to verify if the term |As| could be computed from the informa-
tion in the universe, the procedure outlined above would check if |Bs| could be
computed which would in turn check if | As5| could be computed and so on. To
resolve this issue we adopt here an approach from the ground up (more akin to
dynamic programming).

30 CHAPTER 2. FORESTS

Let U be a finite universe of combinatorial rules. We say that a combinatorial
set C is in U if it is contained in any of its rules. The set of combinatorial sets

contained in a universe U is denoted C(U). We define a sequence of functions
ffu) : C(U) — IN. The reader should interpret ffu)(C) = k as follows: after i
steps, the first k terms of the counting sequence of C are known, i.e., the terms for

size 0 to size k — 1 of the input combinatorial set have been found. Formally, the

sequence f(()u), fgu), fgu), ...1s defined as

o i) =0forallCc e U

. fl(iq €)= f;u)(C) +1if the universe U contains a rule C & (AM, ..., AK)

such that réj)(fi(u) €)) < ffu)(.A(j)) for 1 < j < k. Otherwise, fl(fl)(C) =
).

1

When a rule C + S(A(l), .. .,A(k)) satisfies the condition for incrementing in
the definition above, i.e., when rg)(ffu) €)) < fgu)(.A(f)) foralll < j < k, we

say the rule satisfies the increment condition for fgu). The construction of the fl(u)
should be seen as an iterative process to compute more and more terms of the

counting sequence of the combinatorial sets in the universe. The function fl(u)

indicating the number of terms known at step i of this process. We start without

any information about the terms. Hence, f(()u) is always 0. To compute fffl), we

look at the information we have about the terms at the previous step, i.e., the

function ffu). If we have enough information from step i to use a rule to compute
()
i+1
for that combinatorial set increases by one from its value for fl(u). Otherwise, if

ffu) does not provide enough information to compute a new term of the counting

sequence using any of the rules for the given combinatorial set then the value of

f(U) (u)

i1 stays unchanged from f;
f(U)
i+1
where we check whether each rule satisfies the increment condition for ffu).

one extra term for a given combinatorial set then the value of the function §

for that combinatorial set. Computing the function

can be done from fgu) by making one pass through the rules of the universe

Let build an example of the functions fl(u) for a small universe. We consider
the universe U consisting of the rules in Table 2.1. The functions féu) to f;u) are
given in Table 2.2. The base case gives us that f(()u) is 0 for all the combinatorial
sets. Let look in detail how the function fgu) is derived. The rule G «+ (&) is the

only rule of U with G as a parent. We have féu) (G) = 0 which is mapped to (—2)
by the reliance function. Moreover, the rule fulfills the increment condition for

f(()u) since —2 < 0 = féu)(g). Hence, f§”>(g) = 1. Let look at the combinatorial set
C. The two rules that have C as a parent have D as their second child. In both cases

the second component of reliance function maps 0 to 0. Hence, since f(()u) (C)=0

2.3. ENUMERABLE SUBSET 31

Parent | Rule Reliance function
A A« (B,C) | n— (n,n)

B B« () = ()

C C + (A,D) — (n—1,n)

C C+«+ (£,D) — (n—1,n)

D D« () = ()

F F+ (C,A) — (n,n+1)

g G+ () = (n—2)

Table 2.1: Example of the rules in a small universe with their reliance functions.

Combinatorial set f(()u) ﬁ”) féu) féu) fiu) féu) féu) f;u)
A 0 0 0 1 1 2 2 3
B 0 1 2 3 4 5 6 7
C 0 0 1 1 2 2 3 3
D 0 1 2 3 4 5 6 7
& 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 1 1
g 0 1 2 2 2 2 2 2

Table 2.2: The functions f(()u) to f;u) for the universe U of Table 2.1.

and f(()u) (D) = 0 the increment condition is not satisfied by any of those rules for
féu) and we have fgm (C) = 0. A similar reasoning shows that none of the rules
for the combinatorial sets A, £ and F satisfy the increment condition for f(gu) and

therefore f(u) (A) = f(u) &) = f%u) (F) = 0. The combinatorial sets B and D have
a verification rule, i.e., a rule with no children. Hence, the increment condition is

trivially satistfied for all ffu) giving us ffu) (B) = ffu) (D) =iforanyi € N and
in particular f%u) (B) = fgu) (D) = 1, completing the first column in Table 2.2.

We will not go into details on how each of the subsequent functions in the
table is computed as the reasoning is extremely similar. We will however make
a few important observations. The first is that since there is no rule with £ as a

parent we always have fl(u) () = 0foralli € N. Second, based on the previous
observation and the fact that the only rule for G depends on £ we can observe

that ffu) (G) = 2 for i > 2. Finally, we observe that from féu) onward, the rules
C + (A,D)and F «+ (C,.A) satisfy the increment condition for any function
with odd index in the sequence while the rule A < (B, C) satisfies the increment
condition for every function with even index in the sequence. Hence, the value
of the function for A, C and F will keep increasing as we move further in the
function sequence. Informally, we can see that as an indication that the universe
contains enough information to enumerate A, B, C, D and F but not enough to
enumerate £ and G.

32 CHAPTER 2. FORESTS

To begin to formalize this distinction between combinatorial sets for which
we can compute the counting sequence from the information in the universe and

those for which we cannot, we first introduce the limit of the sequence {f§u) tiso-
We define the function

fW: Cc(U) - NU {eo0}
¢ — lim i (C).

Since the sequence {fgu) (C)};s(is weakly increasing for any C € C(U), we have

that the sequence either converges or diverges to co. Hence, the function §(10) is
well defined. For the universe U in Table 2.1, we have §(1)(£) = 0and §f¥)(G) =2
while f1)(A) = {1 (B) = {1 (C) = {1 (D) = W(F) = .

Definition 2.5. We define E(U), the enumerable subset of U, as the preimage of co for
(U,

This set is called the enumerable subset since it is possible to compute the
counting sequence of any combinatorial set in it.

Lemma 2.6. For any combinatorial set C € E(U) and any n € IN, we can compute |Cy,|.

Proof. We proceed by induction on i to show that we can compute the counting
sequence of C up to size fgu) (C) —1forany C in U. The base case i = 0, is trivial as
féu) is always 0. Assume that the statement holds for i, i.e., that we can compute
the counting sequence of C up to size f;w (C) — 1 for any combinatorial set C in

the enumerable subset of U. If fff{ C) = ffu) (C), then by the hypothesis we
can compute the counting sequence up to size fl(ff (C) — 1. Otherwise, fl(g% C) =
fgu) (C) + 1 and the universe contains arule C < S(AM, ..., A®) that satisfies the

increment condition for fgu). We have that rg) (f(u) 0)) < fl(u) (AD) for1 <j <k

1
By the induction hypothesis, we can compute the counting sequence of AY) up

to size fl(u)(A(j)) —1for1 < j < k. Hence, we can use the counting function

of the strategy S to compute the number of objects of size fl(fl) (C)—1inC. By
the induction hypothesis, we can compute the counting sequence of C up to size

ffu) C)—1= fl(fl) (C) — 2. This concludes the induction.

Since C is in E(U), lim;_, ffu) (C) = oo and we can find i such that fl(u) C) =
n+ 1 for any n € IN. Hence, it is possible to compute the full counting sequence
of any combinatorial set in the enumerable subset. O

The previous lemma shows that any combinatorial set in the enumerable sub-
set is enumerable using the rules of the universe. The natural question that arises
from that is whether all the combinatorial sets that are enumerable with the in-
formation contained in the universe are in the enumerable subset. Though the
answer is not a straightforward yes, it is nonetheless partially answered by the

2.3. ENUMERABLE SUBSET 33

following theorem that gives a sufficient condition for a combinatorial set in a
universe U to be in E(U).

Theorem 2.7. Consider a specification whose reliance graph contains no infinite directed
walk. If all the rules of the specification are in a universe U, then all the combinatorial sets
in the specification are in the enumerable subset of U.

Before we can derive the proof of Theorem 2.7, we first need to introduce a
new tool: the augmented reliance graph. Informally, an edge C, — By, in the re-
liance graph of a specification indicates that, according to the reliance profile of
the rule for C, you need to first get the number of objects of size m in B to be able
to compute the number of objects size n in C. To build the augmented reliance
graph, we add all the edges of the form C;, — C,,_; to the regular reliance graph.
Informally, these edges enforce that in order to compute the number of objects
of size n for a combinatorial set C we must first compute the number of objects
of smaller size for the same combinatorial set. We first observe that adding the
edges to create the augmented version of the reliance graph cannot create infinite
directed walks.

Lemma 2.8. If the reliance graph of a specification has no infinite directed walk then the
augmented reliance graph also has no infinite directed walk.

Proof. We proceed by contradiction. Assume that we have a specification such
that its reliance graph has no infinite directed walk but its augmented reliance
graph does. We will show that from such walk we can always create another
infinite walk with a longer prefix in the reliance graph by cutting and gluing back
the walk in a clever way. We write the walk as a sequence of the visited vertices

¢4£%> N figﬁ) N J4£§) ...

Let k be the index of the first vertex in the walk where the outgoing edge of the
walk is not the reliance graph. There is such an edge otherwise the infinite walk
would be in the reliance graph. By construction, this edge must be of the form

.A,(l];) — 'Ale;)q- Let j be the index of the first vertex after A,(jz) in the walk where

the outgoing edge is in the reliance graph. This vertex exists as if we only used
edges not in the reliance graph we end up at .A(()k) and .A(()k) has no outgoing edge
that are not in the reliance graph. Hence, the infinite path looks like

A,(q%) — = A,(f;fll) — Ag;) — AS?_I — = Aflil]« = Af{? — -

where A% A,S’? is an edge in the reliance graph. Since n; — j < ny, we have

g1
(k=1) _, 4(K)

by definition that .Ankf1 e j is also an edge in the reliance graph. Hence,

AD s AL 5 A® = AP

Mg—1 ng—j

is an infinite walk in the augmented reliance graph but with a longer prefix in the
reliance graph. Repeating this process again and again on the same walk creates

34 CHAPTER 2. FORESTS

an infinite directed walk with no edge contained only in the augmented reliance
graph. This is a contradiction to the reliance graph having no infinite directed
walk. Therefore, the augmented reliance graph does not contain any infinite di-
rected walk. O

Armed with this new graph, we define a new function “rank” that maps the
vertices of the reliance graph of a specification to IN. Precisely, the function maps
each vertex to the length of the longest path starting from it in the augmented
reliance graph.

Lemma 2.9. If the reliance graph of the specification has no infinite directed walk then
rank is well defined.

Proof. Since the reliance graph of the specification contains no infinite directed
walk, the same goes for the augmented reliance graph by Lemma 2.8. Therefore,
for rank to be well-defined we only need to have finitely many paths starting from
each vertex in the augmented reliance graph. Suppose there are infinitely many
walks starting at a vertex v1. The outdegree of each vertex in the augmented re-
liance graph is finite. Hence, v; must have at least one child where there is also
infinitely many walks starting from it. If we keep repeating the argument on the
new vertex, we find a path v1, vy, v3, vy, . .. that is infinite. This is in contradiction
to the augmented reliance graph not containing an infinite directed walk. There-
fore rank is well-defined. O

Remark 2.10. One important observation about the function is that if the augmented
reliance graph contains an edge A, — By, then rank(Ay) > rank(B,,). In particular,
rank(C,) is always greater than rank(C,,_1) since there is an edge from Cy, to C,,_1.

Recall that the edges of the reliance graph express the reliance for computing
the number of objects in the vertices. Hence, the longer the longest path from
a vertex is, the more steps are needed to be completed before the number can
be computed. In that sense, we can think of rank(C,) as a function giving the
number of steps needed to compute the number of objects in C,,. We formalize
this intuition in the following lemma.

Lemma 2.11. Consider a specification whose reliance graph contains no infinite directed
walk. If all the rules of the specification are in a universe U, then

(U

frank(Cn)Jrl(C) >n+1

for any combinatorial set C in the specification and any n € IN.

Proof. We proceed by induction on the value of rank(Cy,).

If rank(C,) = 0, there is no edge going out of C,. In particular, we must
have n = 0, otherwise there would be an edge C;, — C,_;. Consider C &
(A(l), e, A), the rule for C in the specification. Since no edge goes out of Cy, it

2.3. ENUMERABLE SUBSET 35

means rV/ (0) < O0foralll < j < k since the edges of the reliance graph reflect the
reliance function. Hence,

fi;)k(c’n)ﬂ (€)= fgu) (C) = f(()u) C)+1=1.

Let K € IN and assume that

ffi)k(cn)ﬂ(c) =n+1

for all C, such that rank(C,) < K. Let C, be such that rank(C,) = K. By Re-
mark 2.10, we have that rank(C,,_1) < K. Hence, the induction hypothesis gives

n< fﬁaun)k(cnflm(c) <)

From there, we distinguish two cases. The first one is when f%u) (C) > n. In
that case, we have directly f}}fl(c) > n+1 as desired. The second is when
f%u) (C) = n. In this case, we use the induction hypothesis to show that the
rule for C in the specification satisfies the increment condition for f%u). Consider
cé (AM, ..., AK), the rule for C in the specification. Let rg(n) = (ay,.. i,)zxk).

By construction, the augmented reliance graph contains the edges C;, — .A,X]j for

1 < j < k. Therefore, by Remark 2.10, we have that rank(A,g]]‘,)) < rank(C,) = K
which allows us to use the induction hypothesis to get that

< . < .
DC] +]. fra (g(jj)) 1(./4) fK (A)

Consequently, for 1 < j < k, we have réj >(f§<u) €)) < f%u)(A(f)). In other words,
the rule satisfies the increment condition for f§<U> and fgi)l (C)=n+1 O

We now have all the tools to prove Theorem 2.7.

Proof of Theorem 2.7. Let C be a combinatorial set in the specification. By Lemma 2.11
we have

(u
j:rank(Cﬂ)-‘rl (C) >n+1

for any n € IN. Therefore, for each size n € I, there is a value of 7 such that
ffu)(C) > n. In other words, since {f;u) (C)}i>o is increasing lim ffu) (C) = oo.
1—00

Hence, C is in the enumerable subset. O

As a consequence of this theorem, we have that if all the rules of the specifi-
cation described in Section 2.2 were in a given universe then all the combinatorial
sets from that specification would be in the enumerable subset of that universe.

It is also interesting to note that this theorem applies to all specifications that
can be found with the theory developed in [34]. In fact, those specifications con-
tain only rules derived from productive strategies and we know from Theorem 2.4,

36 CHAPTER 2. FORESTS

that the reliance graph of any such specification contains no infinite directed walk.
In other words, all the specifications that could be found by the prune method (Al-
gorithm 1) will be in the enumerable subset.

2.4 Regular strategy

We concluded the previous section by showing that any combinatorial set that was
in a specification with a reliance graph that has no infinite directed walk would
be in the enumerable subset of a universe containing it. We have outlined with
Lemma 2.6 that the counting sequence of any combinatorial set in the enumerable
subset could be derived from the counting functions of the rules in the universe.
Does that mean that any combinatorial set in the enumerable subset is in a spec-
ification with a reliance graph containing no infinite directed walk? The answer
is unfortunately no as we will show with the following example. Consider the
universe consisting of the four rules presented in Table 2.3.

Parent | Rule Reliance function

A A+~ (B) | n— (n—1)

C C+~(B) |n—(n—-1)

B B (A) | nes n+1if niseven

n otherwise

B Be(C) | ns n if n is even

n + 1 otherwise

Table 2.3: A universe where elements of the enumerable subset are not in any
specification.

Table 2.4 shows some of the functions fgu) for this universe. One important
thing to notice is that only the rule B < (C) satisfies the increment condition for

fgu) while only the rule B < (A) satisfies it for fém. We observe that for any odd
i we can increase the value of A and B while for every even i we can increase the
value of B using alternately each of the two rules for that combinatorial set. We

can therefore convince ourself that fY) = co and E(U) = { 4, B,C}.

Combinatorial set ‘ f(()u) ‘ fgu) ‘ fé”) ‘ féu) ‘ fiu) ‘ féu) f
A 0 1 1 2 2 3 o
B 0 0 1 1 2 2 ©
C 0 1 1 2 2 3 S

Table 2.4: The function f(()u) to féu) as well as §(Y) for the universe U consisting of
the rules in Table 2.3.

By Lemma 2.6 we can, therefore, compute the counting sequence of A, Band C.
It is, however, not possible to build a specification containing the combinatorial set

2.4. REGULAR STRATEGY 37

B from the rules in U. If we chose to include the rule B < (.A) in our specification
then we also need a rule for A. The only choice is A <+ (B). We, therefore, have
the edges B, — A3 and A3 — B, which form a directed cycle in the reliance
graph of the specification. A similar scenario occurs if we chose instead the rule
B + (C). We can, therefore, not find a specification with a reliance graph that has
no infinite directed walk containing the combinatorial set 3, despite the set being
in the enumerable subset.

We will, moving forward, restrict ourselves to universes where all the rules are
produced by so-called regular strategies. This restriction will allow us to ensure
that all the combinatorial sets in the enumerable subset are in a specification. For

those restricted universes, we will show that we can compute f() from only a

finite number of ffu) which will make this approach computationally feasible. The
restriction we impose on strategies for them to be regular is a restriction on their
reliance functions. Each component of the reliance function of a regular strategy
must be a constant shift from the input.

Definition 2.12. A k-ary strategy S is regular if there are k constants Qél), cee Qiék) €N
such that

rg(n) = (n— le),...,n - Cék))
foralln € N.

For a regular strategy S, if the constant Qfé]) is positive, it means that the strat-
egy relies only on smaller sizes of its j-th child in its counting function. If Qg])is
0, then the counting function of S relies on size n of the j-th child. Similarly, a
negative Qﬁé]) means relying on a size bigger than n.

In the example above, the strategies that produced the rules for B are not reg-
ular strategies since the shift in their reliance profile functions is not constant but
instead changes with the parity of n.

At first sight, this condition might seem to restrict massively the kind of strate-
gies we can use, especially since it is does not include all productive strategies.
In practice, however, the definition of a regular strategy seems to encompass all
the useful strategies we use. In particular, we will observe in Section 2.6 that all
the strategies for tilings described in [34] are regular strategies. The reliance pro-
file functions described in the big example of Section 2.2 satisfy the conditions
for a regular strategy despite some of them not complying with the definition of
productive strategies.

Some strategies are regular but not productive, for example all equivalence
strategies. As defined in [34], they are unary strategies for which the decom-
position function output is another combinatorial set that is equinumerous to
the input. The counting function for such a strategy is then the identity while
the reliance profile function is n — (n). As highlighted in Section 4.3 of [34],
these strategies are not productive and therefore need to be treated differently
when working with the algorithm designed for productive strategies. Equiva-
lence strategies are, however, regular strategies since their reliance function is
n — (n —0). Hence, we do not need to treat them any differently in our theory.

38 CHAPTER 2. FORESTS

As we said above, in a universe where all the rules are produced by regular
strategies, we can guarantee that for any combinatorial set in the enumerable sub-
set the universe contains a productive specification for that combinatorial set. We
prove that in Section 2.4.3 with Theorem 2.20 but we will first need a few interme-
diate results.

2.4.1 A fully enumerable universe

We first show that if a universe allows us to compute the first term of the counting
sequence of all its combinatorial sets, then every combinatorial set in the universe
is actually in a productive specification.

Lemma 2.13. Let U be a universe of rules produced by regular strategies. Assume that

there is a K € IN such that f%u) (C) > 0 forall C in C(U). Then, for any combinatorial
set C in C(U), there is a subset of U which is a specification for C with a reliance graph
that contains no infinite directed walk.

Proof. The proof is structured as follow. First, we extract a specification for C(U)
where each combinatorial set of the universe is on the left-hand side of one rule.
In other words, we select one rule of the universe for each combinatorial set in the
universe. Second, we show that the reliance graph of this specification does not
contain an infinite directed walk. To do so we proceed by contradiction. Assum-
ing the graph contains an infinite directed walk, we will first show that this walk
needs to be a cycle and then show that it is also impossible to have a cycle in the
graph to obtain the contradiction.

We start by selecting the rules of the specification. Let C be a combinatorial set
in the universe. Let i € IN be maximal such that ffu) €) < f%u) (C). By the way
Efl’
arule C £ (AW, ..., A®)) which satisfies the increment condition for fl(u) . This
process gives a rule for each combinatorial set of the universe, i.e., a combinatorial
specification that contains all the combinatorial sets in the universe. To complete
the proof, we need to show that the reliance graph of this specification contains
no infinite directed walk.

We first make an observation about the rule selected for each combinatorial set

C. Let S¢ be the strategy that produced the rule C & (AD, ..., AW selected for

C in the specification. Since the rule satisfies the increment condition for fi(u), we
have

we chose i we know that, f; 7 (C) = f;u) (C) + 1. Hence, the universe must contain

i

00 ©) <1 A0

for1 < j < k. Since f%u)(C) = fgu)(C) +1and ffu) < f%u), the inequalities can be

written in term of f%u) as

G0 €) - 1) < 1 (AD).

2.4. REGULAR STRATEGY 39

Finally, since S¢ is regular, we get that
i (€) - el < i A @1)

for1 <j<k

We now show that the reliance graph of the specification contains no infinite
directed walk. Suppose that the graph contains an infinite directed walk. We
consider the level function denoted 1vl from the vertices of the reliance graph of
the specification in IN defined as

WI(Cy) = n— D (C) + M 2.2)

where M = maxCEC(u)(f%u) (C)). We select M in this way to ensure that the
codomain of the function Ivlis IN.
Consider an edge C;, — By, of the reliance graph of the specification. Then, if

C <S£ (A(l), e, .A(k)) is the rule of the specification with C as the parent, we must
have that B is one of its children. Let iz be the index such that A(5) = B. By
construction of the reliance graph, we have

m < rgf)(n) =n— Qigf)

since the graph contains the edge C;, — B;;. By adding (2.1) and M on each side,
we find u ‘ A u
m+ 1 () — el + M <n— P+ (B) + M.

We can add Cgcg) on both sides to get

m =1 (B) + M <n—1(C) + M.
Using the definition of 1vl we can simplify to
W1(Bm) < W1(Cy).

This shows that any edges in the reliance graph can only end at a vertex which
has level less than or equal to the level of the vertex it starts at. Since there is a
lower bound of 0 on the level of a vertex, the infinite directed walk must have an
infinite suffix where all the vertices are of the same level. In particular, the graph
must contain an infinite directed walk where all the vertices are of the same level.

Since only a finitely many vertices are of the same level, the graph must contain
a cycle. Let

k k
AD = AD Al o Al = Al
be a cycle in the reliance graph. Each edge AEIZ;.) — Aﬁflﬂ) in the cycle gives an
inequality of the form
(i)

Mip1 < Tg;)l_ (ni) =n; — QSA(Z)

40 CHAPTER 2. FORESTS

where j; is the index of .A(*1) among the children of the rule with .A(*) as a parent.
If we sum all these inequalities for each edge, the n; cancel and we get

k
) ¢, =0 (2.3)

=1

To find the contradiction, we now show that this sum must be strictly less than
0. Let K’ be the largest integer such that fg,l) (AD) < f%u) (AD) for all combina-
torial sets A() involved in the cycle. By the maximality of K/, there is at least one

combinatorial set A() in the cycle such that fK/ +1() = féu) (A1), Without loss
of generality, we can assume thati = 1 and

FAD) 11 =41 Ay =50 AW,

By the choice of K’, we have
o) (A®) < D (A®) -1

Finally, from the construction of the functions, we derive that
e (AD) — eV = (i (AD)) < 1 (A®),
Combining the last three equations, we get
iAW) —ed) < i A®),

For 2 < i < k, we can get a similar inequality (though not strict) from (2.1). Pre-
cisely, we have
u] 'i u /
i (AY) et < g At)
for 2 < i < k. Summing the inequalities, we get

k .
y el <o
iz Al
since all the f,(cu) (AD) terms cancel. This is a contradiction with (2.3). Therefore
the reliance graph of the specification does not contain an infinite directed walk.
O

One interesting consequence of this lemma is that the enumerable subset of
such a universe is always C(U). This follows from Theorem 2.7 since all combi-
natorial sets of U are in a specification whose reliance graph contains no infinite
directed walk.

Corollary 2.14. Let U be a universe where all rules are produced by regular strategies.
Assume there is a K € IN such that f(u)(C) > Oforall Cin C(U). Then C(U) = E(U).

2.4. REGULAR STRATEGY 41

The situation where all the combinatorial sets in the universe are actually in
the enumerable subset is however very unlikely to appear in practice. What we
expect to see is a universe where some of the combinatorial sets are in the enu-
merable subset and some can only be enumerated up to some size (or maybe not
at all). In those cases, what we would like to do is to identify a subset of the uni-
verse that has the same enumerable subset but no extra combinatorial sets that
are not in the enumerable subset. If we found such a subset, we could then use
Lemma 2.13 to guarantee the existence of a specification for each combinatorial
set in the enumerable subset.

2.4.2 A separating function

To be able to identify such a subset, we introduce the notion of a separating function
of a universe U. For any function g : C(U) — IN, we can always find an interval
of size y such that the preimage of this interval is empty. We call such an interval
a gap of size p of g. Once such an interval is fixed, it can always be used to split
C(U) into two sets: the combinatorial sets that have their image to the left of the
interval on the number line and those to the right of it.

Especially, if the gap is of size y(U) where u(U) is defined as the maximum
the absolute value ’QZ(S] M of any strategy S used to produce a rule in U, an interest-
ing property occurs. Any reliance profile function involved in the universe maps
numbers to the left of the gap to numbers inside or to the left of the gap. Similarly,
any reliance function maps numbers to the right of the gap only to numbers in
or to the right of the gap. This means, in particular, that no rule with a child not
on the same side of the gap as the parent can satisfy the increment condition for
g. We will see later in this section how this property can be used to compute the
enumerable subset of the universe.

To be a separating function of U, a function g : C(U) — N must satisfy three
conditions. First, we must be able to compute at least g(C) terms of the counting
sequence of C using the rules in U. Equivalently, ¢ must be a lower bound for
f(). Second, the interval [K, K + p(U) — 1] must be a gap of the function. Third,
no rule with a parent that is on the left side of the gap of size u(U) must satisfy
the increment condition for g.

Definition 2.15. Formally, let U be a universe where the rules are produced by regular
strategies and

wl) = max{’@ig)’ : S is an m-ary strategy used in U and 1 < j < m} .

Let g : C(U) — IN be a function and K € IN. Then g is a K-separating function for U
if

(i) g(C) <§W(C) forall C € C(U),

(i) g (K K+p—1)) =2

(iii) for any combinatorial set C such that g(C) < K there is no rule with C as the parent
that satisfies the increment condition for g.

42 CHAPTER 2. FORESTS

We call [K,K + u(U) — 1] the separating gap of g.

As mentioned previously, the combinatorial sets in C(U) can be partitioned
based on whether ¢ maps them to the left or the right of the gap. If

L={CeC(U):4(C) <K}
and
R={CeC(U):g4(C)>K+u(U)}
then C(U) is the disjoint union L LI R. To understand condition (iii), it is good to

think of g as a function describing the number of terms of the counting sequence

known for each combinatorial set. This is similar to the way we think of the f;u)
functions. With this point of view, condition (iii) of the definition means that, if,
for each combinatorial set, we know the number of terms of the counting sequence
given by g, then we cannot compute any more terms of the counting sequence of
the combinatorial sets in L using the rules of the universe.

It is relatively easy to check whether a function fl(u) is a K-separating function
for U. By construction, all fgu) are a lower bound of f(u). Hence, condition (i) is al-
ways satisfied. Condition (ii) is verified if f;u) ([K, K+ u(U) —1]) = @. Moreover,
if ffu) C) = fffﬂ (C) for all combinatorial sets C on the left of the gap then condi-
tion (iii) is also satisfied and f;u) is a separating function. In fact, for any universe

of regular rules, there is always one of the ffu) that is a separating function.

Lemma 2.16. Let U be a universe where the rules are produced by reqular strategies.

There exists |,K € IN such that f§u) is a K-separating function and E(U) is the set of
combinatorial sets to the right of the gap.

Proof. Let K — 1 be the largest value that {() reaches that is not infinity, i.e.,

K=1+ max Wey).

cec(U)\E(U)(f (©)
By construction, we can find | € IN such that f;u) (€) = §f¥)(C) for any combina-
torial set C that is not in the enumerable subset of U and f}u) (C) >K+pu(u) -1
for any combinatorial set C that is in the enumerable subset. We show that f}u) is

a K-separating function for U. Since f;u) is a lower bound for §(!), condition (i)

is satisfied. By the choice of J, condition (ii) is also satisfied. Moreover, since
u . . u

f§)|C(U)\E(U) is equal to f(u)‘c(u)\E(u)/ it must also be equal to f§+)1|c(u)\E(u)-

Hence, condition (iii) is also satisfied. By our choice of], we also have that E(U)

is the set of combinatorial sets to the right of the gap. O

Lemma 2.16 shows that there is always a separating function that allows us to
identify the enumerable subset of the universe. Actually, we will, in the following

2.4. REGULAR STRATEGY 43

pages, demonstrate that for any separating function the enumerable subset is al-
ways the set of combinatorial sets to the right of the gap (see Corollary 2.19). We
start by showing with Lemma 2.17 that the combinatorial sets to the left of the gap
are never in the enumerable subset. In fact, the value that a separating function
can take for the combinatorial sets on the left of the gap are unique. We show that

they must be the value of f(1).

Lemma 2.17. Let U be a universe where the rules are produced by reqular strategies. Let
g be a K-separating function for U. If L is the set of combinatorial sets of U that are to the

left of the gap of g, then {W) |, = g|;.

Proof. Assume that {(1)|; # ¢|;. Since g is a lower bound for §{), there must be
some combinatorial set in L for which f() exceeds g. Let i € IN be maximal such

that fl(u) |L < g|L. By maximality of i, there exists C € L such that fl(fl) (C) > g(C)
and fgu) (C) = g(C). By construction, ffﬂ C) = ffu) (C) + 1 and there is a rule
c & (AD, ..., A(m) that satisfies the increment condition for fl(u). Consider
AW, a child of that rule. If AY) € L then

Téj) ((C)) < Tg)(f(u) €)) < fl(u)(_A(]')) < g(A(f))

since fgu) is a lower bound for g. Otherwise, if A/) ¢ L, then the image of A")
under ¢ must be to the right of the gap of g. Consequently,

1 (8(0) = 5(C) — € < g(€) + p(U) < K-+ p(U) —1 < g(AD).

Since one of those cases apply for every child A", the rule satisfies the increment
condition for g, which is in contradiction with condition (iii) of Definition 2.15. O

Lemma 2.17 allows us to use a separating function to identify combinatorial
sets that are not in the enumerable subset. As we will prove with the next lemma,
these combinatorial sets do not have an impact on what is in the enumerable sub-
set. We can remove from U the rules that involve combinatorial sets in L without
changing the enumerable subset.

Lemma 2.18. Let U be a universe where all the rules are produced by regular strategies.
Let g be a K-separating function for U. Let R be the set of combinatorial sets of U that are
to the right of the gap. If U’ is the subset of U consisting of only the rules with all their
combinatorial sets in R then

1R < 79+ Kt p(U) - 1.
Proof. We define a sequence of functions g; : C(U’) — N by
(u)

$i(C) = {ff (€)= K—p(u)+1 i f7(C) > K+ p(u) -1

0 otherwise.

44 CHAPTER 2. FORESTS

and show that g; < fgu/) for all i € IN. We proceed by induction. The base case
follows from the fact that gg is always 0. Assume that g; < fl(u,) and show that
giv1 < T Let € € C(U). 1 g5(C) = g141(C) or gi(C) < 11" (C) then g;141(C) <
fl(fl) (C). Otherwise, g,+1(C) = gi(C)+1and g;(C) = fgu/>(C). From the first
equality, we deduce that sz() = f;u) (C)+1and f;u)(C) > K+ u(U) —1. By
definition of the fi , there is a rule C & (.A(l), ... ,.A(m)) in U that satisfies the

increment condition for ffu). More formally, the reliance profile function of the
strategy S producing the rule satisfies

G €)) < (A

for 1 < j < m. Since the strategy S is regular, the inequalities above can be
simplified to

ey —ed < it av). 24)
Since ffu) (C) > K+ u(U) — 1, we derive that
K+pu) —1—e¥ < {0 u).

By definition, u(U) — ng) > 0s0K < ffu) (AD). Since fl(u) is a lower bound for
f(u), we have ‘
K<t (Al). (2.5)

By Lemma 2.17, if g(AU)) < K, then W) (AU)) = ¢(A)) < K which contra-
dicts Equation (2.5). Therefore, the image of .A) under g is on the right of the

separating gap. Consequently, the rule C & (AW, ..., Am)Y is a part of U’
Moreover, from Equation (2.4), we have

100 = (K+pu) —1) — e < {1 (AD) — (K+ p(u) - 1),

Since fl(u) (C) > K+ pu(U) —1, we have g;(C) = f(u)(C) — (K+u(U) —1) and by
construction fl(u)(A(f)) — (K+p(U) — 1) < g;(AD). Hence,

5i(C) — &) < gi(AD).
Moreover, since g;(C) = fl(u,) (C)and g; < fgu,), we have
e —ed <0,

Since S is regular, we have

2.4. REGULAR STRATEGY 45

!
Therefore, the rule satisfies the increment condition for f§u). Since the rule is

in U’, we have fgf;) C) = fl(u,) (C)+1. So gi+1(C) = ffﬂ) (C) and that concludes

the induction.
To conclude the proof, we consider a combinatorial set C in R. From the induc-
tion above, we can infer that

lim g;(C) < ().

i—o0
Moreover, since C is to the right of the gap, we know that
K+ p(U) < g(€) <i(C).
Therefore there exists j € IN such that f;u) (C) > K+ u(U) foralli > j. Hence,

lim g(C) = lim f*)(C) — K — p(U) + 1 = §¥(C) — K — u(U) + 1.

i—00 i—00
Combining with the inequality above, we get
i(e) <14e) + K p(u) — 1. 0

A combinatorial set C in the enumerable subset of U cannot be in the set L by
Lemma 2.17. Hence it must be in R. Since it is in the enumerable subset of U,
we also have that {)(C) = co. By Lemma 2.18, {)(C) is also oo and C is in
the enumerable subset of U’. Therefore E(U) C E(U’). Since U’ is a subset of
U and adding rules can only make the enumerable subset bigger, we have that
E(U) = E(U"). We can therefore think of Lemma 2.18 as allowing us to remove
rules from a universe in such a way that the enumerable subset is not affected.

In fact, we can say much more about the enumerable subset when we have a
K-separating function for a universe U. Consider the subuniverse U’ like the one
in Lemma 2.18. From the definition of a K-separating function, we have

K+u(U) < glcary < flear)
and from Lemma 2.18, we have
f(u)|C(U’) <+ K+ p(U) - 1.
Combining those two inequalities together, we get
1<,
Corollary 2.14 gives us that C(U’) = E(U’) and therefore E(U) = C(U’).

Corollary 2.19. Let U be a universe where all the rules are produced by regular strategies.
Let g be a K-separating function for U. Then the enumerable subset of U is

{Cec(U):glc) > K}

46 CHAPTER 2. FORESTS

2.4.3 Enumerable subset

After all these technical results, time has come to reap the rewards of our work
and finally prove that every combinatorial set in the enumerable subset is in a
productive specification.

Theorem 2.20. Let U be a universe of rules produced by regular strategies. The enumer-
able subset of U is the set of all combinatorial sets of U that are in a specification contained
in U and whose reliance graph contains no infinite directed walk.

Proof. From Theorem 2.7, we already know that any combinatorial set that is in a
specification must be in the enumerable subset.

To show that any combinatorial set in the enumerable subset is in a productive
specification we will use Lemma 2.13. By Lemma 2.16, we can find a separating

function f%u) for U. We know that the combinatorial sets to the right of the gap
form the enumerable subset of U. By Lemma 2.18, the universe U’ consisting of
the rules of U where all the combinatorial sets are in E(U) has the same enumer-
able subset as U. This set is also the set of combinatorial sets of U’. In fact, we
have E(U) = E(U') = C(U’).

Since E(U’) = C(U’) thereis a K’ such that fg,l,) > 0. Therefore, by Lemma 2.13
U’ contains a specification whose reliance graph has no infinite directed walk for
each combinatorial set in C(U’). Since U’ is a subset of U, U contains such a spec-
ification for any combinatorial set in C(U’) = E(U). O

We, therefore, have that the enumerable subset is the set of all combinatorial
sets that are in a specification with no infinite directed walk in its reliance graph.
This result is in some sense similar to Theorem 3.1 from [34] that states that the
output of Algorithm 1 (which we call the prune method here) is the set of all rules
contained in a productive specification. The enumerable subset is, in some sense,
the analogue of the output of the prune method. The first one giving a set of
combinatorial sets that are in a productive specification while the latter gives the
set of rules that are in a productive specification. It is also worth noting that in
[34] the strategies used must be productive while in the our theory they must be
regular. Both approaches, however, serve the same purpose of identifying what
can be enumerated in the universe. Having only the combinatorial sets and not
the rules that are in a specification will make the extraction of a specification more
difficult. This issue will be addressed later but we will first establish how the
enumerable subset can be computed by a computer. To do so we will use again
the technical lemmas established in this section.

2.5 Computing the enumerable subset

As we have seen in the Section 2.4.2, a separating function allows us to distinguish
between combinatorial sets that are in the enumerable subset and those that are
not. In particular, Corollary 2.19 tells us that the enumerable subset of U is the set
R of combinatorial sets to the right of the gap of any separating function for that
universe. This means that, to compute the enumerable subset, we actually only

2.5. COMPUTING THE ENUMERABLE SUBSET 47

need to find a separating function. We have seen right before Lemma 2.16 how one

could easily check whether the function fl(u) is K-separating using fl(fl) This check
can, however, only answer the question for one specific K. It could be that our

ffu) is not K-separating but (K + 3)-separating instead. With the following lemma
we however show that it is sufficient to check if a function g is K’-separating for a
single well-chosen K’ in order to know if there exists a K such the g is K-separating.

As in Definition 2.15, u(U) is defined as the maximum of all the ’Qig)’ for any
strategy S used to produce a rule in U.

Lemma 2.21. Let U be a universe where the rules are produced by regular strategies. Let
g be a K-separating function for U. If

K' =min{n € N: g Y ([n,n+ul) —1]) = 0}
then g is also K'-separating.

Proof. Let g be a K-separating function for g. We show it is also K’-separating.
Since g is K-separating, we have that ¢~ ! ([K, K + u(U) — 1]) = @. Hence, by con-
struction of K/, we have that K’ < K. Therefore, condition (iii) of Definition 2.15
is satisfied. By construction, condition (ii) is also satisfied. Condition (i) follows
from g being K-separating. O

An algorithm to compute the enumerable subset is described in Algorithm 2.
It successively builds the fl(u) (line 4) and checks whether they are a separating

function or not (lines 5-7). Lemma 2.21 allows us to check if fl(m is K-separating
for a single K. When one separating function is found, the algorithm returns the
set of combinatorial sets to the right of the function gap (line 8). By Corollary 2.19,
this is the enumerable subset.

Moreover, from Lemma 2.16 we know that one of the ffu) is a separating func-
tion. The algorithm is, therefore, guaranteed to terminate.

Theorem 2.22. Algorithm 2 terminates and returns the enumerable subset of the uni-
verse.

A more advanced version of Algorithm 2 has been implemented as part of
the comb_spec_searcher python package [41]. The implemented version does not

compute successively the fl(u) but instead maintains a lower bound for §t) that
can be updated as rules are added to the universe. This is useful for combinatorial
exploration as we can follow the evolution of the enumerable subset as we cre-
ate the universe. The implementation also maintains additional data structures
to avoid needing to loop over the whole universe of rules. These implementation
details allow for a fast computation of the enumerable subset. In practice, com-
puting the enumerable subset takes a negligible amount of time when contrasted
with the time needed to create the rules of the universe and compute the reliance
functions.

48 CHAPTER 2. FORESTS

Algorithm 2 Finding the enumerable subset of the universe U.

1: Input: A universe U of combinatorial rules produced by regular strategies
2: Output: The enumerable subset of U
3:
4: 140
5: f(()m :C(U) — Nis always 0
6: loop
7: fl(f% < Make one pass through the rule of U to build from ffu)
-1
8: K<—min{n€]N:fEu) ([n,n+puU)—1]) =0}
o Le{ceu:iC) <K}
C))

. u
10: 1ff§)\sziﬂhthen
11: return {C € U : ffu) (C) > K}
12: end if
13: i+i+1
14: end loop

2.6 Enumerable subsets for permutation patterns

In [34], the domain of pattern-avoiding permutations is the application of combi-
natorial exploration that is discussed to the greatest extent. Six different types of
combinatorial strategies are discussed at length: requirement insertion, obstruc-
tion and requirement simplification, point placement, row separation and column
separation, factorization and obstruction inferral.

We will quickly revisit those strategies and show that they are regular. We will
also formalize strategies that produce the rules we have obtained by flipping rules
in the example of Section 2.2, and show that altough not necessarly productive,
they are regular.

2.6.1 The requirement insertion strategy

Section 6.3.1 of [34] introduces the requirement insertion strategy. The idea behind
this strategy is to split a set of gridded permutations defined by a tiling into two
sets depending on whether they contain one of the gridded permutations in a set
of gridded permutations H or not. Formally, a gridded permutation griddable on
T = ((t,u), 0, R) contains one of the gridded permutations in H if it is griddable
on ((t,u),0,RU{H}). On the other hand, it does not contain any of the gridded
permutations in H if it is griddable on ((t,u), O U H,R). We denote these new
tilings respectively, by insg (H, T') and insp (H, 7). From the discussion above, it
is clear that

Grid(7) = Grid(insp(H, T)) U Grid(insg (H, 7))

where Ll denotes the union of two sets.

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 49

This leads to the formal definition of the requirement insertion strategy. For
any set of gridded permutations H, the strategy ReqInsyy is defined as follows!

e If 7 is a tiling of dimensiont x uand H C G (t4) Then

dreqins (T) = (insp (H, T),insg (H, T)).

* The reliance profile function is rgeqinsy, (1) = (11, 1).

¢ The counting functions are

Creatnsyy,(n) (30, -+, an), (bo, - .., bn)) = an + by.

Consider the tiling 77) from the example of Section 2.2 and the gridded per-
mutation ¢ = (21,(0,1)). The tiling insp(g, T77)) is the tiling 7(®) on in the
same example while insg (g, 7(7)) is the tiling 7 (1), Therefore dreqrns s} (T =
(7, 7). Figure 2.4 shows the full decomposition.

7(6) 711

Figure 2.4: An application of the strategy ReqIns (1 (0,1))}-

This a typical example of strategy that breaks down a combinatorial set into
a disjoint union of combinatorial sets. In general, these are strategies S such that
ds(A) = (BW,...,BM) implies A, = BY U uBM™ forall n € N. These
strategies have the reliance function rg(n) = n +— (n,...,n) and counting func-
tions cg () of the form

m .
CS,(H)((b(()l)/ v rbi(il))r ceey (b(()m)/ .. /b1(1m))) = 2 bn1)~

ILike in [34], we describe strategies by their action on tilings even though they actually act on the
combinatorial sets that are the sets of griddable permutations.

50 CHAPTER 2. FORESTS

These are more or less what are called a disjoint-union-type strategies in [34].
However, as we do not need to restrict ourself to having productive strategies,
we can be a bit more loose with our definition of disjoint-union-type strategy. In
particular, we do not need to restrict the definition to strategies with more than
one child nor to strategies that only produce non-empty children.

It follows naturally from the reliance profile functions that such strategies are
always regular. The constants Qg) are, in this case, zero. In particular, the require-
ment insertion strategy is regular.

Let say that a disjoint-union-type strategy S decomposes a set .4 into the sets

B, ..., B Then from the counting formulas we know that

|Au| = 1BV + -+ B,

The last equation is naturally equivalent to

1BY| = | Aa = (1BP |+ +1B™)).

Despite being a trivial algebraic manipulation, it shows that we can compute
the number of elements of size 1 in B(1) if we know the counting sequence of
B®@,...,B and A up to size n. We can therefore have a strategy that decom-
poses B1) into B?),..., B and A. The child B does not play any particular
role in the reasoning above. Therefore, such a strategy can actually be defined for
any child.

* Let S be a disjoint-union type strategy. Let 7 be a tiling and 7 and integer. If
ds(T) = (BW,...,B(M) and BY) = A then

dRevDisjointslT,i (-A) - (B(l); ey BU—U, B(H_l), ey B(m), T)

Otherwise,
dRevDisjointslT,,- (A) = DNA.

¢ The reliance profile function is
TRevDisjointg7; — (Tl, e, n)_

* The counting functions are
1 1 ‘
CRevDisjointslTli,(n) ((a(())/ ceey ai(’l))1 ceey (a(()m), ceey aglm))) = ai(’lm) — Z aﬁl]).

On its own this strategy is not usable as it is too general but we can use it to
define the reverse of some specific disjoint-union-type strategies. Precisely, we
use it when a disjoint-union-type strategy creates a rule during a search to create
all of the reverse version of the strategy and apply them to the children of the

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 51

rule. We start with the requirement insertion strategy discussed above and intro-
duce the reverse requirement insertion strategy RevReqIns. Formally, we define
RevReqlInsy 7 ; as

RevReqlnsy 7,; = RevDisjointgpeqrns;, 7,i

for any set of gridded permutations H, tiling 7 and integer i € {1,2}. We can cre-
ate a reverse version of the rule created above with requirement insertion. Con-
sider the strategy RevReqIns (e} T 1 since

dRquns{g}(T(n) — (7(6)17(11))

we have that

(7)) = (71, 7(7)

dRevRqu ns{g}ﬂ_m,1

telling us that
T8 = 1T = 1T

This rule is pictured in Figure 2.5.

T(1) T)

Figure 2.5: An application of reverse requirement insertion.

2.6.2 The factor strategy

As described in Section 6.3.5 of [34] the factor strategy is a strategy that aims to
take apart a tiling into simpler parts. To do so, it identifies parts of the tiling that
are not interacting and decomposes the tiling into those parts. Two sets of cells
of a tiling, let call them S; and S;, are non-interacting if there are no obstruc-
tions or requirement lists that interact with both a cell in S and a cell in S; and
a cell in the first set do not share a row or a column with a cell of the second set.
Figure 2.6 shows tiling 7) from the example of Section 2.2 that has 5 mutually
non-interacting parts. These parts are

{(0,4),(0,6)}, {(1L1)}, {(23)}, {(35)} and {(40),(42)}

52 CHAPTER 2. FORESTS

N T~

O]

76 76 70 j\}///,‘J\\z/
T6)

Figure 2.6: Example of a factor decomposition.

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 53

Since the parts are non-interacting, we can build uniquely the permutations of
size n on the parent tiling by considering all ways of selecting one permutation
on each child such that the sum of their sizes is n. To build the permutations on
the parent, it is then sufficient to assemble these together according to the factor-
ing partition. As observed in [34], this allows us to derive a counting formula.

Assume a tiling A factors into k tilings B @, ...,B®) Then, we have that

A= ¥ 1818

i1+ Fi=n

In [34], the authors are quick to point out that we can actually restrict some of the i;
to be strictly less then n and they then define the strategy Factorp s where S is the
set of such j such that i; could be restricted to be strictly less than 7 in the counting

formula. This leads to having rlgja)ctorpls(n) =n—1ifjisin S and rlE]a)ctorP,S(n) =
n otherwise. This reliance profile function is regular which is practical for our
purpose. We will, however, show that we can define the factor strategy slightly
differently in order to obtain a "better" reliance function. In this context, better
means having bigger constants Q:(S]) which will make the rule more useful in the
context of the enumerable subset as it will need less information from its children.

Consider a vector M = (my, ..., my) where m; is the size of the smallest grid-
ded permutations in B (). Let m be the sum of the m j- We therefore know that for
)
otherwise one of the multiplicand would be zero. If we combine that with the
constraint that i; + - - - + iy = n we obtain

a summand |l’:>’l.(1l e |Bl(kk)| to be non-zero we must have m; < i;for1 < j <k

ih+my+my+---+m <mn

or equivalently

i1<n—(my+---+m)=n—m+m.
We get similar constraints on the other i; using the same reasoning. This allows
us to rewrite the counting formula as

A= X 1B 1B

(il,‘..,ik)eln

where I, is the set of size k partitions satisfying these inequalities, i.e.,

k
Lo ={(i,....ix) €{0,...,n}*: Y i;=nandi; <n—m+mjfor1 <j<k}
j=1

We formally define the strategy Factorp ps. The definition is mostly the same
as Factorp g in [34] with some minor modifications. Like in [34], the first parame-
ter P is a partition of cells but here the second parameter is a tuple of integers and
not a set of parts indices as in [34]. This change allows us to refine the reliance
profile function as well as the counting functions in the way we described above.

54 CHAPTER 2. FORESTS

® Let P be a partition of the non-empty cells of 7 and for concreteness consider
the parts of P to be indexed in increasing order by their lexicographically
smallest cell. If the cells of any part of P interact with the cells of any other
part, then 7 cannot be factored according to this partition of cells. Thus, we
assume that P is such that the parts are non-interacting, so that 7 will be
factored into subtilings B(), ..., Bk). Assume that each of these subtilings
contains at least one gridded permutation. Let m; be the size of the smallest
gridded permutations in B() and M = (my, ... my). With such P and M we
define

dractorn (T) = (B, ..., BW).

In the case where the partition does not match for 7, one of the B() is empty
or there is a mismatch with one of the m; then we define

dFactorle(T) = DNA.

¢ The reliance profile function of Factorp s is

_ (1) (k)
TFactorp,M(Vl) - (TI - CFactorp/M’ cee = cFactorpl]\/[)

where "

i

CFactorp/M = Z m;
1<j<k
J#i

for1 <j<k

* To describe the counting function, we first define vectors of indeterminates

where the sum is over
I, = {(il/"'/ik) €D, : 11++1k:n}

and
Dy={0,...,n—cl _ yx.. . x{0,...,n—c

Factorp m ctorp pm }

From the definition it is clear that the strategy is regular.
Assume that we have a tiling such that

dFactorp,M (T) - (B(l), ey B(k))

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 55

Then, we know that
k
Tal= Y |Bi(11)""|6i(k)|

(il,...,ik)eln

where I, is defined as above. For conciseness, let s = @,g)ctorPM. One of the valid
k-tuple of indices for the summation is (n — s, my, ms, ..., my). This corresponds
to the case when we have as many points as possible in the factor B(1). We can

isolate the summand corresponding to the k-tuple to get

Bl 1BR - 1B =1Tal = X 1BV]-- 1B,
(il,...,ik)GI,{,
where I}, is obtained by removing the k-tuple of indices mentioned above from I,

ie.,
I, = I,\{(n —s,my,ms,..., my)}.

By definition of my, ..., m, we have that |Br(r122) .., |B£fk) are non-zero and there-
fore

1 k
; .
B2 18]

|Br(zlf)s| =

Note, the k-tuple (n — s, my, ..., my) is the only one in I,, where the first component
is greater than or equal to n — s. Hence, I, can also be defined as

11,4:{(1'1,...,1']() GD’n Dy i =n)
where

D, ={0,....n—s—1}yx{0,....n—e¢® Vx.. .x{0,...,n—c® 1

Factorp m Factorp m

The only difference between D, and Dj, is that, in the latter one, we lower the
upper bound from the first set in the product from n — s to n — s — 1. Therefore,
ensuring that the tuple (n —s,my, ..., my) is notin I,.

If we shift the indices in the formula above by replacing n by n + s, we get

1 k
lﬁm_rnﬂ—zmwmﬂﬁsyr~wy|
B BY)]

This gives us a formula to compute |By(ll)| knowing the counting sequence of
()

Factorp m for

T up to size n + s, B up to size n — 1, and BY) up to size n +5 — ¢
2<j<k

The reasoning above has nothing in particular to do with B(!) and could be
done for any B(). We define a strategy called reverse factoring that computes the
count of the i-th child of a factoring rule given the count of the parent and the

children. We define the strategy RevFactorp j; 7, as follows.

56 CHAPTER 2. FORESTS

¢ Let P be a partition of cells, M be a list of integers and 7 be a tiling such that
dFactorp,M (T) - (B(l), ey B(k)) Then

drevFactorp 7 (A) = (BY,...,BM,T)
if A = B, Otherwise,
drevFactorp 7 (A) = DNA
¢ The reliance profile function of RevFactorp y1 7 is

TRevFactorp 7 (1) = (N —81,..., 1 — S41)

where
1 ifj =i
5 = _'Ql(:la)ctorp,M ' ifj=k+1
Qéja)ctorp,M — di}ctorw otherwise.

* To describe the counting function, we first define vectors of indeterminate

b = v, b)),
The counting functions are
(k+1) (1) (k)
b0 pen)y _ Dnmsen T Minen By o by
CRevFactorp M,Tz‘/(ﬂ)(ey) = —
o pD 0 ®)
my mi my

where the sum is over
In:{(il,...,ik)GDn : i1+~~-+ik:n—sk+1}

and
D,=10,...,n—s1} x...x{0,...,n— s}

It is clear from the definition that the strategy is regular and the constant shifts are
the s;. Formally,
()
QtRevFactorp,M,T,,v =5
forl1 <j<k+1.
Also note that, since the decomposition gives

dRevFactorp,M,T/,- (A) = (B(l)/ sty B(k)/ T)/

then A is both the parent and a child of the decomposition. At first sight this might
look like it makes the rule is completely pointless. It is, however, not the case and
a great example of the importance of the reliance profile function of a strategy.

The tiling A is the i-th tiling in the decomposition and ré;)vFactorP’M, q(n)=n—1
Therefore, it simply means that to compute |.A;| we first need to know the terms
that come before it in the counting sequence, i.e., | Ag|, ..., [Ay—1]|.

Figure 2.7 shows an example of a reverse factor rule where the child 77) of

the regular rule becomes the parent of the reverse rule.

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 57

75)

Figure 2.7: An example of reverse factor rule.

2.6.3 The point placement strategy

The point placement strategy is a strategy that isolates a point of a requirement
containing a single gridded permutation and forces it to be the most extreme point
of that gridded permutation in one of four directions. The point can either be
the topmost, the bottommost, the leftmost or the rightmost one. The strategy is
defined rigorously and in full generality in Section 6.3.3 and 6.5.3 of [34]. We will
here introduce it via a comprehensive example and observe that the strategy is
regular. Then we will discuss the reverse version of the strategy.

Consider the one-by-one tiling with the obstruction O; = (123, (0,0)) and the
requirement list R = {(12,(0,0))}. Let place the leftmost 1 in this 12. To isolate
the 1, we subdivide the tiling into a 3 x 3 tiling and put a point in the middle cell.
To ensure that the point is fully isolated in its own row and column, we add point
obstructions in cells (0,1), (1,0), (2,1) and (1,2). We also add 12 and 21 obstruc-
tions in cell (1,1) to ensure the cell contains only one point. To force this point to
be the leftmost 1 in any 12, we add the obstructions where the underlying permu-
tation is 12 and the 1 is in a cell of the left column. Concretely, we add (12, (0,0)),
(12,(0,2)), (12,(0,0),(0,2)), (12, (0,0), (1,1)), (12,(0,0), (2,0)), (12,(0,0), (2,2))
and (12, (0,2), (2,2)). Finally, we add 123 obstructions in all ways so that any per-
mutation griddable on the tiling still avoids 123. We obtain the second tiling in
Figure 2.8. For readability, we have only drawn the non-redundant 123 obstruc-
tions. We observe that containing the requirement {(12), ((1,1),(2,2))} is equiv-
alent to having a point in cell (1,1) and a point in cell (2,2). Therefore, we can
replace the requirements by two point requirements: {(1,(1,1))} and {(1,(2,2))}.
This produces the third tiling of Figure 2.8. Finally, since we know that any per-
mutation griddable on the tiling contains a point in cell (1,1), we have that any

58 CHAPTER 2. FORESTS

gridded permutation that avoids (12, ((0,0), (1,1))) actually avoids (1, (0,0)) and
that any gridded permutation avoiding (123, ((1,1), (2,2),(2,2))) actually avoids
(12,(2,2)). This is a special case of obstruction inferral presented in Section 6.3.6
of [34]. We add those obstructions and simplify the redundant ones to get the
fourth tiling of Figure 2.8.

/\ ([. N
j S /,

1
1

7

) = 72

|) 4L

.
/ /

2\ e
/ o /
% e
s [

I
—
X
N
I
[]

-—
-—

|
y’

- /

s

/
Y /

Figure 2.8: Placing the leftmost 1 in a 12 on a 123-avoiding tiling.
The exact strategy that places the point in the way described above is

POintPl(lz/(Olo))/L(;.

Meaning that we place the first point of (12, (0,0)) in the leftmost direction. In
general if a tiling 7 contains a requirement {4}, the index i is the index of a point
in h to place and d is one of the directions in {<, 1, |, =}, the function dpointplh,i, P
is defined similarly. As mentioned previously, we skip here the formal definition
of the point placement strategy as it is highly technical and not relevant to our
aim. However, a curious reader will find all the details in Section 6.5.3 of [34].
In particular, Theorem 6.8 in that paper shows that there is a size-preserving bi-
jection between the griddable permutations on A and B if dpointe1,,, ,(A) = B.
This bijection shows that the reliance function is 7pointr1,,, , (n) = (n) and that the
counting functions are cpo;ntp1, ; ; (n) ((ag, ..., an)) = ay

As observed in [34], point placement is not a productive strategy. In fact the
decomposition function gives the decomposition A <— (B) such that |.A,| relies
on |B,| and |A,| = |B,| for all n € IN. It, therefore, fails condition 2b of the pro-
ductivity definition (Definition 2.3). Despite not being productive these strategies
can still be used with the prune method if they receive the special treatment used
for equivalence strategies.

The point placement strategies are however, disjoint-union-type strategies as
defined in Section 2.6.1. This strategy is therefore regular and can be used in
our framework without any special treatment. We can also introduce the reverse
version of that strategy which can be thought of as unplacing the point. Formally,

RevPointPly ; 5 7 = RevDisjointpyintpy, ; ,, 7,1-

Since point placement only has one child, it is not necessary to carry the index of
the child in the definition of the reverse point placement strategy.
Figure 2.9 show the results of applying the strategy PointPl;)) 1+ to the

tiling of the left. This strategy is used to decompose the tiling 7(%) into (7®)).

2.6. ENUMERABLE SUBSETS FOR PERMUTATION PATTERNS 59

This decomposition is used in one of the trees of Figure 2.1. The reverse version
can also be used to decomposed 7®) into (7). In this case the strategy used is
RevPointPl y oy 1 . 70)- This is the strategy used for the decomposition of 7(8)
when we merge the two trees of Figure 2.1 into a single specification in Figure 2.2.

Figure 2.9: Placing the leftmost point in Av(1234,1243,1324,1423,2134,2314).

2.6.4 Other strategies

In [34], the authors also discussed a series of other strategies covering obstruction
and requirement simplification, row and column separation and obstruction in-
ferral. All those strategies, like point placement, observe that two combinatorial
sets are actually equinumerous. They are therefore also disjoint-union-type strate-
gies with a single child. It follows that they are regular and we can derive reverse
strategies from them in a similar fashion as we did for RevPointP1.

2.6.5 Applying reverse strategies in a search

Throughout Section 2.6, we revisited the strategies from [34] and showed that they
were all regular. These strategies, therefore, produce rules that can be processed
by Algorithm 2. We also defined strategies that allow us to decompose a child of a
rule produced by the aforementioned strategy into the parent and children of that
rule. The way we have defined them, these strategies almost never apply. In fact,
the decomposition function always returns DNA except when the input tiling is a
specific child of a specific rule produced by the non-reverse version of that strat-
egy. For example the strategy RevReqInsy 7, only applies to a tiling A if A is the
i-th component of the decomposition function dreqrns,; applied to 7. In practice, it
is, therefore, highly impractical to try to apply those reverse strategies to arbitrary
tilings. What we actually do is run combinatorial exploration as with the prune
method. We use the same queueing system and apply only non-reverse strategies.
Then, when a strategy applies and creates a rule, we also add immediately all the
possible reversed versions into the universe. Consider, as an example, applying
the strategy ReqIns (o)) to tiling T7) from Section 2.2. This gives us the rule
T « (700, 7(1) illustrated on Figure 2.4. As soon as this rule is added to
the universe, we can immediately add the rule 7(©) « (71, 7)) obtained by

60 CHAPTER 2. FORESTS

applying the strategy RevReqIns (21,01)),77) 1 t0 T (©) (see Figure 2.5) and the rule
7 « (7), T(7)) obtained by applying the strategy RevReqIns (21,01)), 77 2 tO
tiling 7(1V) (see Figure 2.10).

Figure 2.10: A reverse requirement insertion rule where the parent is the second
child of the regular rules.

Adding the reverse versions of the rules to the universe allows us to make ex-
tra connections between the combinatorial sets and find specifications when one
could not be found with only the forward versions of the rules. As we discussed
in Section 2.2, the universe consisting of the rules in the two partial specification
of Figure 2.1 does not contain a specification. However, when we add the reverse
versions of these rules, the universe contains the specification that is pictured in
Figure 2.2. There lies the power of the method developed in this chapter. By
developing a new specification searcher algorithm that works with regular strate-
gies, we allow ourself to use these reverse strategies that cannot be used with the
prune method since they are not productive. This creates more connections in the
universe and in the end leads to finding more specifications.

Chapter 3

Combinatorial exploration with
catalytic variables

In the previous chapter, the strategies we explored for tilings relied on two count-
ing formulas. Those were the disjoint union and Cartesian product constructors.
They gave generating function equations that could be expressed using only sum
operators or only product operators, respectively. With these types of equations
there is a guarantee that the combinatorial sets in a specification have an algebraic
generating function. In this chapter, we introduce a new strategy called fusion
that has a more complex generating function equation. We see that defining the
counting functions for this strategy requires tracking some extra statistics on the
gridded permutations. This leads to the introduction of tracked combinatorial
sets as well as to a refinement of the definition of a counting sequence. We explore
how the definition of a strategy can be extended to accommodate for tracked com-
binatorial sets and illustrate how the machinery developed in Chapter 2 can still
be used in this case. We conclude the chapter with the first direct enumeration of
the permutation class Av(1342). The specification found uses both the power of
reverse strategies developed in the previous chapter as well as the fusion strategy
that we will introduce here. This chapter aims to present the concepts and give
the reader intuition on how combinatorial exploration can be extended to work
with catalytic variables. It avoids going into technicalities and tedious proofs and
focuses on giving illustrative examples.

3.1 The fusion strategy

The fusion strategy is a strategy that merges two adjacent rows or columns of the
tiling into a single one under certain conditions. For ease of presentation, we only
discuss here fusing two columns but the row case is symmetric.

We start by considering the simplest case of the 2 x 1 tiling A presented in
Figure 3.1. The key property we find on this tiling is that there is no way a per-
mutation gridded on this tiling can contain a 12 pattern. Suppose a permutation
o contained an occurrence of 12. Once ¢ is gridded on the two cells the occur-
rence has either two points in the left cell, two points in the right cell or its 1

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC

62 VARIABLES
Vaddiee
A B

Figure 3.1: Simplest example of a fusion rule.

in the left cell and its 2 in the right cell. Each of these cases contain one of the
obstructions on A, respectively the obstruction 12, ((0,0), (0,0)), 12, ((1,0), (1,0))
and (12,((0,0),(1,0))). Hence, we can, in some sense, say that the whole 2 x 1
tiling avoids 12. Another way to think of it is that all the possible griddings of the
permutation 12 are obstructions on the tiling A.

On the other hand, any permutation ¢ that avoids 12 can be gridded on the
tiling as it will never contain any of the obstructions. It can, in fact, be gridded
in any way on \A. Given a 12-avoiding permutation ¢ we can “cut” it anywhere,
puttin the points to the left of the cut in the left cell and the points to the right of
the cut in the right cell, giving a valid gridding of o on A. If ¢ is of size n, there
are n + 1 ways to cut it (it is also possible to cut at either end of the permutation).
For example, the four possible griddings of 321 are

(321, ((0,0),(0,0),(0,0))),
(321, ((0,0), (0,0), (1,0))),
(321,((0,0),(1,0),(1,0))), and
(321,((1,0),(1,0), (1,0))).

In the paragraph above, we considered the link between gridded permutations
on A and permutations in Av(12). For combinatorial exploration and the follow-
ing exposition, it is however much more convenient to stay in the world of tilings
and represent Av(12) by the tiling 13 on the right in Figure 3.1. The correspondence
described above, therefore, becomes a correspondence between gridded permu-
tations on B and gridded permutations on A. Figure 3.1 is our first example of a
decomposition produced by a fusion strategy. In the context of such a decompo-
sition, we identify A as the unfused tiling, B as the fused tiling and will say that A
fuses to B.

Each permutation of size n on B corresponds to 1 + 1 gridded permutations of
size n on A. If a,, and b, represent respectively the number of gridded permuta-
tion of size n griddable on A and B, then

an = (n+1)b. (3.1)

The relation described above between the gridded permutations on the fused
and the unfused tiling is not exclusive to having 12 crossing in all ways. It ap-
plies, in general, if a longer pattern is crossing in all ways. Such an example can
be seen in Figure 3.2 (a). In this case, the longer pattern is 1234 that crosses in all
5 possible ways. Moreover, this tiling fuses to the 1 x 1 tiling avoiding 1234. It
is also possible to have more than one pattern crossing in all ways as shown in

3.1. THE FUSION STRATEGY 63

the example of Figure 3.2 (b). There, we see an example of having both 132 and
123 permutations gridded in all possible ways on the 2 x 1 tiling. Since the un-
fused tiling avoids both 132 and 123 the fused tiling has two obstructions, one for
each of the patterns. In all cases, we still have that any permutation of size n on
the fused tiling corresponds to n 4 1 gridded permutations on the unfused tiling
and the counting sequence of the unfused tiling can therefore be obtained using
Equation (3.1).

12—/ For) — 4]
@

Figure 3.2: (a) Fusion with a longer pattern. (b) Fusion with more than one pattern.

Lets now examine what happens if we add an extra column to a 2 x 1 that
could be fused as described above. We consider the tiling A from Figure 3.3.
On their own, the two rightmost cells globally avoid 123. Based on our previous

Pl —r 2

A B

Figure 3.3: Two columns of a three column tiling fusing together.

examples, it is sensible to assume that it can be merged into a single cell avoiding
123. This gives us the tiling B in the same figure. Comparing the terms of the
counting sequences of A and B it is however clear that the counting formula from
Equation 3.1 does not work here. In fact, for size 1 gridded permutations, we
find two of them griddable on B while three are griddable on A. Equation (3.1)
however predicts (1 + 1) -2 = 4 gridded permutations on .A. The two gridded
permutations of size 1 on B are 7o = (1, (0,0)) and 1y = (1, (1,0)) while the three
on A are oy = (1,(0,0)), o1 = (1,(1,0)) and 02 = (1,(2,0)). Note that 71y is in
the cell that comes from the fusion of two cells while 77y is in the cell that remains
unchanged. Hence, we have two gridded permutations that correspond to 7,
namely 7 and o7 and one that corresponds to 71y, namely oy.

Lets formalize this correspondence between gridded permutations on A and
on B. We define the operator FuseCol; on gridded permutations to represent fus-
ing together columns i and i 4+ 1. Applying FuseCol; to a gridded permutation
shifts all the column indices that are greater than i by one to the left. For example,
if we fuse column 1 and 2 of

(1234, ((0,0),(1,0),(2,0),(3,0))),

we obtain
(1234, ((0,0), (1,0),(1,0), (2,0))).

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
64 VARIABLES

The reader should think of the FuseCol; map as a map that merges the columns i
and i + 1 of a gridded permutation into a single one.
Coming back to the three permutations of size 1 griddable on A, we have that

FuseColy (0p) = 10,
FuseCol, (¢1) = 771, and
FuseColy (07) = m.

Here, we use FuseCol; since it is column 1 and 2 of A that are merging in to a
single column to produce B. Since the two columns being fused globally avoid
123, the FuseCol; operator, in fact, matches every valid gridded permutation on
A to a valid gridded permutation on . Table 3.1 presents some of the valid grid-
ded permutations on A and their images under FuseCol;. For each of the images
in the left column, the right column contains all the preimages griddable on A.
One key observation is that we can easily recreate all the preimages of a grid-
ded permutation. Since the image of a gridded permutation is created by merging
columns 1 and 2 together into column 1, we can recreate all the preimages by split-
ting column 1 in all possible ways. Each way of splitting creates a valid gridded
permutation on A since we start with a gridded permutation that avoids 123 in
column 1. If a gridded permutation has k points in column 1, there is k + 1 ways
to do the splitting since we can shift between the 0 and k of these points to column
2 while keeping the others in column 1.

T FuseCol, (1)

(123, ((0,0),(0,0),(0,0))) (123,((0,0),(0,0), (0,0)))
(132,((0,0),(0,0),(1,0))) (132,((0,0),(0,0),(1,0)))
(132, ((0,0), (0,0),(2,0)))

(231,((1,0),(1,0),(1,0))) (231,((1,0),(1,0),(1,0)))
(231, ((1,0),(1,0),(2,0)))

(231,((1,0),(2,0),(2,0)))

(231,((2,0),(2,0),(2,0)))

Table 3.1: Correspondence between valid gridded permutations on the tilings .A
and B via the FuseCol; map.

The FuseCol; function gives us a connection where if we know the valid grid-
ded permutations on B, then we can quickly compute the valid gridded permu-
tations on \A. Since we are mostly interested in counts, we can however simplify
the matter a bit. We have already noticed that what determines the number of
preimages of each gridded permutation is the number of points in the column
being fused (column 1 in our example). Therefore, if we have b, valid gridded
permutations on B that are of size n with k points in column 1 then they give us
(k +1)b, valid gridded permutations on .A. To get the total number of valid
gridded permutations on .4, we then only have to sum over all possible k. If a;, is

3.1. THE FUSION STRATEGY 65

the number of valid gridded permutations of size n on A then

n

an =Y (k+1)by. (3.2)
k=0

Note that the formula is a generalisation of Equation (3.1). In fact, in that case the
fused tiling only had one column. Therefore, the size of a valid gridded permuta-
tion is always the same as the number of points it has in the columns being fused.
Hence, b,y = 0if k # n and the formula becomes a, = (n + 1)b;,,. The same
counting formula can be used even if some obstructions are crossing between the
two fusing columns and the rest of the tiling (as long as they act in the same way
in both fusing columns). Figure 3.4 shows an example of that generalisation. The
key observation is that the three 123 obstructions represent all the ways to have
a 1 in the 132 avoiding cell with a 23 in the fusing columns. They are, therefore,
equivalent to the single 123 obstruction drawn on the fused tiling B.

P (K

A B

Figure 3.4: A 123 crossing having its 23 in all possible way in the two fusing
columns.

One detail we have not covered yet is how to obtain the fused tiling from the
original tiling. We use again here the FuseCol; operator to define it formally. We
first extend the function naturally to sets of gridded permutations such that the
image of a set of gridded permutations is the set of the images of the gridded
permutations under the map. Mathematically,

FuseCol;(S) = {FuseCol;(7) : T € S}.

We then extend it to tilings by making it fuse all obstructions and requirement
sets. Precisely, for a tiling 7 = ((t,u), O,{Rq,...,R¢})and 0 <i < t—1,

FuseCol;(T) = ((t — 1, u), FuseCol;(O), {FuseCol;(R1), . .., FuseCol;(Ry)}).

Figure 3.1 and 3.2 are examples of applying FuseColy while Figure 3.3 and 3.4
display examples of applying FuseCol;. All of these examples were carefully cho-
sen so that the obstructions were crossing in all ways and, therefore, the number
of preimages of FuseCol; was always determined by the number of points in the
fused column. This is not always the case. Consider the two examples of ap-
plying FuseCol; in Figure 3.5. In both cases, the counting sequence of the big-
ger tiling cannot be obtained from the counting sequence of the smaller tiling us-
ing Equation (3.2). In the topmost example, we see that the gridded permutation
(123,((1,0),(2,0),(2,0))) is griddable on the left tiling while its image under fuse
FuseCol; is (123,((1,0),(1,0),(1,0))) cannot be gridded on the right tiling since

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
66 VARIABLES

Pl —r2
M) — 147

Figure 3.5: Examples of applying the FuseCol; map that lead to invalid rules.

it contains one of the obstructions. There is a similar issue with (12, ((0,0), (0,2)))
in the bottommost example. The general criteria to check if the map is producing
a tiling that would be the child of a valid fusion rule is to check if each obstruction
on the produced tiling has all of its preimages present on the original tiling.

3.2 Tracked combinatorial sets

One important detail we have not yet addressed is that the counting function of
the fusion strategy requires a refinement of the counting of gridded permutations
by the number of points in a region. It is not sufficient to only know the number
of gridded permutations griddable on the fused tiling, we actually need to know
how many gridded permutations of size n have k points in the column that comes
from the fusion of the two columns.

To handle that in the combinatorial exploration framework, we need to refine
our notion for combinatorial sets to support the counting of extra statistics on the
combinatorial objects. As stated in Definition 1.1, a combinatorial set is a set with
a size function with the property that there are finitely many objects of each size.
It is here useful to think of a combinatorial set axiomatically as a pair (A, |- |)
where A is a set and | - | is the size function. We define a tracked combinatorial set
as an extension of a combinatorial set with extra statistic functions sy, ..., sy. The
statistic functions have to be functions from the set to non-negative integers. It
could, for example, be a function s that given a gridded permutation 7 returns
the number of points of 7 that are in cell (0,0). In fact, statistic functions are
really similar to the size function but do not have the restriction of having a finite
number of objects mapping to each value. We think of a tracked combinatorial set
asatuple (A,|-|,s1,...,51). Formally:

Definition 3.1. A tracked combinatorial set C is a combinatorial set on which statistic
functions are defined. Each statistic function must be a function from the set C to non-
negative integers.

One very simple example of a tracked combinatorial set is the set of words on
the alphabet {1, 2, 3} with the usual size function and two statistic functions track-
ing the number of 1s and the number of 2s in the word. A slightly more complex
(and more relevant for us) example is the set of gridded permutations on a tiling
T with the usual size function and a statistic function that counts the number of

3.2. TRACKED COMBINATORIAL SETS 67

points in a given column of a tiling. One could also track different statistics on a
tiling, for example the number of inversion. In this text, we will however restrict
ourselve to tracking the number of points in regions of a tiling. To formalize the
point tracking idea, we introduce a tracked tiling. Tracked tilings are similar to
tilings as they have the same first three components, i.e., dimensions, obstructions
and requirements. They however have a fourth component which is a tuple of
sets of cells that we call the tracked regions. Each of these sets represent a region in
which we count how many points of each gridded permutation it contains.

Definition 3.2. A tracked tiling is a quadruple T = ((t,u),O,R,(Gy,...,Gn))
where (t,u), O, and R are defined as for tilings and Gy, ..., Gy, are sets of cells of the
tiling. Each of the sets Gy, ..., Gy, is called a tracked region.

For a set of cells G, we define sg as the function that counts the number of
points of a gridded permutation (77, P) that are in the cells in the tracked region
G. Formally,

sg((m, (c1,...,en))) ={i:1<i<mandc; € G}|.

For any tracked tiling 7 = ((t,u), O, R, (Gy, ..., Gn)), we can directly associate a
tracked combinatorial set

(Grid(T),| . |,SG1,.. .,SGm).

As with tilings, we will, for convenience, often refer to a tracked tiling as a combi-
natorial set when it actually means tracked combinatorial as set defined above.

We picture tracked tilings in the same way we picture tilings and use shadings
of different colours over each of the regions. Figure 3.6 shows an example of a
tiling 7 = ((3,1),0,R, ({(1,1),(2,0)})). This representation is not perfect as it
can be hard to represent multiple regions G; simultaneously (especially if they
have some cells in common) and it also does not reflect the order of the sets. This
representation is, however, sufficient for our use case since we will only use one
tracked region in the upcoming examples.

el
T

Figure 3.6: Pictorial representation of a tracked tiling.

As for combinatorial sets, we defined A, as the set of objects of size n in a
tracked combinatorial set .A. The counting sequence of the set was then defined
as the sequence of integers representing the number of objects of each size in A
(see Definition 1.2). For tracked combinatorial sets, we want the counting se-
quences to reflect the extra structure brought by the statistic functions. We, there-
fore, define the n-th term of the counting sequence of a tracked combinatorial set

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
68 VARIABLES

(A, |-],81,.--,5m) as

”AnH = Z ylsl(”) .. ']/msm(a).
ac A,

Each term of the counting sequence is, therefore, a polynomial in yy, . .., Y. For-
mally, we have

Definition 3.3. The counting sequence of a tracked combinatorial set A is the sequence
of polynomials with integer coefficients (|| Anl|),>o-

Let consider the tracked tiling 7 of Figure 3.6. The smallest permutation grid-
dable on the tiling is 7 = (213,((0,0),(0,0),(1,1))). The counting sequence,
therefore, starts 0,0, 0 as there are no griddable permutations of size 0, 1 or2on 7.
The size 3 gridded permutation 7 is the only one griddable on 7 and it has one
point in the tracked region. Therefore, the next term of the counting sequence is
y1. Table 3.2 shows the gridded permutations of size 4 griddable on 7 as well as
their contribution to the next term of the counting sequence. It shows that the next
term is 3y;2 + 4y;. In the case where there is only one statistic, we often replace
by y to simplify notation. In this example it gives us the counting sequence

0,0,0,v,3y + 4y,9y° + 16y> + 13y, ...

Gridded permutation Contribution to term
(2130, ((0,0), (0,0), (1,1),(2,0))) W’
(1032, ((0,0),(0,0),(1,1),(2,0))) 7%
(1023, ((0,0), (0,0),(0,0), (1,1))) !
(1203, ((0,0), (0,0),(0,0), (1,1))) 2k
(2031, ((0,0),(0,0),(1,1),(2,0))) W’
(2013, ((0,0), (0,0),(0,0), (1,1))) !
(2103, ((0,0), (0,0),(0,0), (1,1))) '

Table 3.2: Gridded permutations of size 4 on 7 and their contributions to the fifth
term of the counting sequence.

It is good to note that if a tracked combinatorial set has zero statistic functions
then the counting sequence coincides with the definition of (non-tracked) combi-
natorial sets as the formula for each term just becomes

Yy L

acAy

Moving forward, we will think of all combinatorial sets as being tracked as we
can think of (non-tracked) combinatorial sets as tracked combinatorial sets with
no statistic functions.

The notion of a strategy introduced in Chapter 2 can easily be extended to
accommodate tracked combinatorial sets. In fact, we only need a small change to

3.3. BACK TO THE FUSION 69

the notion of a counting function to compute the counting sequences refined by
statistics. We simply replace the integers by polynomials while the rest stays the
same.

Definition 3.4. Let Z be the collection of all tracked combinatorial sets. An m-ary
tracked combinatorial strategy S consists of three components.

1. A decomposition function ds : Z — Z™ U {DNA} whose input is a tracked com-
binatorial set A (the parent set), and whose output is either an ordered m-tuple
of tracked combinatorial sets (BW), ..., BU™)) (the child sets) or the symbol DNA.
When the output is dg(.A) = DNA, short for “does not apply”, we say that S cannot
be applied to the combinatorial set A.

2. Areliance profile function rg : N — Z™ whose input is a natural number n and

()

whose output is an ordered m-tuple of integers. We use rg’(n) to denote the i-th
component of rs(n), i.e.,

rs(n) = (rél)(n),. ..,rém)(n)).

3. An infinite sequence of counting functions cg () indexed by n € IN, each of

whose input is m tuples of polynomials with integer coefficients w(™,. .., w(™
and whose output is a polynomial with integer coefficients. The counting func-

tions must have the property that if ds(A) = (BW,...,B"™) and rs(n) =
(rél) (n),..., rgm) (n)), then for input tuples

w%m=@%%wn6%|0
Tg (1)

we have

cs i (@M (1), ..., w™ (1)) = | An.

To be overly explicit, the domain of cg (,,) is

NIy, ...y)% % - x Ny, ..y, 17",

where {; is the number of statistic functions of B®) and
D, — (k)
k = max(0,rg " (n) +1),

while the codomain is simply N[y1, . .., yy], where { is the number of statistic func-

tions of A.

3.3 Back to the fusion

With the formalism of tracked combinatorial sets and strategies for these sets, we
can formally define the fusion strategy discussed in Section 3.1. As in Chapter 2,

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
70 VARIABLES

we define the strategy by its effect on (tracked) tilings even though it really is
defined on the tracked combinatorial sets of valid gridded permutations.

We concluded Section 3.1 with a general criterion to check when Equation (3.2)
can be used to obtain the counting sequence of a tiling 7 from the counting se-
quence of the tiling FuseCol;(7). It was a counting argument based on the num-
ber of preimages of each obstruction and requirement on the fused tiling. Pre-
cisely, for a tiling 7 = ((t,u), O,{R1,..., Rm}), the counting formula is valid if
for each gridded permutation 7t in FuseCol;(O) (resp. FuseCol;(R;)) the number
of points of 77 in the column i is equal to the number of gridded permutations in
O (resp. R;) that are mapped to 7 by FuseCol;. We say that column i and i + 1 of
a tracked tiling 7 are fusable if that condition is satisfied and 7 has at least i 4- 2
columns (so that column 7 and i + 1 both exist). The strategy ColFusion; is defined
as follow:

e If 7 is a tracked tiling with no tracking where column i and i + 1 are fus-
able then dcoirusion; (77) is FuseCol;(7") with the addition of tracking over
the column i. Otherwise, dco1rusion; (7)) = DNA.

* The reliance profile function is rco1rusion (1) = (7).
* The counting functions are

0
CcolFusion;,(n) ((bo, sy bn)) = @ (}/) b”)
y=1

To better understand the counting function of the strategy, it is best, since the
function is linear, to think of its effect on a single monomial of the polynomial b;,.
In by, the monomial y* represents a gridded permutation of size n with k points in
the tracked region of the fused tiling. In this case, the tracked region is the column
that is the result of the fusion of two columns. We know, from our discussion in
Section 3.1, that this gridded permutation has k + 1 preimages under the FuseCol;
map. These preimages are all valid gridded permutations on the unfused tiling.
If we apply the counting function to it, we effectively get

J p
@(1/‘1/)

= (k+ 1)y’<|y:1 =k+1.
y:

This also matches Equation (3.2) derived in Section 3.1.
Figure 3.7 shows an application of the column fusion strategy. The first few

Ve P2 ot Vo

A B

Figure 3.7: Application of the ColFusion; strategy.

3.4. OTHER TRACKED STRATEGIES 71

terms of the counting sequence for A are
1,3,9,28,90,...
while the first terms for B are
Ly+1Ly*+2y+2,1° + 3% + 5y + 5,y +4° + 9y + 14y + 14,...

If we apply the counting formula to the terms of the counting sequence of B we
recover the counting sequence for A.

3.4 Other tracked strategies

All the strategies covered in Chapter 2 and in [34] are straightforward to adapt to
tracked tilings. It is, in all cases, easy to see how the strategy moves the cells of
the tiling around and modifies the tracking consequently. It, however, becomes
quickly technical when one needs to consider the interactions between different
tracked regions on the same tiling as well as the numerous edge cases. To lighten
the text, we will not give here any formal definition of a tracked strategy but in-
stead examples of requirement insertion, factor and point placement strategies be-
ing applied to a tracked tiling. Without being complicated, these examples should
be sufficient for the reader to see how the strategies extend to the tracked context.

Applying the requirement insertion strategy to a tracked tiling acts exactly like
on a regular tiling leaving the tracking unchanged. It could, however, be the case
that one of the cells being tracked becomes empty. In this case, the tracking is
simplified to only track cells that can contain points. Figure 3.8 shows an example
of the strategy ReqInsy(y 1))} applied to a tracked tiling. On the left child, the
tracking disappears since the cell where the tracking was is now empty. The n-th
term of the counting sequence of the parent is obtained by summing the n-th term
of the counting sequence of both children as for the ReqIns strategy defined for
normal tilings in Chapter 2.

o
1 o
NN

Figure 3.8: Inserting the requirement (1, (0,0)) in a tracked tiling.

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
72 VARIABLES

When applying the factor strategy to a tracked tiling, the tiling is decomposed
as for the case of regular tilings. The cells that were tracked on the parent stay
tracked on the children. For example, Figure 3.9 shows an example of factoring
a tracked tiling into two parts. On the parent, the 132 and 123-avoiding cells are
both tracked so the corresponding cells are also tracked on B and C. The 312-
avoiding cell stays untracked. The counting sequence of A is obtained by the
following formula

n
[Aull = Y IBill - 1C—il-
i=1

jr

9

B C

Figure 3.9: Factoring a tracked tiling.

When performing point placement on a tracked tiling, one must be careful to
stretch the tracking on the cells that get stretched by the placement. Figure 3.10
shows an example where the bottommost point in cell (0,0) (which is tracked) is
placed. The cell (0,0) stretches to the area composed of the first three columns of
the child. Therefore, the tracking needs to cover these three columns. However,
we only mark the three cells that are not empty as the others have no effect on the
associated statistic function. If the cell (1,0) was tracked on the parent tiling, the
tracking would need to stretch over cell (3,0) and (3, 2) of the child. The counting
sequence of the two tiling is the same like for point placement with regular tilings.

S
1) |
/

Figure 3.10: Placing the bottommost point in cell (0,0) of a tracked tiling.

3.5. USING TRACKED COMBINATORIAL SETS IN COMBINATORIAL
EXPLORATION 73

The fusion strategy can also be extended to apply to tilings which have some
tracked regions. Figure 3.11 shows an example where one of the two columns fus-
ing is tracked. The counting function’s output now has to be refined according to

Vet O V)

A B

Figure 3.11: Fusion strategy applied to a tiling with tracking.

the number of points in the middle cell of A. In the example of Section 3.3 (see Fig-
ure 3.7), a gridded permutation with k points in the tracked cell of the fused tiling
contributed k + 1 permutation to the tiling .A. Therefore, the counting function
needed to transform y* into (k + 1). In this new example, a gridded permutation
with k points still corresponds to (k + 1) gridded permutations but each of them
has a different number of points in the tracked cell of A. Consequently, we want
the operator to map y* to 1+ y + y? + - - - + y¥. This is achieved by the following

formula:
1Bullly=1 — vl Bl
1—y)

In fact, if we substitute y to by, in this equation, we get

I A =

1— k+1 1— 1 2 k
17yy _ =y +y1t};+ +y):1+y+yz+m+y

as expected.

k

3.5 Using tracked combinatorial sets in combinatorial
exploration

In essence, the only changes we did to combinatorial sets and strategies in this
chapter is to transform all the counting information from integers to polynomials
in order to have more refined counting information. Precisely, the terms for count-
ing sequences are now polynomials while the counting functions for strategies
take polynomials as input and output polynomials. Apart from that, the frame-
work stays unchanged. In particular, everything regarding reliance profiles is still
the same. The notion of a reliance graph, enumerable subset and regular strategy
directly extend to tracked combinatorial sets and tracked strategies. In particular,
Theorem 2.20 can be extended to tracked strategies as follow:

Theorem 3.5. Let U be a universe of rules produced by regular tracked strategies. Then,
the enumerable subset of U is the set of all tracked combinatorial sets of U that are in a
specification contained in U and whose reliance graph contains no infinite directed walk.

Moreover, Algorithm 2 can still be used to compute the enumerable subset
using the tracked version of the strategies discussed in this thesis.

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
74 VARIABLES

Piecing all these tools together, we were able to expand tracked universes and
find productive combinatorial specifications for many permutation classes. Using
fusion without the use of reverse strategies led to a lot of new results. It was how-
ever not sufficient to recover all the known results for permutation classes avoid-
ing some sets of size 4 patterns. Here, we consider in particular the results for
the size 4 principal permutation classes. These are the permutation classes avoid-
ing a single pattern of size 4. They are generally considered as the most difficult
problems avoiding size 4 patterns. Up to symmetry, there are seven different size
4 principal permutation classes. Before the introduction of fusion, combinatorial
exploration could not find a combinatorial specification for any of them. Using fu-
sion, but still restricting ourselves to productive strategies with the prune method
(Algorithm 1), we could find specifications for Av(1234), Av(1243) and Av(1432).
Of the four permutation classes left, we could find specifications that use both
fusion and reverse rules using Algorithm 2 for three more principal permutation
classes, namely Av(2143), Av(1342) and Av(2413). The specifications we found
for those permutation classes all feature both a fusion rule and a rule produced
by a reversed strategy that could not be handled without the theory developed
in Chapter 2. The final permutation class, Av(1324), is still out of reach of both
human mathematicians and the automatic methods of combinatorial exploration
despite combining both the power of fusion and reverse strategies.

We conclude this chapter by taking a closer look at one of these specifications
that uses both fusion and reverse strategies. We present a specification found
for Av(1342) as it was the first specification found using both fusion and reverse
strategies but also because its the one with the fewest rules and, therefore, the
most likely to fit on one page of this thesis. It is also interesting to note that this
specification is the first direct enumeration of this permutation class as previous
approaches used bijections to other objects. Figure 3.12 shows the picture of the
specification. For a detailed view, we invite the reader to view the proof tree in
the PermPal database at https://permpal.com/tree/12/. There the reader has the
ability to click on the tree to see the strategies applied and all the details about
each of the tilings involved.

We highlight here the most interesting rules appearing in the specification.

e The rule 7O) < (71©)) is produced by the add tracking strategy (that is
not discussed in this thesis). It consists of adding the tracking to a specific
region of a tiling. The counting sequence of 7(®) is more refined then the
one of 7) as it accounts for number of points in cell (0,1). We get the n-th
term of the counting sequence of 7 () by substituting y = 1 in the n-th term
of the counting sequence of 7 (©).

e The rule 7 « (70, 7)) is created by a requirement insertion strategy.
Precisely, a point is inserted in cell (0,1). There is no tracking on the child
70 since the cell that was tracked on the parent 7(®) can no longer contain
points, since a point obstruction was added.

e Therule 7(7) < (7(®)) is the combination of a requirement placement strat-
egy and a row separation strategy (click on the node in the web version to

3.5. USING TRACKED COMBINATORIAL SETS IN COMBINATORIAL
EXPLORATION

T
EEE
LR &

N|
i

:
R
tE]

B

75

Figure 3.12: Combinatorial specification for Av(1342). The full specification can

be viewed at https://permpal.com/tree/12/.

76

CHAPTER 3. COMBINATORIAL EXPLORATION WITH CATALYTIC
VARIABLES

see the two strategies applied separately). We see the tracking evolve and
span across multiple cells as we place the point and separate the row. Since
no point can contribute towards the statistic in the empty cells, only the non-
empty ones are marked with the tracking.

The rule 7(7) < (78) 70, 7®) is a reversed factor rule which is actu-
ally created from the factor rule 718) « (77(7), 7(0) 7(4),

The rule 709 « (79, 7(28) is a reverse disjoint union rule that comes
from the requirement insertion rule 729 « (7(28) T(18)) that consists of
inserting a point in cell (1,0).

The rule 7(%) « (7)) is a fusion rule where some tracking on the parent
is present akin to the example of Figure 3.11. We are in this case fusing two
rows instead of two columns.

The full system of equations for the specification can be found on page 77. It

solves to the generating function of Av(1342) which is

32x
1420x —8x2 — (1—8x)2

as expected.

Table 3.3 gives links to the permpal library to see combinatorial specifications

for each of the principal size 4 classes except Av(1324). There the reader can find
more complex specifications than the one presented here using both more rules
and combinatorial sets with multiple statistics.

Permutation class Permpal entry

Av(1234) https://permpal.com/perms/basis/@123

Av(1243) https://permpal.com/perms/basis/@132
Av(1342) https://permpal.com/perms/basis/@231
Av(1432) https://permpal.com/perms/basis/@321
Av(2143) https://permpal.com/perms/basis/1032
Av(2413) https://permpal.com/perms/basis/1302

Table 3.3: Link to combinatorial specifications for all principal size 4 permutation
classes except Av(1324).

77

—
y\n/

= — 2 N~

— 8 =~ > © = S
y./ /wlxl ~— —~ M.}O.(/m —~
RN P R = 22 £ o
A i TE O+ 4+ &
—~ o~ —~ ~ N = =
INEECUO G R s T T U = R R R R R R R
R R R e = R — —_ — R — —
T e w S 2 228 or 2 5SS 22 387
B T L T e e e I e e

o~~~ o~ o~~~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~

3.5. USING TRACKED COMBINATORIAL SETS IN COMBINATORIAL

EXPLORATION

R R S S S S S S S S S S SIS SSSSSsSS
+H 0 R R R R KRR R R R B R R 8RR K K R
S S N NN N N N NG N N N N N N N
O IN 0 & O — cHh < 1 O 0 0 o O —
| S S S — Rl B B B S Y O Y o (Y o N o

LRy Ry R R R Ry R R R R R R

yFu(x,y) — Faa(x, 1)

Fx(x,y)
System of equations 3.1: Equations from the combinatorial specification for

Av(1342) in Figure 3.12.

78

Chapter 4

Enumeration of permutation classes
and weighted labelled independent
sets

Bean, Tannock and Ulfarsson [42] introduced the staircase encoding, a function
which maps a permutation to a staircase grid where cells are filled with non-
negative integers. In this context, each integer is the size of the monotone se-
quence in its cell. In this chapter, we refine the staircase encoding as a function
which maps a permutation to a staircase grid where cells are filled with permuta-
tions. Using this function, we retrieve the generating function of several permu-
tation classes.

We first recall some permutation background and introduce mesh patterns in
Section 4.1. We then recover the results for Av(123) and Av(132) from [42] in
Section 4.2, using our more refined encoding and weighted independent sets.
Our technique is then extended to describe the structure of Av(2314,3124) and
Av(2413,3142) in Section 4.3 and 4.4. In Section 4.5, we recall the updown core
graph introduced by [42] and use it to enumerate Av(2314,3124,2413,3142), be-
fore introducing a new core graph in Section 4.6 that is used to give the structure
of Av(2314,3124,3142). Our notion of weighted independent sets is then gener-
alized to allow labelling. This enables a more refined choice of permutations in
our encoding, and is used to enumerate Av(2413,3142,3124) in Section 4.7 and
Av(2413,3124) in Section 4.8. By allowing some interleaving between cells in the
staircase grid representation of a permutation, we obtain the counting sequences
for Av(2413,2134) and Av(2314,2134) in Sections 4.9 and 4.10. Finally, in Sec-
tion 4.11 we use results from previous sections to prove two unbalanced Wilf-
equivalences. Our results handle in a unified framework the generating function
of the counting sequence of many permutation classes that were first enumerated
in [7], [8], [16], [19], [43]-[45]. Moreover, the results also allow one to easily enu-
merate many subclasses of these classes. To check whether these methods apply
to a particular permutation class, we have added routines to the python package
Permuta. Instruction on how to use it can be found at the end of this chapter in
Section 4.12.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
80 WEIGHTED LABELLED INDEPENDENT SETS

4.1 Background

We recall, from Section 1.3.3, the notion of sum and skew-sum of permutations.
Remember that the sum of 123 and 21 is 123 © 21 = 12354 while the skew-sum
of these two permutations is 123 © 21 = 34521. The result of these operations
appears in Figure 4.1. The permutation 12435 is said to be sum-decomposable
since it can be expressed as 12 ¢ 213. Similarly, the permutation 43512 is skew-
decomposable since it is 213 © 12. The permutation 34521 is sum-indecomposable
since it cannot be expressed as the sum of two non-empty permutations while
12354 is said to be skew-indecomposable since it cannot be expressed as the skew-
sum of two non-empty permutations. The sum of a permutation ¢ and a set of
permutations P is thesetc @ P = {c @ a : « € P}, and likewisec 6 P = {cona :
a € P}. We also define the sum, and skew-sum, of two sets of permutations in the
obvious way.

123 ¢ 21 123621

Figure 4.1: The sum and skew-sum of two permutations.

4.1.1 Mesh patterns

We complete this section with a short introduction to mesh patterns which are
utilised in some of our proofs. A reader familiar with them might skip directly to
Section 4.2. A mesh pattern p is a pair (77, R) with 7 € Sy and R C {0,1,...,k}%.
Pictorially, we represent a mesh pattern in a similar way as a classical pattern, and
we shade, for each (x,y) € R, the unit square with bottom left corner in (x, y). The
mesh pattern p = (132,{(0,0),(0,2), (1,2),(2,2),(2,3),(3,2) }) is pictured below.

7

Intuitively, an occurrence of a mesh pattern p = (71, R) in a permutation ¢ is
an occurrence of 7 in ¢ such that, if we stretch the shading of 7t onto ¢, ¢ has no
point in the shaded region. For example, we consider the permutation 35142 and
pick two different occurrences of 132 in it (see Figure 4.2). We stretch the shading
of p for both occurrences. The one on the left is an occurrence of p since no points
of ¢ are in the shading, however, the right one is not an occurrence of p since the
3 of ¢ is in the region corresponding to the box (0,2) in p.

Formally, the definition of mesh pattern containment is as follows.

4.1. BACKGROUND 81

767 ey
7 24 ¢

Figure 4.2: Two classical occurrences of 132 in the permutation 35142. On the left
the classical occurrence is an occurrence of p whereas the one on the right is not.

Definition 4.1 ([46]). Let m € Sy and 0 € Sy. An occurrence of the mesh pattern
p = (7, R) in a permutation o is a subset w of the plot of o, G(0) = {(i,0(i)) :
i € {1,2,...,n}} such that there are order preserving injections o, p : {1,...,k} —
{1,...,n} satisfying the following conditions. Firstly, w is an occurrence of 7t in the
classical sense, i.e.,

i w={(a(@),B(j) : (i,j) € G(o) }.

Define Rjj = [a(i) + La(i+1) = 1] x [B(j)) + LB +1) —1] fori,j € {1,...,k}
where x(0) = B(0) = 0and a(k+1) = B(k+1) = n + 1. Then the second condition is

ii. if (i,j) € R then R;jN G(0) = @.

If there is an occurrence of p in o we say that p is contained in o. Otherwise, we
say that ¢ avoids the mesh pattern p.

Unlike for classical patterns, it can occur that Av(p) = Av(q) for two different
mesh patterns, p, q. For instance the mesh patterns (21,2) and (21, {(1,0), (1,1),
(1,2)}) have the same avoiding permutations, since a permutation has an inver-
sion if and only if it has a descent. Many of these coincidences are captured by the
Shading Lemma [47, Lemma 11].

Lemma 4.2 (Shading Lemma, Lemma 11 in [47]). Let (77, R) be a mesh pattern of size
n such that 7t(i) = j and the box (i,j) ¢ R. If all the following conditions are satistified:

1. Thebox (i —1,j — 1) is not in R;

2. At most one of the boxes (i,j — 1) and (i —1,j) is in R;

3. Ifthe box (£,j — 1) is in the R (with £ # i — 1,i) then the box (¢, j) is also in R;
4. Ifthe box (i —1,¢) is in R (with £ # j — 1, j) then the box (i, ¢) is also in R;

then the patterns (71, R) and (rr, R U {(i,j)}) are coincident (one cannot appear in a
permutation without an occurrence of the other). Analogous conditions determine if other
boxes neighboring the point (i, j) to R while preserving the coincidence of the correspond-
ing patterns.

Throughout this chapter, we will use the Shading Lemma to argue that the
occurrence of a classical pattern implies the occurrence of a mesh pattern. For

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
82 WEIGHTED LABELLED INDEPENDENT SETS

example, in the proof of Lemma 4.13 we argue that an occurrence of 2314 implies
an occurrence of

The argument goes as follows. Let o be a permutation with an occurrence of 2314.
We can shade the box (2, 0) by replacing the 1 of the occurrence by the bottommost
point in that box. The box (0,1) can also be shaded by replacing the 2 of the
occurrence with the leftmost point in that cell.

4.2 Encoding permutations on a grid with the staircase encoding

A letter 0; in a permutation ¢ is called a left-to-right minimum if 0; > o; for all j </i.
We denote with Av(") (B) the permutations in Av(B) with exactly n left-to-right
minima. For a coarser representation, take a permutation ¢ in Av(™) (B) and place
the left-to-right minima on the main diagonal of a n x n grid, and the remaining
points into the cells of the grid with respect to their relative positions. We then
replace the points in each cell by the permutation they are forming in this cell.
This is called the staircase encoding of o and is denoted SE(c). Figure 4.3 shows the
staircase encoding of the permutation 659817432. As permutations contained in
cells in the same row or same column can interleave in multiple ways, the staircase
encoding is not an injective map. For example, the permutations 659814327 and
659718432 both have the staircase encoding shown in Figure 4.3 (c).

i . 21 1
o hd o
[]
. 321
o PO—

Figure 4.3: (a) The plot of o = 659817432. (b) The permutation ¢ drawn on the
staircase grid. (c) The staircase encoding of ¢.

By construction, the staircase encoding only uses the cells above and to the
right of the left-to-right minima. We define the staircase grid B, as the set of cells of
the staircase encoding of a permutation with 7 left-to-right minima. The cells are
indexed using matrix coordinates, i.e., B, = {(i,j) : 1 <i<nandi <j<n}. We
say that By is the empty staircase grid which corresponds to the staircase encoding
of ¢, the empty permutation. Bean, Tannock and Ulfarsson [42] used the staircase
grid to enumerate Av(123) and Av(132). We briefly review these in terms of our
staircase encoding.

4.2. ENCODING PERMUTATIONS ON A GRID WITH THE STAIRCASE
ENCODING 83

A cell in the staircase encoding of a permutation that avoids 123 contains a per-
mutation avoiding 12, since any occurrence of 12 together with one of the left-to-
right minima would give an occurrence of 123. Moreover, the presence of a point
in a cell forces other cells to be empty. For example, in the encoding of Figure 4.3,
we have the staircase encoding of the 123 avoiding permutation 659817432. As
the cell (1,3) contains a point, the cell (2,2) must be empty if the encoding is one
of a permutation avoiding 123. These constraints are symmetric and can be rep-
resented as a graph, where the cells of B, are the vertices and there is an edge
between every pair of cells that cannot both contain a point of the permutation.
This graph is called the up-core of B,,.

Definition 4.3 (Definition 4.3 in [42]). Let n > 0 be an integer. The up-core of B, is
the labelled undirected graph U(B,,) with vertex set By, and edges between (i, j) and (k, ()
ifi>k j<dt

If a permutation avoids 132, we get similar restrictions on the staircase encod-
ing. First, every cell avoids 21 for a similar reason as above. Second, some pairs of
cells cannot both contain a point. These restrictions are also described by a graph
called the down-core.

Definition 4.4 (Definition 4.3 in [42]). Let n > 0 be an integer. The down-core of B,
is the labelled undirected graph D(By,) with vertex set B, and edges between (i,j) and
(k,0)ifi <k, j<{and therectangle {i,i+1,...k} x {j,j+1,...,L} is a subset of By,.

See Figure 4.4 for examples of U(B,) and D(By). We say that a cell of the stair-
case encoding is active if it contains a non-empty permutation. From the construc-
tion of the graphs, we can see that the set of active cells of the staircase encoding
of a permutation in Av(123) (resp. Av(132)) is an independent set of U(By,) (resp.
D(By)). The image under the staircase encoding of Av(123) is the set of staircase
encodings that are independent sets of U(By,), where the permutations in every
cell avoid 12.

Ellc)e

1,4 J@ 1,2) | (1,3
n N @2 BIND
@ 3,4

o—

2,2]| (2,3

3,3

Figure 4.4: The up-core U(By) on the left and the down-core D(By) on the right.

In order to formalize our previous statement, we introduce weighted indepen-
dent sets, an independent set where a weight is given to each of its vertices. In this
chapter, the weights will always be permutations.

Definition 4.5. We denote by WI(G, S) the set of all weighted independents sets of a
graph G where the weights are permutations from the set S.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
84 WEIGHTED LABELLED INDEPENDENT SETS

Since for uniqueness we generally want the weight to not be an empty permu-
tation we introduce the notation Av™ (B) = Av(B)\{e}, i.e., Av' (B) is the set of
non-empty permutations avoiding a given set of patterns. Using this notation, we
have that

SE(Av(™(123)) C WI(U(B,), Av'(12))

and
SE(Av(™(132)) C WI(D(B,), Av*(21)).

The i-th row of a permutation consists of the points with values between the
value of the i-th left-to-right minima and the (i + 1)-st left-to-right minima of the
permutation. Avoiding 123 forces rows of the permutation to be decreasing. This
means that for two cells (7, j) and (i, k) with j < k the points in (i, j) are above the
points in (i, k), i.e., larger in value. A decreasing row is pictured in Figure 4.5.

L

Figure 4.5: A typical decreasing row. There are no points in the shaded regions.

For a 132 avoiding permutation, the rows of the permutation are increasing, i.e.,
for a pair of cells (7,) and (i, k) with j < k the points in (i, j) are below the points
in (i,k), i.e., lower in value.

The j-th column of a permutation consists of the points with index between
the indices of the j-th and (j 4 1)-st left-to-right minima of a permutation. In a
similar manner as above, we say that the j-th column is increasing (resp. decreasing)
if for each pair of cells (i,) and (k, j) with i > k the points in (7,) are on the left
(resp. right) of the points in (k, j). The columns of a 123 avoiding permutation are
decreasing while the columns of a 132 avoiding permutation are increasing.

As mentioned before, the staircase encoding is not an injective map since many
permutations can have the same staircase encoding. However, by restricting to
the set of permutations with increasing (resp. decreasing) rows and columns the
staircase encoding is an injection. The inverse of the staircase encoding restricted
to permutations with increasing (resp. decreasing) rows and columns is dperm
(resp. uperm).

Definition 4.6. For a staircase encoding E, we define

e uperm(E) as the permutation o with decreasing rows and columns such that its
staircase encoding SE(c) = E.

 dperm(E) as the permutation o with increasing rows and columns such that its
staircase encoding SE(c) = E.

4.3. GOING FROM SIZE 3 TO SIZE 4 PATTERNS 85

Both uperm and dperm are injective maps from the set of staircase encodings
to the set of all permutations. Lemma 4.7 follows from the definition.

Lemma 4.7. The maps SE o uperm and SE o dperm are the identity on the set of all
staircase encodings.

Remark 4.8. Formally, the staircase encoding is a map from the set of all permutations
to the set of staircase grids filled with permutations. However, throughout the chapter we
consider the restriction of SE to a smaller set such that the restriction is a bijection to its
image. Hence, when the context is clear (as in the theorem below), SE might refer to a
restriction of the staircase encoding.

Theorem 4.9 (Lemma 2.2 in [42]). The map SE is a bijection between Av(™ (123)
and the weighted independent sets WI(U(B,,), Av' (12)). It is also a bijection between

Av(") (132) and the weighted independent sets WI(D(B,,), Av*t (21))

By Theorems 2.4 and 3.3 from [42] we know that the number of independent
sets of size k in U(B,,), or D(By,), is given by the coefficient of "y in the generating
function F(x, y) that satisfies

X F (x,y)?
T y(Flxy) — 1)’ @1

If we substitute y with % into F(x,y), we obtain the generating function
where the coefficient of x” is the number of 123 avoiding permutation of size 7.

F(x,y) =1+ xF(x,y)+

Corollary 4.10. The generating function for Av(123) and Av(132) is F (x, 1%5).

4.3 Going from size 3 to size 4 patterns

As seen in Section 4.2, avoiding the pattern 123 creates restrictions on which pairs
of cells in the staircase grid can contain points of the permutation. These restric-
tions were encoded by the up-core graph. The same restrictions are enforced on
the set of active cells of the staircase encoding for permutations avoiding 2314
or 3124. The two patterns are pictured in Figure 4.6 (a). In this figure, the black
points can be thought of as left-to-right minima of the permutation and red points
as points in the cells of the staircase grid. Avoiding either of these patterns en-
sures that two cells connected by up-core edges cannot be active simultaneously.
Moreover, the pattern 2314, the row-up pattern, denoted r,,, forces the rows to be
decreasing. Similarly, the pattern 3124, the column-up pattern, denoted c,, forces
the columns to be decreasing.

The down-core restrictions can also be enforced using size 4 patterns. To do so,
we introduce the row-down pattern 2413, denoted r;, and the column-down pattern
3142, denoted c;. As for the up-core, thinking of the black points as the left-to-
right minima of the permutation and the red points as points in cells (see Fig-
ure 4.6 (b)), we can see this results in the same constraints as in the down-core.
Moreover, these patterns force rows and columns to be increasing. The above
discussion is formalized in the next two lemmas.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND

86 WEIGHTED LABELLED INDEPENDENT SETS
ry =2314 ¢, =3124 rg = 2413 cg = 3142
(a) (b)

Figure 4.6: (a) The row-up pattern on the left and the column-up pattern on the
right. (b) The row-down pattern on the left and the column-down pattern on the
right.

Lemma 4.11. Let o be a permutation. Then
1. the rows of o are decreasing if o € Av(ry),
2. the columns of o are decreasing if & € Av(cy),
3. the rows of o are increasing if ¢ € Av(ry),
4. the columns of o are increasing if ¢ € Av(cy).

Proof. We only prove 1. since the other cases can be handled similarly. Let o be
a permutation and suppose that one of the rows is not decreasing. This row has
at least two active cells, therefore ¢ has at least two left-to-right minima. Hence,
when drawn on a staircase grid, this row contains two cells A and B such that B is
to the right of A, and B contains a point higher than a point in A. These two points
together with the left-to-right minimum to the left of the columns containing A
and B form an occurrence of r, in 0. O

Lemma 4.12. Let ¢ be a permutation with n left-to-right minima and C be the set of
active cells of the staircase encoding of o. Then C is an independent set of

1. U(By) ifo € Av(ry) UAv(cy),
2. D(By) ifo € Av(ry) UAv(cy).

Proof. It is sufficient to show 1., which we do by proving the contrapositive: sup-
pose that two active cells of the staircase encoding of a permutation ¢ are con-
nected by an edge of U(B,,). Hence, one of the cells is above and to the right of the
other. Moreover, since they are in distinct rows and distinct columns of By, there
exist three left-to-right minima as shown on Figure 4.7.

The red point and the blue point together with the two points in the active cells
form a ¢, pattern. Replacing the red point by the green one yields an occurrence
of the pattern r,,. Hence, ¢ is not in the union Av(r,) U Av(cy). O

In sections 4.4 to 4.9, we study different combinations of the patterns r,, ¢, 74
and c;. This leads to different graphs, weights and constraints on the rows and
columns of the staircase grid. With each combination of patterns, we describe
a set of patterns P that can be added to the basis while keeping the structural

4.4. WEIGHTED INDEPENDENT SETS OF THE UP-CORE AND THE
DOWN-CORE 87

Figure 4.7: Two cells connected by an edge of the up-core. The blue, the red and
the green points are distinct left-to-right minima.

properties of the permutation class that we need for enumeration. Even when not
specified explicitly, we assume throughout the chapter that the empty permuta-
tion is not in the set P. The results are presented in order of increasing complexity,
with each section introducing a new tool that is used to build different structural
descriptions and generating function arguments. Table 4.1 presents an overview
of the results in the upcoming sections. The notation P* that appears in the table
is introduced in Definition 4.27.

Permutation classes Conditions on the set P Enumeration result

Av(ry, ¢y, 1®P) P is skew-indecomposable Corollary 4.15

Av(rg,c,1® P) P is sum-indecomposable Corollary 4.18

Av(ry,cy,74,¢4,1® P) | No condition on P Corollary 4.22

Av(ry,cy,cq,1® P) P is skew-indecomposable Corollary 4.25

Av(ry,cq,¢4,1® D) P* is sum-indecomposable Corollary 4.29
P is skew-indecomposable and

Av(rg, cu,1® P) P* is sum-indecomposable Corollary 4.32
P satisfies conditions described

Av(ry,2134,P) in Section 4.9 Corollary 4.37

Av(ry, 2143, P) P satisfies conditions described Corollary 4.42

in Section 4.10

Table 4.1: Overview of the permutation classes we cover in the upcoming sections.

4.4 Weighted independent sets of the up-core and the down-core

Lemmas 4.11 and 4.12 say that every permutation in Av(ry, ¢,) can be constructed
by first taking an independent set of the up-core of a staircase grid, and weighting
the cells with permutations in Av(r,, c,). We will show how this can be used to
enumerate the permutation class Av(r,, ¢,) and many of its subclasses. We first
show an auxiliary result used in the proof of our main results.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
88 WEIGHTED LABELLED INDEPENDENT SETS

Lemma 4.13. Let P be a set of skew-indecomposable permutations. Then for n > 1,
uperm(WI(U(B,), Av™* (ry, ¢y, P))) € AV (ry, ¢4, 16 P). (4.2)
Proof. First, for a skew-indecomposable permutation 7r, we will show
uperm(WI(U(B,), Avt (1)) € Av™ (16 7). 4.3)

Assume that ¢ € uperm(WI(U(B,,), Av' (7)) contains 1 7t. Then, a rectan-
gular region of the staircase grid of o contains 7r. As the set of active cells is an
independent set of the up-core, the rows and columns are decreasing, and 7 is
skew-indecomposable, 7t occurs in a single cell. This is a contradiction, since the
weights are from Av™ (7).

We will complete the proof by showing that

uperm(WI(U(B,), Av™" (ry,cu))) € AV (r,, c0).

Let o be a permutation in uperm(WI(U(B,), Av™ (ry,c4))). If o contains either
ry or ¢, then o contains one of the mesh patterns m; or m, in Figure 4.8, by the
Shading Lemma. If the cell (1,0) of mj (resp. cell (0,1) of my) contains a point
then, by picking the leftmost point in that region, the permutation ¢ contains an
occurrence of m; (resp. of m1) that is below (resp. to the left) of the occurrence we
are considering. Repeat this argument on the new occurrence. As ¢ is finite, we
will repeat a finite number of times until we find an occurrence of mj3 or my in
Figure 4.8.

mq my ms my

Figure 4.8: A permutation that contains r, or ¢, contains mj or my, as well as mg3
Or Mmy.

Assume 0}, 03,0,0;, is an occurrence of m3 in ¢. Either ¢;, and ¢;, are both
left-to-right minima in ¢, or both are not left-to-right minima in ¢. If they are
left-to-right minima of ¢ then ¢;, and ¢;, are in different columns of the staircase
grid, and moreover different rows as rows are decreasing. This implies that two
connected cells in U(By,) are active, contradicting the fact that an independent
set was used. Therefore, 0;, and ¢;, are not left-to-right minima of o. There is,
therefore, a point (k, 0y) with k < iy and 0} < 0;,. This new point together with
the original occurrence is an occurrence of 1 @ r,,. As ry, is skew-indecomposable,
this contradicts Equation (4.3).

Hence, we have shown that ¢ avoids m3. A similar argument shows that 1 is
also avoided, and hence r,, and c, are avoided by ¢. O

Theorem 4.14. Let P be a set of skew-indecomposable permutations. Then SE is a bijec-
tion between Av\"™) (1u,cu, 1@ P) and WI(U(B,,), Av™ (1, cy, P)).

4.4. WEIGHTED INDEPENDENT SETS OF THE UP-CORE AND THE
DOWN-CORE 89

Proof. Let o be a permutation in Av(®) (ru,cu,1 @ P). By Lemma 4.12, the active
cells of the staircase encoding of ¢ form an independent set of U(B,), and the
subpermutations in each cell of the staircase encoding are in Av(ry, c,, P). Hence,

SE(AV"™ (ry, cu, 1@ P)) € WI(U(By,), Av' (ru, cu, P)).

By applying SE on both sides of Equation (4.2) in Lemma 4.13, we get by
Lemma 4.7

WI(U(B,), Av* (ry, cu, P)) C SE(AV™ (r,, ¢, 16 P)).

Hence,
SE(AV"™ (ry, 4, 1@® P)) = WI(U(B,), Av' (ry, cu, P)).

Since permutations avoiding r, and ¢, have decreasing rows and columns, the
map SE is injective when restricted to Av(") (ru, cu, 1 ® P). Therefore, SE is a bijec-
tion between Av("™ (r,,c,,1® P) and WI(U(B,), Av* (r,,cy, P)). O

The following corollary shows how to compute the generating function for any
basis covered by the theorem.

Corollary 4.15. Let P be a set of skew-indecomposable permutations and A(x) be the gen-
erating function of Av(ry, cy, P). Then Av(ry,cy, 1 P) is enumerated by F(x, A(x) —
1), where F(x,y) is the generating function in Equation (4.1).

Proof. By Theorem 4.14, Av(ry,cy, 1@ P) is in 1-to-1 correspondence with

| | WI(U(B,), Av* (ry, cu, P)).

n>0

Moreover, the size of the permutation obtained is the number of left-to-right min-
ima added to the sizes of the weights of the independent set. This implies F(x, A(x) —
1) is the generating function for Av(ry,c,,1& P). O

Corollary 4.15 can be used to compute the generating function of Av(2314,3124),
that was first enumerated by [7]. The generating function A(x) for Av(2314,3124)
satisfies

A(x) =F(x, A(x) — 1). (4.4)

Solving gives

3—x—V1—6x+x?
5 /

which is the generating function for the large Schroder numbers, which can be

found in the Online Encyclopedia of Integer sequences [48] as sequence A006318.

Corollary 4.15 can also be used to enumerate the subclass Av(2314,3124,1234),
first enumerated by [44]. In this case, the cells of the independent sets are filled

A(x) = 4.5)

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
90 WEIGHTED LABELLED INDEPENDENT SETS

with permutations in Av(2314,3124,123) = Av(123). Since the generating func-

tion of the latter permutation class is 1=1—4 w, the generating function of Av (2314,
3124,1234) is

F<x,1— ﬂ—4x_1>,

2x

There are three different skew-indecomposable permutations of size 3. Those
permutations are 123, 132 and 213. Therefore, Theorem 4.14 gives a structural
description of Av(2314, 3124) and subclasses obtained by also avoiding any subset
of {1234,1243,1324}. This gives 8 permutation classes with bases consisting of
only size four patterns. Since, there are 13 skew-indecomposable permutations of
size 4, the theorem gives structural description of 2127 bases! that contain size 4
and 5 patterns.

Theorem 4.14 extends the number of permutation classes that the up-core de-
scribes. A similar method can be used for the down-core to enumerate permuta-
tion classes beyond Av(132).

Lemma 4.16. Let P be a set of sum-indecomposable permutations. Then for n > 1
dperm(WI(D(B,), Av* (r4,cq, P))) € AV (ry,cq,1@® P).

Theorem 4.17. Let P be a set of sum-indecomposable permutations. Then SE is a bijection
between Av\"™ (ry,cq,1@® P) and WI(D(B,,), Av* (rq, cq, P)).

The proofs are left to the reader as they are similar to the proofs of Lemma 4.13
and Theorem 4.14. Corollary 4.18 follows naturally from Theorem 4.17.

Corollary 4.18. Let P be a set of sum-indecomposable permutations and A(x) be the gen-
erating function of Av(r4,cg, P). Then Av(ry,cg,1 @ P) is enumerated by F(x, A(x) —
1).

As a consequence of the previous corollary, A(x), the generating function of
Av(2413,3142), first enumerated by [7], also satisfies Equation (4.4) and is given
by Equation (4.5). This result can enumerate 8 permutation classes with bases
consisting of size four patterns and many more if we consider longer patterns.

It is worth noting that any subclass of Av(2413,3142) (as well as the class it-
self) contains finitely many simple permutations and can be enumerated using a
more general method called the substitution decomposition, described in Albert
and Atkinson [49]. Bassino, Bouvel, Pierrot, Pivoteau, Rossin [50] extended the
method to allow for random sampling. We outline briefly in Section 5.3 how the
structural description introduced in this chapter can be used to randomly sam-
ple in permutation classes, including many with infinitely many simple permuta-
tions.

I This is the number of bases after removing redundancies.

4.5. INFLATING THE UPDOWN-CORE 91

4.5 Inflating the updown-core

In the previous section, we enumerated Av(2314,3124) and Av(2413,3142) and
many of their subclasses. However, the intersection of the two permutation classes,
namely the subclass Av(2314,3124,2413,3142), cannot be enumerated using the
theorems so far. Together these patterns put stricter constraints on the staircase
encoding that we have not encountered yet. In this section, we combine differ-
ent graphs to represent these constraints and, in particular, give the generating
function of Av(2314,3124,2413,3142) and many of its subclasses. Again, this per-
mutation class and any subclasses could be enumerated using the substitution
decomposition. However, the techniques used in this section are an important
stepping stone for the upcoming sections.

To represent the new constraint, we introduce the column-edges that connect
cells in the same column of a grid and the row-edges that connect cells in the same
row. More formally:

Definition 4.19.

* The column-core graph C(By,) is the graph whose vertices are the cells of B, and
where there is an edge between cells (i,j) and (k,£) if i # kand j = (.

e The row-core graph R(By,) is the graph whose vertices are the cells of B, and where
there is an edge between cells (i,j) and (k,£) ifi =k and j # £.

We combine the edges of the four graphs U(B,), D(B,), C(B,) and R(B,) in
the natural way. For example, the graph UDC(B;,) has the cells of B, as vertices
and the edges of U(B,,), D(B,,) and C(B,). Figure 4.9 shows UDC(By).

| o

(0]
*—

Figure 4.9: The graph UDC(By). The up-edges are blue, the down-edges are red
and the column-edges are green.

As we did for the up-core and the down-core with Lemma 4.12, we describe
sufficient conditions for the staircase encoding of a permutation to respect the
constraints enforced by the column-core and the row-core.

Lemma 4.20. Let o be a permutation with n left-to-right minima and C be the set of
active cells of the staircase encoding of o. Then C is an independent set of

1. R(By) ifo € Av(ry,1y),

2. C(By) ifo € Av(cy,cg).

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
92 WEIGHTED LABELLED INDEPENDENT SETS

Proof. By Lemma 4.11 if ¢ € Av(r,,r;), the rows of ¢ are both increasing and
decreasing. Therefore, there is at most one active cell in each row, and so the active
cells correspond to an independent set in R(By,). The proof of 2. is similar. O

Theorem 4.21. Let P be a set of permutations. Then the staircase encoding SE is a bijec-
tion between Av") (4,¢4,7u,cu, 1 ® P) and WI(UDRC(B,), Av' (r4,c4, 7, cu, P)).

Proof. By Lemmas 4.12 and 4.20 we have that
SE(Av(ry,c4,7y,cu, 1@ P)) € WI(UDRC(B,,), Av' (r4,c4, 7y, cu, P)).

Let ¢ be a permutation in uperm(WI(UDRC(B,), Av™* (r4,¢c4,7u,cu, P))). As
any independent set of UDRC(B,,) is an independent set of U(B,,) and

AV(rdr Cd,"u,Cuy, P) - AV(?’H, Cu)
we have that
uperm(WI(UDRC(B,,), Av' (r4,c4,7u, cu, P))) C uperm(WI(U(By,), Av™ (ry,cu)))

Therefore, by Lemma 4.13 it follows that o € Av(ry, c,). By observing that uperm
and dperm are equivalent when building from an independent set of RC(Bj,), it
follows from a symmetric argument and Lemma 4.16 that o € Av(ry, c4).
Assume that o contains a pattern 1 @ 71, where 7w € P. Without loss of gener-
ality, we can assume that the 1 in the occurrence is a left-to-right minimum in o.
Then 7t occurs in the rectangular region of cells north-east of the minimum. By
the constraints of UDRC(By,), there can be at most one active cell in this region,
and so 7t is contained in this cell. This contradicts the fact that active cells are
filled with permutations avoiding 7r. Therefore, o avoids 1 & P, and moreover

o e Avi® (r4,¢4,7u,cu, 1 ® P). We get
uperm(WI(UDRC(B,), Av™ (rg, ¢4, 74, cu, P))) C AV (r4, ¢4, 74, ¢4, 1@ P)
or equivalently by applying SE on both sides
WI(UDRC(By,,), Av" (r4, ¢4, 7u, cu, P)) C SE(AV™) (r4, ¢4, 7u, cu, 1B P)).

Since permutations avoiding r,, and ¢, have decreasing rows and columns, the
map SE is injective when restricted to Av(") (ru,cu,74,¢4,1® P). Therefore, SE is

a bijection between AV(”)(ru,cu,rd, c4,1® P) and the image of that set which is
WI(UDRC(B,), Av' (ry, cu, 74,¢4, P)). O

Since the graph UDRC(By,) is the same graph as the updown-core of B, de-
fined in [42], Lemma 4.13 of the same paper gives that the number of independent
sets of size k in UDRC(B,) is given by the coefficient of x"y* in the generating
function)

—Xx
Y(x,y) = .
(xy) x2—xy—2x+1

As in Section 4.4, we get a generating function result for the permutation

classes Av(rg,cq, 7y, cu, 1 ® P).

4.6. NEW CORES 93

Corollary 4.22. Let P be a set of permutations and A(x) be the generating function of
Av(rg,¢4,7u,cu, 1 ® P). Then A(x) satisfies

A(x) =Y(x,B(x)—1)
where B(x) is the generating function of Av(ry,c4, tu,cu, P).

Solving the equation A(x) = Y(x, A(x) — 1) gives

2—x—Vxt =233+ 7x2 —6x+1+1
A(x) = 72

which is the generating function for Av(2413,3142,2314,3124). This permutation
class was first enumerated by [43] and the sequence appears on OEIS as A078482.

4.6 New cores

To this point we have considered permutation classes that can be described by fill-
ing the independent sets of the graphs U(B,), D(B,;) and UDRC(B,,), which were
first used by [42] to enumerate permutation classes avoiding size 3 patterns. In
this section, we begin to consider new graphs that were not motivated by permu-
tation classes avoiding size 3 patterns.

We first consider UDC(By,). The active cells in the staircase encoding of a per-
mutation ¢ avoiding ¢, and c; are an independent set of C(B,,). By Lemma 4.12,
they are also an independent set of U(B,,;) and D(B,,). In order to make the filling
of independent sets unique we need that the rows are either increasing or decreas-
ing, i.e., o avoids r, or r4. In this section, we consider additionally avoiding r,, and
delay the discussion of avoiding r; to Section 4.7.

Theorem 4.23. Let P be a set of skew-indecomposable permutations. Then SE is a bijec-
tion between Av™ (ru,cu,cq,1® P) and WI(UDC(Bn),Av+(ru, Cu,C4, P)).

Proof. Let ¢ € uperm(WI(UDC(B,), Av* (ry,cu,cs,P))). As UDC(B,) contains
the edges of U(B,,) we have

uperm(WI(UDC(Bn),AVJr (ru,cu,cq,P))) C uperm(WI(U(Bn),Aer(ru,cu,cd, P)))

and so by Lemma 4.13, o avoids 1y, ¢, 1 ® ¢; and 1 @ P. Suppose that ¢ contains an
occurrence of ¢, then by the Shading Lemma it also has an occurrence of the mesh
pattern with the same underlying pattern and cells (0,2) and (1,0) shaded. Fur-
ther, the avoidance of r, and 1 ® c; imply that there is an occurrence with the cells
(0,1) and (0, 0) also shaded. Let ¢;, 0;,0;,07, be an occurrence of this mesh pattern,
shown in Figure 4.10. Both 0}, and ¢, are left-to-right minima of o. Therefore, 0;,
and ¢;, are in two separate active cells, contradicting the fact that the active cells
are an independent set of D(B,,) and C(By,). Hence, o € Av(ry, cy,c4,1 @ P) and

uperm(WI(UDC(B,), AV (ry,cy,cq,P))) C Av() (ru,cu,cq,1® P).

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
94 WEIGHTED LABELLED INDEPENDENT SETS

%I
/i
Figure 4.10: The mesh pattern that is contained in the permutation ¢ if it contains
an occurrence of ¢ .

By applying SE to both sides we get

WI(UDC(By), Av* (ry, cu, ¢4, P)) C SE(AV" (ry, ¢y, cq,1® P)).
By Lemmas 4.12 and 4.20,

SE(AV(")(ru,cu,cd, 1@ P)) C WI(UDC(By,), Av' (ry,cy,cq, P)).

Moreover, by Lemma 4.11 the rows and columns are decreasing, therefore, re-
stricted to Av(") (ru,cu,cq,1@ P), SE is injective and a bijection to its image which
is

WI(UDC(Bn)/AV(rll/ Cuy Cd/ P)) D

In order to use the theorem above for enumerative purposes, we need to find
the generating function where the coefficient of x"y* is the number of independent
sets of size k in UDC(By,). We prove a slightly more general statement that tracks
the number of rows occupied by the independent set. Although, not required for
the permutation classes discussed in this section it will be necessary for the results
in Section 4.7.

Proposition 4.24. The number of independent sets of size k occupying ¢ rows in UDC(By,)
is given by the coefficient of x"y*z" in the generating function

_ 1—x—xy
Glxy.2) = x2y —xyz+x2 —xy—2x+1°

Proof. An independent set in UDC(By,) can contain an arbitrary number of ver-
tices in the topmost row, i.e., vertices of the form (1, j). The number of such ver-
tices is called the degree. If the degree is 0, then the subgraph induced by the
remaining vertices is isomorphic to a smaller core UDC(B,,_1). If the degree is not
0, let

k = max{j: (1,/) is a vertex of the independent set},

i.e., k is the column of the rightmost vertex in the topmost row. The independent
set cannot contain a vertex ({,m) if 1 < ¢ < korif f = 1and m > k. This
corresponds to the region shaded in gray in Figure 4.11.

Moreover, the vertices {(1,j) : 1 < j < k} share no edges. We can, therefore,
chose independently if they are in the independent set.

4.7. GENERALIZING THE FILLINGS 95

NN
NN
LN N
/) /// /?/// //// ///// ////?/
7777 /777
00

////// ///// ////?/
O O . 77l AA AA/

Vo a0 A,
VA X A S
Vo a0 A,

7000 0000000007

*—

Figure 4.11: A staircase grid with an active cell marked by a black point. The
shaded cells are the cells that cannot be added to make an independent set. Cells
marked with a circle are disconnected from the graph induced by removing the
shaded cells.

The graph induced by the remaining vertices (¢,m) with £ > k and m > k,
form an instance of the graph UDC(B,,_x). In Figure 4.11 this is the yellow region.
Hence, G(x,y, z) satisfies

G(x,y,z) =14+xG(x,y,2) +xyzG(x,y,z) + - - - +xiy(y + 1)1‘712 G(xyz)+---
xyz G(x,vy,z)

:1+XG(x,y)+m

Solving this equation gives the closed form claimed in the proposition. O

As the proof of Theorem 4.23 gives a unique encoding of the permutation
classes Av(ry, ¢y, cq,1@ P) we derive the following corollary to give their counting
sequences.

Corollary 4.25. Let P be a set of skew-indecomposable permutations and A(x) be the
generating function of Av(ry, ¢y, cz,1@ P). Then A(x) satisfies

A(x) =G(x,B(x) —1,1)

where B(x) is the generating function of Av(ry, cy,cg, P).

4.7 Generalizing the fillings

As Section 4.6 considers the basis {r,, ¢4, c;}, one could hope that we can handle
{r4,c4,cu} similarly. Unfortunately, the proof of Theorem 4.23 relies heavily on
the fact that c; is skew-indecomposable. To repeat the argument for {ry, ¢z, c,},
one would need ¢, to be sum-indecomposable which is not the case. However,
tracking an additional statistic on the independent set allows us to enumerate
these permutation classes. Even if the permutation classes considered in the sec-
tion could be enumerated using the substitution decomposition, the tracking we

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
96 WEIGHTED LABELLED INDEPENDENT SETS

are about to introduce will also be used in sections 4.8, 4.9 and 4.10 for many per-
mutation classes that cannot be enumerated with the substitution decomposition.
If we consider the staircase encoding of o € Av() (r4,¢4,cu), we have from
Lemmas 4.12 and 4.20 that the set of active cells form an independent set of
UDC(By) and that the rows are increasing. Hence, if one cell in a row contains
an occurrence of 312 and is not the rightmost non-empty cell of the row, an occur-
rence of ¢, = 3124 is created (see Figure 4.12). If an active cell contains 312 but is
the rightmost cell in the row then no c;, pattern is created since the cells above and
to the right are empty. Hence, the staircase encoding of a permutation avoiding
the pattern c,, avoids 312 in its cells except the rightmost active cell of each row.

A/ | —=
Y% .
0000
'\/./ 0
A/
S S S S

Figure 4.12: An occurrence of ¢, = 3124 spanning across two cells.

In order to describe the set of staircase encodings of permutations in the class
Av(rg,c4,cu) we enrich our definition of a weighted independent set to a weighted
labelled independent set. We first define a labelling function r on an independent set.
This function maps a vertex v of an independent set I to a label in the set {y, z}.

r(o,T) = y if v is not the rightmost cell of I in its row,
"7)z otherwise.

Definition 4.26. For a graph G on the staircase grid, we define W1, (G, Y, Z) as the set
of weighted independent sets of G where the weight of a vertex v in an independent set 1
is an element of Y if r(v, I) = y or an element of Z if r(v,) = z.

We introduce an operation that removes the last value of a permutation if this
value is the maximum of the permutation.

Definition 4.27. Let o be a permutation. We define the permutation o> as

< « ifo = a®1 fora permutation a,
o otherwise.

For example, 3124* = 312 and 1432* = 1432. For a set of patterns P, let
pP* ={n*:me P}

Theorem 4.28. Let P be a set of permutations such that P* contains only sum-indecomposable
permutations. Then SE is a bijection between Av(™) (rq,¢4,cu,1® P) and

WI(UDC(B,), Av* (312, P*), Av" (r4,c4,cu, P)).
Proof. From Lemmas 4.12, and 4.20 and the discussion above, we have that

SE(AV"™ (r4,c4,c0,1® P)) € WI(UDC(B,), Avt (312, P*), Av* (r4, ¢4, cu, P)).

4.7. GENERALIZING THE FILLINGS 97

To show the reverse inclusion, we partition P into two sets depending on
whether the permutation ends with its maximum or not. We set

Pp={neP:n*=n}tand P, ={me€P:n1" # mn}.
Both Av(312, P*) and Av(ry, ¢4, cu, P) are subclasses of Av(ry, ¢z, Pp), so we get
dperm(WI,(UDC(B,), Av* (312, P*), Av' (r4,c4,cu, P)))
C dperm(WI(UDC(By,), Av*t (r4,cq, P1)))
C dperm(WI(D(By,), Av* (r4,cq, P1))).

As Pj contains only sum-indecomposable permutations, by Lemma 4.16, we have
that

dperm(WI.(UDC(B,,), Av* (312, P*), Av* (r4,cq,cu, P))) € AV (rg,cq, 10 Py).

We also need to show that ¢, and 1 @ P, are avoided. Let o be a permutation
in dperm(WI;(UDC(B,), Av' (312, P*), Av™* (r4,c4, cu, P))). We first show that for
€ P U{c,}, 1® m does not occur. By the hypothesis, we know that 7 = a @ 1,
with & sum-indecomposable. If 1 @ 77 is contained in ¢, then 77 is fully contained in
a rectangular region of the grid. In such a region, the active cells of the encoding
are in the same row. Hence, 7T is contained in a single row. Since the rows are
increasing and « is sum-indecomposable, the only way to split the occurrence is
to have an occurrence of « in a cell and an occurrence of 1 in a cell to the right. This
is not allowed by the way the vertices can be weighted. Hence, it is contained in a
single cell which is also forbidden. Therefore, by contradiction, 1 @ 7 is avoided
for any rrin P, U {c, }.

In particular 1 & ¢, is avoided. Using the Shading Lemma to shade the cells
(0,2) and (1,0), the avoidance of r; to shade (0,1) and the avoidance of 1 @ ¢, to
shade (0,0), we see that if ¢, is contained in ¢ then ¢ contains an occurrence of the
mesh pattern

An occurrence of this mesh pattern violates either the column-edges constraint or
the up-edges constraints. Thus c, is avoided, and we have

dperm(WI(UDC(B,), Av* (312, P*), Av* (rg,c4,cu, P))) € AV (rg, ¢4, 0,16 P),
and, by Lemma 4.7,
WI(UDC(B,), Av* (312, P¥), Av™ (r4, cq, cu, P)) € SE(AV™ (14, ¢4, 0,10 P)).

By Lemma 4.11, the rows and columns of a permutation in Av(® (rg,cq,cu,1®
P) are decreasing and therefore, restricted to this set, the map SE is injective.

Hence, SE is a bijection between Av(?) (r4,c4,¢u,1® P) and

SE(AV(™ (r4,¢4,c4,1® P)) = WI(UDC(B,), Av* (312, P*), Av* (ry, ¢4, cu, P)).
O

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
98 WEIGHTED LABELLED INDEPENDENT SETS

Recall that G(x, y, z) is the generating function of independent sets of UDC(B;;)
where x tracks the size of the grid, y the size of the independent set, and z the
number of rows of the independent set. Therefore, G(x,y, ;) is the generating
function where y tracks the number of cells labelled y by the labelling function
r and z tracks the number of cells labelled z. Let C; and C; be two permutation
classes enumerated by A(x) and B(x). Let F(x) be the generating function for
the number of weighted independent sets where the cells labelled y are weighted
with a non-empty permutation from C; and the cells labelled z are weighted with
a non-empty permutation from C,. Then

F(x) = G (x,A(x) - 1,%21) .

This leads to the following enumeration result:

Corollary 4.29. Let P be a set of permutations such that P> contains only permutations
that are sum-indecomposable, and A(x) be the generating function of Av(rg,cg,cy,1®
P). Then A(x) satisfies

Alx) = G (x,C(x) - 1,@81)

where B(x) is the generating function of Av(ry,cg,cy, P) and C(x) is the generating
function of Av(312, P*).

As an example, we derive A(x), the generating function of Av(2413,3142,3124)
which was first derived by [44] and appears in the OEIS as A033321. Since the ba-
sis is {rg,¢4,cu}, B(x) = A(x). Moreover, Av(312) is enumerated by the Catalan

numbers and C(x) = 1%1=* Hence, A(x) satisfies
C(x)—1
A(x) =G (x,A(x) — 1, 142)(_‘%—1) .

The equation can be solved to get the explicit form of the generating function.

4.8 Avoiding the row-down and column-up patterns

In this section, we consider permutation classes described by weighted indepen-
dent sets of the graphs UD(By,). This corresponds to removing one of the three
patterns from the results in sections 4.6 and 4.7.

Theorem 4.30. Let P be a set of skew-indecomposable permutations such that all permu-

tations of P> are sum-indecomposable. Then SE is a bijection between AV (rg, 00,1 @
P) and WI,(UD(B,,), Av" (312, P*), Av* (r4,cy, P)).

Proof. By Lemma 4.11, the map SE is injective when restricted to Av(™ (rg,cu,1®
P) as each permutation in this set has decreasing columns and increasing rows.
Therefore, to show that SE is the claimed bijection, it is sufficient to show that

SE(AV(™ (r4,¢,,1® P)) = WI,(UD(B,), Av* (312, P*), Av* (r4, ¢y, P)).

4.8. AVOIDING THE ROW-DOWN AND COLUMN-UP PATTERNS 99

By Lemma 4.12 any encoding in SE(Av(") (r4,c,,1 @ P)) is an independent set
of UD(B,). Moreover, since the rows are increasing, all active cells but the right-
most of each row avoid 312 and P* as discussed at the beginning of Section 4.7.
This implies

SE(AV" (ry,c,,1® P)) € WL (UD(B,), Avt (312, P*), Av* (rg,cy, P)).

Take I in WI,(UD(B,,), Av' (312, P*), Av*t (r4,cy, P)). We consider ¢, the permu-
tation obtained from I by building the permutation with decreasing columns and
increasing rows. We show that ¢ is in AV (r4,¢,,1 @ P). We start by showing
that o avoids 1 @74, 1 @ ¢, and 1 @ P. In an occurrence of any of these patterns in
o, we can assume that the 1 is a left-to-right minimum. Hence, we have to show
that 74, ¢, and P are avoided in the square formed by the set of cells that are north
and east of a left-to-right minimum. Let 77 be any pattern in {r, ¢, } U P. We know
that 77 is skew-indecomposable and that 77* is sum-indecomposable.

Assume that 77 occurs in a square region of the cells that are north and east of a
left-to-right minimum. We consider the rightmost column in the region that con-
tains a point of the occurrence of 7. In this column, we consider the topmost cell
that contains such a point. In Figure 4.13, this cell is colored blue. By construction,
the gray region is empty. Moreover, there is no point of the permutation in the

N0
;; P

Figure 4.13: Decomposition of an occurrence of 7 in a square region.

green region (resp. the red region) because the set of active cells is an independent
set of D(By,) (resp. U(B,)). Since the columns are decreasing, if the occurrence
contains any point in a cell below the blue one, 7t is skew-decomposable. Hence,
the only active cell in the column is the blue one. Finally, since the row is increas-
ing and 77* is sum-indecomposable, 7 is either fully contained in the blue cell,
which is forbidden, or 77 is fully contained in a cell that is not the rightmost ac-
tive one in the row, which is also forbidden. Consequently, 1®r;, 1 ® cy and 1 G P
are avoided. Using shading arguments as done in previous proofs, we can show
that if o contains an occurrence of r; or ¢, then o contains an occurrence of either
of the mesh patterns

or

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
100 WEIGHTED LABELLED INDEPENDENT SETS

An occurrence of either of these pattern violates the edge, increasing rows, or
decreasing column constraints. Hence, ¢ is in Av(") (r4,¢,,1@® P) and

SE(AV™ (ry,c,,1® P)) 2 WL (UD(B,), Avt (312, P*), Av* (14, ¢y, P)).

This proves that the image of Av(®) (r4,c4,1® P) under SE is the set claimed in the
theorem. O

In order to enumerate these permutation classes, we first enumerate the inde-
pendent sets of UD(B,,) while keeping track of the number of rows.

Proposition 4.31. The number of independents set of size k in UD(B,,) occupying £ rows
is given by the coefficient of x"y*z" in the generating function that satisfies

W(x,y,z) =1+xW(x,y,z)+ D(x,y,2) W(x,y,z),
where

xyz(xy’z — x + 1)
(xyz+x—1)(xy +x—1)°

D(x,y,z) =

Proof. We consider the topmost row of By,. If it contains no vertex of the indepen-
dent set, then we are looking at the independent set in a smaller core graph and it
contributes x W(x,y,z) to W(x,y,z).

If the topmost row contains vertices of the independent set, we consider its
rightmost vertex. The vertex is highlighted in blue in Figure 4.14. The cells in
the yellow region do not contain any vertices of the independent set because they
are connected to the blue cell by an edge. The vertices of the independent set are,
therefore, in the hook formed by the white and blue cells, and the pink region. The
pink region is completely disconnected from the hook and hence the vertices of
the independent set in this region correspond to an independent set of a smaller
core.

To find W, we need to enumerate the independent set of the hook that contains
the corner cell of the hook. We say that the leg length of the hook is the number of
cells in the horizontal strip. If the coefficient of x"y¥z in D(x,y, z) is the number
of such sets of k vertices using ¢ rows in the hook of leg length 7, then

W(x,y,z) =1+xW(x,y,z) + D(x,y,z) W(x,y,2).

To find the generating function D(x,y, z) we first notice that any vertices that
we take in the vertical leg add to the row count of the independent set while
vertices in the horizontal leg do not change the row count. First, the case where
the hook is a single cell contributes xyz to D(x,y, z).

Second, if the leg length of the hook is greater than 1, the cells at the end of
each leg are not connected to the hook by any edges of the graph. Hence, we
have complete freedom to put them in the independent set. Therefore, the second
case is of the form (xyz)(xyz + x)(y +1)(---). As they are accounted for, we
completely ignore the corner cell and the two cells at the end of the leg and focus
on enumerating the part of the independent set in the remaining cells.

4.8. AVOIDING THE ROW-DOWN AND COLUMN-UP PATTERNS 101

| o lslsly
NN

o| 1[4

>

Figure 4.14: Decomposition of an independent set according to the rightmost ver-
tex in the top row. The picture on the left shows the whole staircase. The picture
on the right shows the induced subgraph of the hook with a corner in the blue
cell.

If no cell of the vertical leg is in the independent set, then any cell of the hori-
zontal leg can be in it. Otherwise, if there are 7 cells above the topmost active cell
of the vertical leg then the i leftmost cells of the horizontal leg are the only cells
from that leg that can be in the independent set (see Figure 4.15).

icells k+1cells

N
N

7
/)

NN
N\
N\
N\

\/_/
S[[90 ¢

ST[®0 ¥

2
7

Figure 4.15: The structure of an independent set in the hook. The only active cells
are in the regions that are not shaded.

Hence,

D(x,y,2) = xyz + (xyz)(xyz + x)(y + 1)

1 xyz
(o 6)
xyz(xy?z — x + 1)
(xyz+x—1)(xy+x—1)

which completes the proof. O

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
102 WEIGHTED LABELLED INDEPENDENT SETS

Using the same reasoning as in Section 4.7 we derive the following enumera-
tion result:

Corollary 4.32. Let P be a set of skew-indecomposable permutations such that all permu-
tations in P> are sum-indecomposable and A(x) be the generating of Av(ry,cy, 1@ P).

Then A(x) satisfies . .
Alx) =W (x,C(x) -1, Cg;l)

where B(x) is the generating function of Av(ry,c,, P) and C(x) is the generating func-
tion of Av(312, P*).

4.9 Avoidingr; and 2134

In this section, we consider the pattern 2134 that has not been considered yet. As
when we analysed r,, ¢y, 77 and ¢4, we consider the two black points of Figure 4.16
as left-to-right minima of the permutation. Then, we study the effect of the two
red points on the staircase encoding of the permutation, its rows and its columns.
An occurrence of 2134 where the two black points are left-to-right minima cannot
have a point in the cell of the leading diagonal of the grid. Hence, the pattern
does not enforce any restrictions on those cells. However, in the remaining cells,
the pattern 2134 has the same effect as 123 has on the grid B,,_; since there are
always two left-to-right minima to the left and below those cells.

Figure 4.16: The pattern 2134.

Let G(B;—1) be a graph with cells of B,,_; as vertices. Let S be a subset of B,.
For the remainder of the chapter, we will make a small abuse of the definition and
say that S is an independent set of G(B,,_1) if the set

{(xy—1): (x,y) € Sand x # y}

is an independent set of G(B,_1). In other words, a subset of B, is an indepen-
dent set of a graph on B,,_1 if it is an independent set of the graph obtained by
overlaying G(B,,_1) on By, as in Figure 4.17.

Using similar arguments as we did for Lemmas 4.11, 4.12 and 4.20, we can
prove the following lemmas.

Lemma 4.33. Let o be a permutation in Av(™) (2134). We consider the set C of active
cells of the staircase encoding of o that are not in the main diagonal of the grid. Then

e C is an independent set of U(B,,_1)

e cells in C contain decreasing permutations

4.9. AVOIDING ry; AND 2134 103

JQ (e} L]
® 5 {
/
L] O
O L]
O

*—

Figure 4.17: The graph U(Bs) on the staircase grid Be. The black vertices form an
independent set of U(Bs) for the grid Bg.

Moreouver, if we remove the cells of the leading diagonal from o, the rows and columns are
decreasing.

Lemma 4.34. Let o be a permutation in Av(") (2134, r4). The set of active cells of the
staircase encoding of o is and independent set of R(B,,_1).

For the rest of this section, we let P be set of patterns, such that for all 7z in P:

7
e 77 avoids ,and

o 1¢Sd(AvT(12)\{1}).

Note, r; and 2134 satisfy these conditions. As further examples, the permutations
312 and 1423 also satisfy the conditions.

For two graphs on staircase grids of different sizes, we define the merge of those
graphs by gluing them by the top right corner cell. Figure 4.18 shows an example
of a merge. The merge of two graphs A and B is denoted A V B.

BES

O
*——

Figure 4.18: The merge of U(Bs), R(Bs) and D(Bg). The green edges come from
R(Bs), the blue ones from U(Bs), and the red ones from D(Bg).

In order to describe the structure of the staircase encodings of the permutations
in Av(ry4,2134,1® P), we define a labelling ¢ where the set of labels is {y, z,s, t}.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
104 WEIGHTED LABELLED INDEPENDENT SETS

For a subset I of the staircase grid and vertex v of this set, we let

y if vis not in the leading diagonal,

z if thereisa v’ € I in the same column,

s if thereisa v’ € I that is north east of v,
t

(P(U, I) =
otherwise.

Figure 4.19 shows an independent set labelled with ¢.

[+

s|Y

z
—

Figure 4.19: The labelling of an independent set with ¢.

As we did for WI;, we define Wiy(G, Y, Z, S, T), as the set of weighted inde-
pendent sets of G such that for a vertex v in the independent set I, the weights of
v is an element of

e Yifgp(v,I) =y,
e Zif¢p(v,I) =z,
e Sif¢p(v,I) =s,and
e Tifp(v,I) =t
During the rest of the section we consider the set
WIy(D(By) VUR(B,_1),Av*t (12), Av ™ (r4,2134, P)\{1},
Av'(213,P*), Av' (r;,2134,P)).
For sake of brevity, we name it Z, in this section.
Theorem 4.35. There is a bijection between Av(") (rq,2134,1 @ P) and Z,.

Proof. Let I be a weighted independent set in Z;. Let E be the staircase encoding
such that cell v contains the corresponding permutation, except when ¢ (v, I) = z.
In this case, we write the weight as am where m is the maximum, and in this cell

of E, we add af.
Define f to be a map which maps I to the permutation f(I) with staircase

encoding E such that

e the rows of f(I) are increasing,

4.9. AVOIDING ry; AND 2134 105

¢ excluding points in the leading diagonal, the columns are decreasing,

* in an active cell v labelled z, with weight amp, « is to the left and S is to the
right of the points in the column.

Figure 4.20 shows the map f applied to an independent set.

.
1213]
.
L 4 L]

123 21 f .

321]

2143 .

(15)(17)(16)(18)9(10)(11)(12)5132(14) (13)8764
Figure 4.20: The map f from Z, to S.

We will show that f is the bijection desired. Assume that ¢ = f(I) contains
1@ 7t for some 7t € P. If o contains 1 & 7, then it contains an occurrence where
the 1 in the occurrence is a left-to-right minimum in ¢. Therefore, o contains an
occurrence 7T in a rectangular region of the staircase grid. This region is pictured
in Figure 4.21 (a) with the cell in the leading diagonal in blue.

-

]

| P | []
(@) (b) (©)

Figure 4.21: Decomposition of the rectangular region containing the occurrences
of 7.

In this region, without loss of generality we can assume the cell in the lower left
corner is in the leading diagonal. The permutations that fill the active cells avoid
P, therefore, the occurrence has points in at least two cells. In this region, consider
the leftmost cell not in the leading diagonal containing a point of the occurrence
of 7r. If this cell is in the first column, then by the definition of I the columns to the
right are not active in f(I). The column consists of a decreasing permutation in

Z
the cells not in the leading diagonal (see Figure 4.21 (b)). As 7t avoids % , the

occurrence can use exactly one point in these cells, say k. Therefore, an occurrence
of 7t is of the form akp, where the & and f are in the cell in leading diagonal, which
contradicts the definition of f.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
106 WEIGHTED LABELLED INDEPENDENT SETS

Otherwise, the leftmost cell not in the leading diagonal is not in the first col-
umn. By the definition of I, the columns to the right and left are empty if they
are not in the diagonal. Moreover, this column is decreasing as shown in Fig-
ure 4.21 (c). Therefore, since the blue cell avoids 7%, it follows that 71 € S @
(AvT(12)\{1}), contradicting the second condition of P. Hence, we have shown
that f(I) avoids 1 .

If o contains an occurrence of 2134 then it either contains an occurrence of
1@ 2134 or an occurrence of (2134,{(0,0)}). By the Shading Lemma, the latter
implies an occurrence of m;, see Figure 4.22. If m; occurs then the 2 and the 1
of the occurrence are left-to-right minima of the permutation. The 3 and 4 of the
occurrence violate either a decreasing cell constraint if they are in the same cell or
an up-edge or decreasing column constraint if they are not. Hence, if o contains
an occurrence of 2134 it also contains an occurrence of 1 © 2134. As 2134 satisfies
the conditions of P this implies ¢ avoids 2134.

my ma m3 my
Figure 4.22: Mesh patterns that do not occur in ¢.

If o contains an occurrence of r; then by a similar argument as above, it either
contains an occurrence of 1 @ r; or my. Moreover, if ¢ contains an occurrence of
my, we can find an occurrence of m3 or my. An occurrence of m3 would violate
the row increasing constraint or a down-edge constraint. The 5 and the 2 in an
occurrence of my are in the same column of the staircase grid as they cannot have
any left-to-right minima between them. The 5 and 4 in an occurrence of 114 are also
in the same column, otherwise they violate a down-edge or a row-edge constraint.
Hence, since the 2 in an occurrence is in a different row than the 5 and 4, we have
a violation of the way we build the column. Therefore, m4 does not occur in ¢
and ¢ avoids my. We conclude that if o contains r; then it contains 1 @ r;. As ry
satisfies the conditions of P this implies ¢ avoids 7.

The injectivity of f follows from the uniqueness of the map. For surjectivity,

we consider a permutation ¢ in Av(") (r4,2134,1 @ P). The rows of ¢ are increas-
ing by Lemma 4.11. By Lemma 4.33, the cells labelled y in ¢ contain decreasing
permutations. Cells labelled s avoid 213 and P* since there is a guaranteed point
of the permutation to the north east of the points in those cells. The cells labelled
z and t avoid r4, 2134 and P. Moreover, the active cells of ¢ form an independent
set of D(B,,) V UR(B,,—1) by Lemma 4.33 and 4.34.

We study how cells in the same column interact. We consider a column of
the staircase grid. By Lemma 4.33, except for the bottommost cell, the column
is decreasing and each cell contains a decreasing sequence. If there is a point in
the bottom cell with index between two points of the decreasing sequence, then
it creates an occurrence of r;. Hence, the bottommost cell can only have points

4.9. AVOIDING ry; AND 2134 107

on both sides of the decreasing sequences. Figure 4.23 shows a typical column.
In the bottommost cell, any point in the gray region would create an r; pattern.
Moreover, the content of this cell cannot create one of the forbidden patterns with
one of the points above. Hence, it can only split in a place where a new maximum
could be added without creating a pattern in {r;,2134} U P. The content of this
cell comes from a permutation amp € Av(ry,2134, P) where m is the maximum, «
is placed on the left of the decreasing sequence and B on the right.

Figure 4.23: A typical column for a permutation avoiding 2143 and 7.

This shows that o can be obtained from an element of Z,, by applying f. O

To compute the generating function of Av(2134,r;,1® P), we need to compute
the generating function for the independent set of D(B,,) V UR(B,,_1) for n € IN.
For these sets we track the number of vertices with each label by a different vari-
able.

Proposition 4.36. Let H(x,y,z,s,t) be the generating function of independent sets of
D(By) VUR(B,,_1) such that the variable y, z, s, t track the number of vertices with labels
Y,z,s,tin the set. Then H(x,y,z,s, t) satisfies

x*y(s+1)(z+1)
1= x5+ D+ 1)

Proof. We observe that the vertices in the leading diagonal of D(B,) V UR(B,_1)
are disconnected from the graph. Hence, they can be freely added or removed
from any independent set.

Because of the row constraint on B,,_1, the topmost row can contain at most
one vertex that is not in the leading diagonal. First, if the independent set does
not contain such a vertex then it contributes x(1 + t) H(x, y, z,s, t) to H.

Otherwise, the graph decomposes as shown on Figure 4.24 and we get a con-
tribution of

H(x,y,z,5t) =1+x(1+t)H(x,y,2,5,t) + H(x,y,z,5,t).

x?y(s+1)(z+1)
TG 1) H(x,y,z,5,t).
Hence, H(x,y, z, s, t) satisfies
y(s+1)(z+1)

H(x,y,z,5t) =1+x(1+t)H(x,y,2,5,t) + H(x,y,z,5s,t)

1—x(s+1)(y+1)

as claimed in the proposition. O

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND

108 WEIGHTED LABELLED INDEPENDENT SETS
y (y+1)
| K
P
V4
(+1) — o
A~
x(z+1) L
H(x,y,z,5s,t)
o=

Figure 4.24: The decomposition of an independent set of D(B,,) V UR(B,,_1) when
a cell in the topmost row is active.

From Theorem 4.35 and Proposition 4.36, we get the counting sequence of
Av(ry,2134,1@ P).

Corollary 4.37. The generating function of Av(2134,2413,1@® P) is

H (x, 7 il , B(x) - (1+x),C(x) —1,B(x) —1)

— X X

where
* B(x) is the generating function of Av(2134,2413, P),
o C(x) is the generating function of Av(213, P*).

Using the corollary above, we can compute A(x), the generating function of
Av(2134,2413) that was first enumerated by [19]. In this example, P is empty.
Hence, B(x) = A(x) and C(x) is the generating function for the Catalan numbers.
We get that the generating function A(x) satisfies

x Ax)—(1+x)
"1—x' x

A(x)=H (x ,C(x)—1,A(x) — 1) :

This equation can be solved explicitly to find the counting sequence that appears
in OEIS as A165538.

410 Avoiding r, and 2143
Using similar techniques as in the previous section we enumerate permutation
classes of the form Av(r,,2143,1 @ P) where each pattern 7 in P satisfies

7
e 7T avoids , and

e T ¢ SOAvVT(21).

4.10. AVOIDING r,, AND 2143 109

For the entire section, we let P be such a set.

We look at the pattern 2143 in Figure 4.25 as we did for 2134. If we consider
the two black points as left-to-right minima of a permutation, then the two red
points will enforce a down-core structure on the staircase grid except for the lead-
ing diagonal. The following lemmas follow from similar arguments as in Lem-

Figure 4.25: The pattern 2143.

mas 4.11, 4.12 and 4.20.

Lemma 4.38. Let o be a permutation in Av™ (2143). We consider the set C of active
cells of the staircase encoding of o that are not in the main diagonal of the grid. Then

e Cis an independent set of D(B,_1),
* cells in C contain increasing permutations.

Moreover, if we remove the cells of the leading diagonal from o, the rows and columns are
increasing.

Lemma 4.39. Let o be a permutation in Av\"™) (2143, r,). The set of active cells of the
staircase encoding of o is an independent set of R(B,,_1).

From the two previous lemmas and Lemma 4.12, we know that for ¢ in the

set Av(")(r,,2143) the active cells of SE(c’) are an independent set of U(B,) V
DR(B;—1). To describe the structure of the staircase encoding of the permutations
in Av(ry,2143,1 @ P) we introduce new labelled weighted independent sets. First,
for a subset I of the staircase grid and a vertex v of I, we set

y if vis not in the leading diagonal,
P(v, 1) = ¢ z ifthereisa ¢’ € Iin the same column,
s otherwise.

Figure 4.26 shows of a independent set labelled with .
We define WLP(G, Y,Z,S) as the set of weighted independent sets of G such
that for a vertex v in the independent set I the weight of v is an element of

e Yify(v,I) =y,
e Zifyp(v,I) =z and
e Sify(v,I) =s.
Theorem 4.40. There is a bijection between Av() (ry,2143,1® P) and

W1, (U(B,) VDR(B,_1), Av*(21), Av* (r,, 2143, P)\{1}, Av* (r,, 2143, P)).

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
110 WEIGHTED LABELLED INDEPENDENT SETS

¥

z
«——

Figure 4.26: The labelling with ¢ of an independent set.

Proof. For conciseness, we denote with 7, the set of weighted independent sets
stated in the theorem. Let I be a weighted independent set in Z,,.

Let E be the staircase encoding such that a cell v contains the same permutation
asin I, except when ¢ (v, I) = z. In this case, we write the weight as am where m
is the maximum, and add a3 to cell v.

Define f to be a map which maps I to the permutation f(I) with staircase
encoding E such that

e the rows of f(I) are decreasing,
* excluding points in the leading diagonal, the columns are increasing,

* in an active cell v labelled z, with weight amp, « is to the left and f is to the
right of the points in the column.

Figure 4.27 shows the map f applied to an independent set.

.
1213 .
.
L 4 L]

123 12 f .

123 .

2431 L

(15)(17)(16)(18)9(12) (13)(14)513678(10) (11)42
Figure 4.27: The map f from Z,, to S.

We show that f is the desired bijection. Assume that ¢ = f(I) contains 1 ®
7t for some m € P. If o contains 1 & 71, then it contains an occurrence where
the 1 in the occurrence is a left-to-right minimum in ¢. Therefore, ¢ contains an
occurrence 7T in a rectangular region of the staircase grid. This region is pictured
in Figure 4.28 (a) with the cell in the leading diagonal colored blue.

In this region, without loss of generality, we can assume the cell in the lower
left corner is in the leading diagonal. The permutations contained in each active

4.10. AVOIDING r,, AND 2143 111

- N

| | L]
. L .]

(a) (b) (©

Figure 4.28: Decomposition of the rectangular region containing the occurrences
of 7.

cell avoid P, therefore, the occurrence has points in at least two cells. In this region,
consider the leftmost cell not in the leading diagonal containing a point of the
occurrence of 7. If this cell is in the first column then, by the definition of I, only
cells in the leftmost column and the bottommost row can be active. Moreover, the
row-edges imply that only one cell in the bottom row that is not in the leading
diagonal can be active. The column consists of an increasing permutation in the
cells not in the leading diagonal and the rows are decreasing (see Figure 4.28 (b)).

As isnotin § © Av' (21), the bottommost cell in this figure is empty. Also, as 7w
7
avoids , the occurrence can use exactly one point in the remaining white

cells, say k. Therefore, the occurrence of 7t is of the form akfB, where the a and j
are in the cell in leading diagonal, which contradicts the definition of f.

Otherwise, the leftmost cell not in the leading diagonal is not in the first col-
umn. By the definition of I, only the column of this cell and the bottommost row
can be active. Moreover, this column is increasing and the bottom row is decreas-
ing. Only one white cell of the bottom row can be active because of the row-edges.
This is shown in Figure 4.28 (c). Therefore, it follows, since 7 ¢ S & Av ™' (21), that
the bottommost cell is empty. Hence 7T is an increasing permutation, which con-
tradicts the first condition on P. Hence, we have shown that f(I) avoids 1 & 7.

If o contains an occurrence of 2143 then it either contains an occurrence of
1 & 2143 or an occurrence of (2143,{(0,0)}). By the Shading Lemma, the latter
implies an occurrence of m; (see Figure 4.29). If m; occurs then the 2 and the 1
of the occurrence are left-to-right minima of the permutation. The 3 and 4 of the
occurrence violate either an increasing cell constraint if they are in the same cell
or a down-edge constraint if they are not. Hence, if ¢ contains an occurrence of
2143 it also contains an occurrence of 1} 2143. As 2143 satisfies the conditions of
P this implies ¢ avoids 2143.

mq my ms My

Figure 4.29: Mesh patterns that do not occur in ¢.

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
112 WEIGHTED LABELLED INDEPENDENT SETS

If ¢ contains an occurrence of r,, then by a similar argument as above, it either
contains an occurrence of 1 & r,, or my. Moreover, if ¢ contains an occurrence of
my, we can find an occurrence of m3 or my. An occurrence of mz would violate
the row decreasing constraints or the up-edges constraints. The 4 and the 2 in an
occurrence of my are in the same column of the staircase grid since they cannot
have any left-to-right minima between them. The 5 and 4 in an occurrence of 4
are also in the same column otherwise they violate an up-edge constraint. Hence,
since the point at index 4 is in a different row than the ones at index 3 and 5, we
have a violation of the way we build the column. Therefore, 4 does not occur in
o and o avoids my. We conclude that if ¢ contains r,, then it contains 1 ® r,,. Asry,
satisfies the conditions of P, this implies ¢ avoids 7.

The injectivity of f follows from the uniqueness of the map. For surjectivity, we
consider a permutation ¢ in Av(")(r,,2143,1 @ P). The rows of ¢ are decreasing
by Lemma 4.11. By Lemma 4.38, the cells labelled y in ¢ contain increasing per-
mutations. The cells labelled z and s avoid r,, 2143 and P. Moreover, the active
cells of ¢ form an independent set of U(B,,) V DR(B,,_1) by Lemmas 4.38 and 4.39.

Finally, we need to consider the points in a column of the staircase grid. By
Lemma 4.38, except for the bottommost cell, the column is increasing and each cell
contains an increasing permutation. If there is a point in the bottom cell with index
between two points of the increasing sequence, then it creates an occurrence of r,,.
Hence, the bottommost cell can only have points on either side of the increasing
sequence. Figure 4.30 shows a typical column. In the bottommost cell, any point

Figure 4.30: A typical column for a permutation avoiding 2143 and r,,.

in the gray region would create an r, pattern. Moreover, the points in this cell
together with another point in this column cannot create one of the forbidden
patterns. Hence, it can only be split in a place where a new maximum could be
added without creating a pattern in {r,,2143} U P. Therefore, the points in the
cell are of the form a8 where « is to the left of the other points in the column, § is
to the right of the other points in the column, and amp € Av(r,, 2143, P).
Therefore we have shown that ¢ can be obtained from an element of 7, by

applying f. O

To compute the generating function of Av(r,,2143,1@® P), we need to compute
the generating function for the independent sets of U(B,) V DR(B,,_1) for any

4.10. AVOIDING r,, AND 2143 113

natural number n. For these sets we track the number of vertices and their labels
with different variables.

Proposition 4.41. Let J(x,y,z,s) be the generating function of independent sets of the
graph D(By,) V UR(By,_1) such that the variables y, z, s track the number of vertices with
label y, z, s in the set. Then J(x,y,z,s) satisfies

xy(z+ D)0, 1)

J(x,y,2,8) =14+x(s+1)J(x,y,2,5) + 1—x(y+1)

Proof. We consider the top row of the graph. The leftmost cell is completely dis-
connected from the graph, hence, it can be freely added to the independent set.
The row constraint on B,,_; implies the topmost row contains at most one vertex
that is not in the leading diagonal. First, if the independent set does not contain
such a vertex then it contributes x(s + 1) J(x,y,z,s) to J.

y x(y+1)

RZ7k

x(s+1)

x(z+1)

I J(xy,zs)—1
x(s+1)

[

Figure 4.31: The decomposition of an independent set of U(B,,) V DR(B,,_1) when
a cell in the topmost row is active.

Otherwise, the graph decomposes as shown on Figure 4.31 and we get a con-
tribution of (s 41) X -
x(s+1)y xX,Y,z,8) —
—— =Xz + 1)
1—-x(y+1) () x(s+1)
J(xy,28)
x(s+1)
where a single disconnected cell has been removed. Hence, J(x,y, z, s, t) satisfies

where the term is due to the pink region which is precisely a smaller core,

xy(s+1)

J(x,y,2,5) —1
1-— x(y+ 1)

J(x,v,2,5) =14+ x(s+1)J(x,y,2,5) + x(s +1)

x(z+1)

as claimed in the proposition. O

From Theorem 4.40 and Proposition 4.41, we get the generating function for
the counting sequence of Av(r,,2143,1® P).

Corollary 4.42. The generating function of Av(2134,2413,1 @ P) is
] (x x B(x)-— (1+x),B(x) _1)

"1 —x’ x

CHAPTER 4. ENUMERATION OF PERMUTATION CLASSES AND
114 WEIGHTED LABELLED INDEPENDENT SETS

where B(x) is the generating function of Av(2314,2143, P).

Using the corollary above, we can compute A(x), the generating function of
Av(2314,2143) that was first enumerated by [16]. In this example, P is empty.
Hence, B(x) = A(x). We get that the generating function A(x) satisfies

A0y = (5,2 A1)

JA(x) — 1> .

This equation can be solved explicitly to find the generating function

1—+1—8x+16x2 — 8x3
4(x — x2) '

This generating function gives the counting sequence that appears in OEIS as
A109033.

4.11 Unbalanced Wilf-equivalence

A combination of many of our results can be used to prove that some permutation
classes have the same counting sequence. When two permutation classes have the
same counting sequence, we say that they are Wilf-equivalent. This equivalence is
said to be unbalanced [51] if one of the bases has a pattern of size k, but the other
basis does not, like in the next theorem.

Theorem 4.43. The permutation classes Av(2413,2134,1234) and Av(2413,2134,1324,
12534) are Wilf-equivalent.

Proof. The first permutation class in our notation is Av(r;,2134,1234). Hence, by
Corollary 4.37, its generating function A; (x) is

x Bi(x)—(1+x)
H(x'l—x' 1 x

,Co(x) 1, Bi(x) — 1)

where
* Bj(x) is the generating function of Av(r;,2134,123) = Av(r4,123).
e Ci(x) is the generating function of Av(213,12) = Av(12).

The second permutation class is Av(r;,2134,1324,12534). Again, by Corol-
lary 4.37, its generating function A,(x) is

H (x, - = - Ba(x) _x(l T3 Co(x) — 1, Ba(x) — 1)

where

* B,(x) is the generating function of Av(ry,2134,213,1423) = Av(213,1423).

4.12. IMPLEMENTATION 115

e Cy(x) is the generating function of Av(213,21,1423) = Av(21).

The permutation class Av(r;, 123) is the same permutation class as Av(ry, ¢y, 74,
123) since 123 is contained in r,, and c¢,,. Moreover, the last permutation class is a
symmetry of Av(ry, cy,c4,123). Hence, by Corollary 4.25,

Bi(x) = G (x, 1fxl> .

We also have that Av(213,1423) is a symmetry of Av(132,c,) which is the same
permutation class as Av(r4, ¢4, ¢y, 132). Hence, by Corollary 4.29,

X
- X T—x o X
Bz(x)—G<x,1_x, = >—G(x,1_x,1).

1—x

We showed that B;(x) = By(x) and we know that C;(x) = Cy(x) = %
Therefore, we have that A;(x) = A (x). O

Theorem 4.44. The permutation classe Av(2134,2413) is Wilf-equivalent to the permu-
tation class Av(2314,3124,13524,12435).

Proof. In our notation, the two permutation classes are Av(ry,2134) and Av(ry, cy,
13524,12435). Let A;(x) be the generating function of Av(2134,r;) as computed
in Section 4.9. Let A (x) be the generating function of Av(r,, c,, 13524,12435). By
Corollary 4.15, Ay(x) = F(x, B(x) — 1) where B(x) is the generating function of
Av(ry,cy,74,1324). As this permutation class is a symmetry of Av(ry, ¢y, ¢z, 1324),
by Corollary 4.25, B(x) = G(x, C(x) —1) where C(x) is the generating function for
Av(ry,cy,74,213). The previous permutation class is in fact Av(213). Hence, C(x)
is the generating function for the Catalan numbers. Rewinding the previous step,
we can compute A;(x) explicitly. A simple verification then shows that A;(x) =
142(x). O

4.12 Implementation

The techniques of enumeration studied in this chapter have been implemented in
the python package Permuta [39]. To test if any of the theorems in this chapter
apply to a basis one can use the code snippet below. It will print a reference to any
of the results in this chapter that apply to any symmetry of the basis of interest.

from permuta import Perm
from permuta.enumeration_strategies import find_strategies

basis = [Perm((1,2,0,3)), Perm((2,0,1,3)), Perm((0,1,2,3))]
for strat in find_strategies(basis):
print(strat.reference())

116

Chapter 5

Future directions

To conclude the thesis we present some open directions both for combinatorial
exploration and the staircase encoding. We explore how we can improve the ex-
traction of combinatorial specifications from the stable subset, detail how both
combinatorial specifications and the staircase encoding could be used to sample
at random from a permutation class and point towards ways that the staircase
encoding method could be extended to enumerate more permutation classes.

5.1 Extraction of combinatorial specifications

When searching for a combinatorial specification using the method developed
in [34], the prune method is used to obtain a set of rules that are guaranteed to
be in a productive combinatorial specification. Algorithm 2 from [34] can then be
used to quickly extract a random combinatorial specification. This is a very quick
process that is mostly linear in the number of rules that end up in the specification.
We can take advantage of this speed and sample many random specifications from
a universe in order to find for example a small one.

When we use Algorithm 2 from Chapter 2 to compute the enumerable subset,
we obtain the set of combinatorial sets that are in a combinatorial specification
contained in U. To extract a productive combinatorial specification, we start with
all the rules that contain only combinatorial sets in the enumerable subset. We
then attempt to remove a rule, proceed to compute the enumerable subset again
(using Algorithm 2) and look whether the combinatorial set of interest is still in the
enumerable subset. If it is the case then the removed rule was not necessary and
we repeat with the smaller subset of rules. If the combinatorial set is no longer in
the enumerable subset we know this rule must be in the specification so we keep
it and try reducing the set by removing another rule. The process ends when the
rules left form a specification, i.e., each combinatorial set is on the left-hand side
of exactly one rule. This process basically requires us to compute the enumerable
subset as many times as there are combinatorial rules. This can become really ex-
pensive as the enumerable subset can sometimes contain hundreds of thousands
of combinatorial sets. Using some heuristics and optimizations, we are able to
massively reduce the number of times we need to compute the enumerable sub-

118 CHAPTER 5. FUTURE DIRECTIONS

set which made this approach feasible in practice though still time-intensive. It
would however be better to find an approach that does not rely on computing
repeatedly the enumerable subset.

5.2 Random sampling

The language of combinatorial specifications opens the door to many existing
tools, including, but certainly not limited, to generating the objects in a combina-
torial set, or uniformly sampling objects at random in a combinatorial set (see [52],
[53])

Random sampling from forests Though the details are not published yet the
ability to randomly sample and generate permutations is already implemented
for combinatorial specifications made with productive rules. It is for example
possible to sample uniformly at random from all permutation classes avoiding
two size 4 patterns as well as from the three size 4 principal permutation classes
for which we have a combinatorial specification that does not use reverse strate-
gies. For more details and pictures of heat maps of those permutation classes see
Section 5.3 of [34]. The approach is based on implementing random sampling for
each strategy. We can then sample at random a parent of a rule assuming we can
sample at random from the children. Consider the example of a disjoint-union
type rule A = BUC. If |B,| = b, and |Cy| = ¢, then a, = b, + ¢,. We can
sample from .A,, by sampling from either B, or C,,. To ensure uniformity we sam-
ple from B, with probability Z—’; and from C, with probability 7*. It is however
still unclear how one could sample from a reverse version of that rule where the
parent would be C;,. A similar problem arises with Cartesian product. Solving
those issues would allow us to compute heat maps for the last three principal size
4 permutation classes for which the counting sequence is known.

Random sampling using the core structure It is also not too hard to convert the
argument used in [42] to find F(x,), the generating function for independent sets
of the down-cores, to a specification. From Corollary 4.18, we know that A(x),
the generating function of Av(ry, c;), satisfies A(x) = F(x, A(x) —1). If we work
with the g, t-analog of A(x) where g tracks the number of left-to-right minima of
the permutations and t tracks the number of active cells, that is

A(x,q,t) = F(gx, tA(x) — t),

then by looking at this distribution we can pick randomly the number of min-
ima, and active cells. We can then use the specification for F(x,y), and standard
techniques to uniformly sample an independent set from the down-core of ap-
propriate size. Finally, by recursively choosing the permutations to fill the cor-
responding active cells in the same manner, we will be able to sample uniformly
from Av(rg,cg).

This approach could be applied to the methods within Chapter 4, perhaps re-
quiring some extra ‘bookkeeping’ along the way.

5.3. EXTENSIONS OF THE CORE METHOD 119

5.3 Extensions of the core method

Tracking more bases with the same cores Let 7 be a skew-indecomposable
permutation. In Theorem 4.14, we described the structure of bases of the form
{ru,cu, 1 ® t}. It seems possible to enumerate permutation classes whose bases
are of the form {r,, c,,21 @ rt}. In this case, the staircase encoding would contain
permutations avoiding {ry, ¢, 71} in the cells that are not in the leading diagonal
and permutations avoiding {r,,cy,,21 @ 7t} in the cells in the leading diagonal.
Hence, tracking the vertices of the independent set that are in the leading diago-
nal would be sufficient to enumerate this permutation class. It is likely that this
reasoning can be extended to replace 21 with an arbitrary decreasing sequence.

Increasing the size of the patterns. In Section 4.3, we go from size 3 to size 4
patterns. To do so, we gave a set of patterns of size 4 that put the same constraints
on the staircase grid as 123 did. This idea is not limited to size 4 patterns. We can
easily see that the nine patterns of size 5 in Figure 5.1 enforce the same constraints
as 123 on the staircase grid. Therefore, one can expect the results to generalize
to greater size. However, to do so, two major issues need to be overcome. First,
one needs to be sure that if a pattern occurs in a permutation, then there needs to
be an occurrence of the pattern using the left-to-right minima of the permutation.
This can be done with the addition of other patterns to the basis. Computation
shows that for the size 5 cases, 7 patterns is the smallest number of patterns that
can be added to do so. Secondly, the technique will not give information about
the permutations with exactly two left-to-right minima.

el] Ll o) L]elo]] D
o °
> — — > —
34251 34215 32415 52314 42315
el] e LT]
° ° .
° .
— — — —
42351 42135 43125 53124

Figure 5.1: Patterns of size 5 that enforce the up-core constraint.

Independent sets on boundary grids. The letter 77; in a permutation 7 is a right-
to-left maximum if 7r; < 71; of all j > i. Building a skew-shaped grid from the left-
to-right minima and the right-to-left maxima we get the boundary encoding of the
permutation. Figure 5.2 shows an example of a boundary encoding. One might
be able to use the boundary encoding to generalize the method of the staircase
encoding, but in this new case, any permutation avoiding 123 could potentially
be a boundary.

120 CHAPTER 5. FUTURE DIRECTIONS

12

213

Figure 5.2: Boundary encoding of the permutation 95(10)1632748.

Wilf-equivalence and bijective proof. In Section 4.11, we uncovered two Wilf-
equivalences by computing the generating functions with our results. The proof
of Theorem 4.43 nicely highlights a structural argument for the Wilf-equivalence
as both permutation classes are built from the same core. However, it is not the
case in the proof of Theorem 4.44. It would be interesting to establish a bijection
between the two permutation classes using the core structure.

Bibliography

(1]

[10]

[11]

[12]

[13]

[14]

C.Bean, E. Nadeau, and H. Ulfarsson, “Enumeration of Permutation Classes
and Weighted Labelled Independent Sets”, Discrete Mathematics & Theoreti-
cal Computer Science, vol. 22 no. 2, Permutation Patterns 2019, Mar. 2021.

P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University
Press, 2009.

R. P. Stanley, “What is enumerative combinatorics?”, in Enumerative combi-
natorics, Springer, 1986, pp. 1-63.

P. A. McMahon, Combinatory analysis. Cambridge UP, 1915.

D. E. Knuth, The art of computer programming. Pearson Education, 1997.

S. Miner and J. Pantone. (2018). Completing the structural analysis of the
2x4 permutation classes. arXiv: 1802.00483 [math.CO].

D. Kremer, “Permutations with forbidden subsequences and a generalized
Schroder number”, Discrete Math., vol. 218, no. 1-3, pp. 121-130, 2000.

——, “Postscript: “Permutations with forbidden subsequences and a gen-
eralized Schréder number” [Discrete Math. 218 (2000), no. 1-3, 121-130;
MR1754331 (2001a:05005)]”, Discrete Math., vol. 270, no. 1-3, pp. 333-334,
2003.

V. Vatter, “Finding regular insertion encodings for permutation classes”, J.
Symbolic Comput., vol. 47, no. 3, pp. 259-265, 2012.

M. H. Albert, M. D. Atkinson, and R. Brignall, “The enumeration of three
pattern classes using monotone grid classes”, Electron. J. Combin., vol. 19,
no. 3, Paper 20, 34, 2012.

——, “The enumeration of permutations avoiding 2143 and 4231”7, Pure
Math. Appl. (PU.M.A.), vol. 22, no. 2, pp. 87-98, 2011.

M. H. Albert, M. D. Atkinson, and V. Vatter, “Counting 1324,4231-avoiding
permutations”, Electron. J. Combin., pp. 1-9, 2009.

M. D. Atkinson, “Permutations which are the union of an increasing and a
decreasing subsequence”, Electron. |. Combin., vol. 5, Research paper 6, 13,
1998.

M. D. Atkinson, B. E. Sagan, and V. Vatter, “Counting (3+1)-avoiding per-
mutations”, European |. Combin., vol. 33, no. 1, pp. 49-61, 2012.

122

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

BIBLIOGRAPHY

S. Miner. (2016). Enumeration of several two-by-four classes. arXiv: 1610.
01908 [math.CO].

I. Le, “Wilf classes of pairs of permutations of length 4”, Electron. |. Combin.,
vol. 12, Research Paper 25, 26, 2005.

D. Callan. (2013). The number of 1243, 2134-avoiding permutations. arXiv:
1303.3857 [math.CO].

J. Pantone, “The enumeration of permutations avoiding 3124 and 4312”7,
Ann. Comb., vol. 21, no. 2, pp. 293-315, 2017.

M. H. Albert, M. D. Atkinson, and V. Vatter, “Inflations of geometric grid
classes: Three case studies”, Australas. |. Combin., vol. 58, pp. 24-47, 2014.

M. Béna, “The permutation classes equinumerous to the smooth class”, Elec-
tron. J. Combin., vol. 5, Research Paper 31, 12, 1998.

D. Bevan, “The permutation classes Av(1234,2341) and Av(1243,2314)”,
English, Australas. J. Comb., vol. 64, pp. 3-20, 2016.

——, “The permutation class Av(4213,2143)”, English, Discrete Math. Theor.
Comput. Sci., vol. 18, no. 2, p. 14, 2016.

M. H. Albert, C. Homberger, J. Pantone, N. Shar, and V. Vatter, “Generating
permutations with restricted containers”, J. Combin. Theory Ser. A, vol. 157,
pp- 205-232, 2018.

D. Callan. (2013). Permutations avoiding 4321 and 3241 have an algebraic
generating function. arXiv: 1306.3193 [math.CO].

J. Bloom and V. Vatter, “Two vignettes on full rook placements”, English,
Australas. |. Comb., vol. 64, pp. 77-87, 2016.

I. M. Gessel, “Symmetric functions and P-recursiveness”, J. Combin. Theory
Ser. A, vol. 53, no. 2, pp. 257-285, 1990.

M. Béna, “Exact enumeration of 1342-avoiding permutations: A close link
with labeled trees and planar maps”, J. Combin. Theory Ser. A, vol. 80, no. 2,
pp. 257-272,1997.

Z. Stankova, “Classification of forbidden subsequences of length 4”, Euro-
pean |. Combin., vol. 17, no. 5, pp. 501-517, 1996.

F.R. K. Chung, R. L. Graham, V. E. Hoggatt Jr., and M. Kleiman, “The num-
ber of Baxter permutations”, J. Combin. Theory Ser. A, vol. 24, no. 3, pp. 382-
394, 1978.

D. Zeilberger, “Enumeration schemes and, more importantly, their auto-
matic generation”, Ann. Comb., vol. 2, no. 2, pp. 185-195, 1998.

M. H. Albert, S. Linton, and N. Ruskuc, “The insertion encoding of permu-
tations”, Electron. |. Combin., vol. 12, Research Paper 47, 31, 2005.

M. H. Albert and M. D. Atkinson, “Simple permutations and pattern re-
stricted permutations”, Discrete Math., vol. 300, no. 1-3, pp. 1-15, 2005.

C. Bean, “Finding structure in permutation sets”, PhD thesis, Reykjavik Uni-
versity, 2018.

BIBLIOGRAPHY 123

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

M. H. Albert, C. Bean, A. Claesson, E. Nadeau, J. Pantone, and H. Ulfars-
son, Combinatorial Exploration: An algorithmic framework for enumeration, 2022.
arXiv: 2202.07715 [math.CO].

V. Vatter, “Enumeration schemes for restricted permutations”, Combin. Probab.
Comput., vol. 17, no. 1, pp. 137-159, 2008.

Y. Biers-Ariel, “Flexible Schemes for Pattern-Avoiding Permutations”, arXiv.org,
2019. arXiv: 1905.07283 [math.CO].

F. Bassino, M. Bouvel, A. Pierrot, C. Pivoteau, and D. Rossin, “An algo-
rithm computing combinatorial specifications of permutation classes”, Dis-
crete Appl. Math., vol. 224, pp. 16-44, 2017.

F. Bassino, M. Bouvel, A. Pierrot, and D. Rossin, “An algorithm for decid-
ing the finiteness of the number of simple permutations in permutation
classes”, Adv. in Appl. Math., vol. 64, pp. 124-200, 2015.

R. P. Ardal, A. B. Arnarson, C. Bean, A. B. Bjarnason, J. S. Eliasson, B. A.
Gudmundsson, S. L. Jénsson, B. J. Kristinsson, E. Nadeau, J. Pantone, T. K.
Shimomura-Magnusson, M. Tannock, and H. Ulfarsson, Permutatriangle/per-
muta, version v2.1.0, Jun. 2021.

A. Claesson, “Counting segmented permutations using bicoloured Dyck
paths”, Electron. . Combin., vol. 12, Research Paper 39, 18, 2005.

M. Albert, R. Ardal, A. B. Arnarson, C. Bean, A. Claesson, J. S. Eliasson,
U. E Erlendsson, B. J. Kristinsson, E. Nadeau, J. Pantone, J. Robb, T. K.
Shimomura-Magnusson, and H. Ulfarsson, Permutatriangle/comb_spec_searcher,
version v3.0.0, Jun. 2021.

C. Bean, M. Tannock, and H. Ulfarsson, “Pattern avoiding permutations and
independent sets in graphs”, J. Comb., vol. 11, no. 4, pp. 705-732, 2020.

M. D. Atkinson and T. Stitt, “Restricted permutations and the wreath prod-
uct”, Discrete Math., vol. 259, no. 1-3, pp. 19-36, 2002.

D. Callan, T. Mansour, and M. Shattuck, “Wilf classification of triples of 4-
letter patterns I1”, Discrete Math. Theor. Comput. Sci., vol. 19, no. 1, Paper No.
6,44,2017.

T. Mansour and M. Shattuck, “Nine classes of permutations enumerated
by binomial transform of Fine’s sequence”, Discrete Appl. Math., vol. 226,
pp- 94-105, 2017.

P. Brandén and A. Claesson, “Mesh patterns and the expansion of permuta-
tion statistics as sums of permutation patterns”, Electron. J. Combin., vol. 18,
no. 2, Paper 5, 14, 2011.

{. Hilmarsson, 1. Jonsdottir, S. Sigurdardottir, L. Vidarsdéttir, and H. Ulfars-
son, “Wilf-classification of mesh patterns of short length”, Electron. |. Com-
bin., vol. 22, no. 4, Paper 4.13, 27, 2015.

OEIS, OEIS Foundation Inc. (2021), The Online Encyclopedia of Integer Sequences,
https://oeis.org/, 2021.

[49]

[50]

[51]

[52]

[53]

M. H. Albert and M. D. Atkinson, “Simple permutations and pattern re-
stricted permutations”, Discrete Math., vol. 300, no. 1-3, pp. 1-15, 2005.

F. Bassino, M. Bouvel, A. Pierrot, C. Pivoteau, and D. Rossin, “An algo-
rithm computing combinatorial specifications of permutation classes”, Dis-
crete Appl. Math., vol. 224, pp. 16-44, 2017.

A. Burstein and J. Pantone, “Two examples of unbalanced Wilf-equivalence”,
J. Comb., vol. 6, no. 1-2, pp. 55-67, 2015.

P. Flajolet, P. Zimmerman, and B. Van Cutsem, “A calculus for the ran-
dom generation of labelled combinatorial structures”, Theoret. Comput. Sci.,
vol. 132, no. 1-2, pp. 1-35, 1994.

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, “Boltzmann samplers
for the random generation of combinatorial structures”, Combin. Probab. Com-
put., vol. 13, no. 4-5, pp. 577-625, 2004.

e gt
School of Technology, Department of Computer Science
Reykjavik University

Menntavegur 1

102 Reykjavik, Iceland

Tel. +354 599 6200

WWW.ru.is

ISBN 978-9935-9694-6-0 Print version
ISBN 978-9935-9694-7-7 Electronic version

	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Enumerative combinatorics
	Permutation patterns
	Automatic methods of enumeration
	Finite enumeration schemes
	Insertion encoding
	Substitution decomposition
	Combinatorial exploration and the Tilescope algorithm

	Overview

	Forests
	Background on combinatorial exploration
	Strategies and combinatorial specifications
	Finding the specification
	Finding a good specification

	Limitation of the prune method
	Enumerable subset
	Regular strategy
	A fully enumerable universe
	A separating function
	Enumerable subset

	Computing the enumerable subset
	Enumerable subsets for permutation patterns
	The requirement insertion strategy
	The factor strategy
	The point placement strategy
	Other strategies
	Applying reverse strategies in a search

	Combinatorial exploration with catalytic variables
	The fusion strategy
	Tracked combinatorial sets
	Back to the fusion
	Other tracked strategies
	Using tracked combinatorial sets in combinatorial exploration

	Enumeration of permutation classes and weighted labelled independent sets
	Background
	Mesh patterns

	Encoding permutations on a grid with the staircase encoding
	Going from size 3 to size 4 patterns
	Weighted independent sets of the up-core and the down-core
	Inflating the updown-core
	New cores
	Generalizing the fillings
	Avoiding the row-down and column-up patterns
	Avoiding rd and 2134
	Avoiding ru and 2143
	Unbalanced Wilf-equivalence
	Implementation

	Future directions
	Extraction of combinatorial specifications
	Random sampling
	Extensions of the core method

	Bibliography

