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Abstract

Summary: popSTR2 is an update and augmentation of our previous work ‘popSTR: a population-based microsatel-
lite genotyper’. To make genotyping sensitive to inter-sample differences, we supply a kernel to estimate
sample-specific slippage rates. For clinical sequencing purposes, a panel of known pathogenic repeat expansions is
provided along with a script that scans and flags for manual inspection markers indicative of a pathogenic expan-
sion. Like its predecessor, popSTR2 allows for joint genotyping of samples at a population scale. We now provide a
binning method that makes the microsatellite genotypes more amenable to analysis within standard association
pipelines and can increase association power.

Availability and implementation: https://github.com/DecodeGenetics/popSTR.

Contact: snaedisk@decode.is or bjarni.halldorsson@decode.is

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microsatellites, a.k.a. short tandem repeats (STRs), are tandem
repeats with repeat motif lengths between one and six base pairs.
They are one of the most frequent types of variation in the human
genome, surpassed only by single nucleotide polymorphisms (SNPs)
and indels and have a mutation rate estimated to be three to five
orders of magnitude higher than for other types of genetic variation
(Jónsson et al., 2017; Sun et al., 2012). Genotyping microsatellites
from whole-genome sequence (WGS) data is challenging since they
are highly polymorphic and library preparation methods may mod-
ify the true number of repeats in the sequence (Gymrek et al., 2012).
WGS-based association and clinical analysis commonly do not con-
sider microsatellites, partially due to a lack of tools capable of ana-
lyzing them.

Tandem repeat expansions occur when microsatellites expand
beyond a certain length threshold, making them unstable and thus
more likely to expand further. A number of repeat expansions are
known to be disease-causing (Gatchel and Zoghbi, 2005) and an in-
crease in the use of WGS-technologies for genetic diagnostics has
created a need for fast estimation of the repeat number at disease-
associated loci.

Here, we present extensions to our previously published software
popSTR and improvements of its previous implementation, both
with respect to runtime and accuracy. We increased our expansion
detection sensitivity, updated our sample specific slippage estima-
tion kernel, reduced the dimensions of our logistic regression model
and updated external libraries to decrease I/O time and handle both

BAM and CRAM files. We further created a panel of known repeat
expansion markers and a pipeline to determine at each loci whether
read support for a pathogenic expansion is present. Last, we provide
a method to bin genotypes into user specified bins to increase power
of downstream association analysis. By combining this set of func-
tionalities, we hope to make popSTR2 applicable in a wide range of
situations. Both when analyzing large cohorts to make population
inferences and disease associations as well as analyzing small sets or
single samples in a clinical context.

2 Materials and methods

Figure 1 gives a high level description of the algorithm’s workflow,
a more detailed description is given in Supplementary Section S1.1
and a full description is given in Kristmundsdóttir et al. (2017). To
summarize, we start by computing various quality-indicating attrib-
utes for all reads encompassing each of the microsatellites being con-
sidered, i.e. overlapping its coordinates and containing repeats of
the relevant motif. We also look for repeats in unaligned reads with
mates aligned close to the repeat region. An update of our read selec-
tion step is to also look for repeats of the relevant motif in reads
aligned to longer repeats of the same motif in other locations of the
genome that have mates aligned close to the repeat region. This can
happen when a repeat has expanded considerably and the read
reporting it is thus highly divergent from the reference sequence.
After the set of informative reads has been created, the algorithm
iterates between genotyping and assigning to each read a probability
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of reporting a true allele. Since this type of iterative parameter esti-
mation is time and resource intensive, we supply a kernel of reliable
markers to efficiently estimate these parameters. For details on ker-
nel construction see Supplementary Section S1.2. We replaced the
SeqAn BAM I/O module (Reinert et al., 2017) with the one from
htslib (Li et al., 2009; https://github.com/DecodeGenetics/
SeqAnHTS). The update provides CRAM file support, decreases I/O
demands and runtime. Algorithmic improvements reduced runtime
from 11.25 to 2.17 CPU hours/million markers per sample. See
Supplementary Table S1 for a breakdown of our runtime analysis.

2.1 Application to population-based genotyping
Useful reads and their attributes are used along with marker and
sample specific parameters to perform genotyping. The marker-
specific parameters can be estimated by popSTR2, but we also pro-
vide a default set of parameters. By default we require 20 samples
for the parameters to be estimated since estimation with fewer sam-
ples would not yield reliable results. The sample-specific slippage
parameter is estimated using a kernel of reliable markers described
above and supplied with the software. Our genotyping model
(Supplementary Equation S1 in Supplementary Material) computes
the likelihood of observing a read, r, given genotypes A and B and
selects the genotype pair that maximizes this likelihood over the set
of reads being considered. The model previously assumed constant
probabilities of adding and removing repeats across all markers, fix-
ing aA

r in Supplementary Equation S1 from Supplementary Material
to 0.85 if whole repeats were removed and consequently to 0.15 if
whole repeats were added. It has however been shown that microsa-
tellites have very different mutation profiles depending on their vari-
ous properties, e.g. repeat motif, repeat purity, reference allele
length, etc. (Brinkmann et al., 2002). To reflect this we have
replaced the hard coded values with marker-specific estimates, com-
puted as follows. Assuming that we know which reads result from
whole motif slippage events, we can estimate the fraction of slippage
events that added whole repeats at microsatellite i:

pu
i ¼

P
r2R!u

i
piðrÞ

P
r2R!

i
piðrÞ

(1)

where R!u
i is the set of reads at microsatellite i, considered to be

results of slippage events that add whole motifs and R!
i is the set of

all reads at microsatellite i reporting whole motif slippage events, re-
gardless of their direction. The probability of removing repeats is
then trivially computed as pd

i ¼ 1� pu
i .

Our previous version created one output file per sample and
computed nine attributes from each read used for genotyping.

Due to increased data quality and consistency we were able to re-
duce the number of attributes to six, which simplified and sped

up the logistic regression analysis. To make population scale
inferences and genotyping easier we now write one output file per
marker, i.e. all alleles discovered in a population accessible in the

same file.
Association pipelines commonly assume biallelic variants or

multi allelic variants where only a single allele is tested for associ-
ation with a phenotype, rather than associating a subset of the

alleles with it (Gudbjartsson et al., 2015; Purcell et al., 2007). This
is not optimal for microsatellites where alleles above or below a cer-
tain length threshold may be pathogenic (Lee and McMurray,

2014). In an effort to increase association power we provide
binSTR, a software for grouping alleles as a preprocessing step for
association analysis. To allow for various patterns of allele groups,

binSTR enables not only binarizing but also binning into a user
determined number of groups where each group is defined by a list

of allele indices passed as a parameter.

2.2 Application to clinical genetics
We have, through literature review, assembled a panel containing
31 STR markers, each associated with a disease or syndrome when
the number of repeats passes a certain threshold, hereafter referred

to as pathogenicity threshold. We provide a script which reports
which of these markers, if any, contain evidence of a repeat expan-
sion. The script runs the read selection step described above to

scan a given BAM file at all panel locations and extracts for each
of them all reads containing information on the number of repeats

present. Expanded alleles have often undergone a dramatic in-
crease in length, decreasing the odds of finding informative reads
supporting them. Genotyping models assuming equal probabilities

of drawing reads from each haplotype are thus not reliable in these
cases. To account for this, our script scans the informative reads

for any repeat tracts longer than the given threshold for each mark-
er and flags locations harboring such reads for further manual in-
spection. Since many of the pathogenicity thresholds exceed the

current read lengths by a considerable number of base pairs the
scripts also counts and reports all fully repetitive reads, i.e. reads

containing only repeats of the relevant motif. See Supplementary
Table S4 for a table summarizing the markers included in the panel
along with a pathogenicity threshold for each of them. As the set of

pathogenic variants and our understanding of them grows the
panel can easily be extended and thresholds for existing markers

updated.

Fig. 1. Results of read selection are passed into genotyping model along with sample and marker-specific parameters

2270 S.Kristmundsdottir et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/36/7/2269/5658624 by R
eykjavik U

niversity user on 29 January 2021

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://github.com/DecodeGenetics/SeqAnHTS
https://github.com/DecodeGenetics/SeqAnHTS
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz913#supplementary-data


3 Experiments

We compared popSTR2 to HipSTR (Willems et al., 2017), a com-
monly used microsatellite genotyper on chr21 of the CEU trio con-
sisting of NA12878, NA12891 and NA12892 and on chr21 of 10
trios sequenced at deCODE genetics.

The runtime reduction was 40% for the CEU trio and 26% for
the deCODE trios. To compare the accuracy of these two methods
we extracted markers where both methods had high confidence gen-
otypes for all members of at least one trio and at least one trio mem-
ber had a non-homozygous-reference genotype and recorded the
number of trios where the offspring genotype did not match the par-
ental ones. The deCODE trios had slightly more accurate genotypes
from popSTR2 than HipSTR (99.8% versus 99.6%) but for the
CEU trio hipSTR had a single trio inconsistency in 250 markers
while popSTR had 2. For a more detailed comparison of these runs
see Supplementary Table S3. To examine the sensitivity of our ex-
pansion detection script we ran it on ten samples with a known
expanded allele in the 30-flanking region of the DMPK gene which
causes myotonic dystrophy 1 when exceeding 50 copies (Musova
et al., 2009) and ten healthy control samples. The expanded samples
were sequenced for clinical sequencing analysis at deCODE genetics
and the healthy ones as parts of various other projects, also at
deCODE genetics. The script flagged the DMPK locus in all
expanded individuals and none of the control samples.

Last, we genotyped 49 962 Icelandic samples to examine
the allelic spectrum of this repeat in the Icelandic population. The
resulting distribution was in concordance with ones previously
published for European populations with a bimodal distribution
consisting of a peak at 5 repeats and another one between 11 and 13
repeats (Dean et al., 2006; Maga~na et al., 2011) (see Supplementary
Fig. S1).

4 Conclusion

We updated the microsatellite genotyper popSTR to decrease run-
time and increase genotype quality and accuracy. This was done by
replacing external libraries, re-training the data provided with the
software and decreasing the number of variables in our logistic re-
gression analysis. To expand the application range we extended the
software to provide both a clinical sequencing analysis script for
quickly estimating expansion status at known disease loci and a bin-
ning software for grouping genotypes by allele length range before
performing disease association on them. It is our hope that these
updates and extensions will make popSTR2 applicable in a broader
spectrum of situations, i.e. for single sample clinical sequencing ana-
lysis as well as large scale association efforts. Analysis methods
(Dashnow et al., 2018; Dolzhenko et al., 2017; Tang et al., 2017;
Tankard et al., 2018) sensitive to detecting expanded repeats are not
explicitly intended for population scale analysis of STRs at a genome
wide scale. Conversely, other methods which aim at population and
genome scale analysis (Gymrek et al., 2012; Willems et al., 2017) do
not focus on and reporting of expanded repeats. GangSTR
(Mousavi et al., 2019) is, to our knowledge, the only method
intended to perform accurate genotyping of both short and

expanded microsatellites. It however does not mark known patho-
genic variants in its output nor flags those expansions passing patho-
genicity thresholds. By supplying a panel of known expansions
along with an easily executable and fast script to flag potentially
expanded repeats for further manual inspection we aim to direct
users to the correct putative expansion as quickly as possible.

Conflict of Interest: none declared.
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