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Abstract 

The purpose of this thesis is to employ remote sensing to study lava flow products during 

the 2014-2015 eruption at Holuhraun, Iceland. Multimodal remote sensing techniques and 

datasets were applied and developed for three study themes (1) deriving thermal properties 

from satellite infrared remote sensing, (2) differentiating lava surface using airborne 

hyperspectral remote sensing, and (3) quantifying lava surface roughness from elevation 

model acquired by airborne LiDAR.  

In the first study, we present a new approach based on infrared satellite images to derive 

thermal properties within the lava field during eruption and then compare the results with 

field measurement during the 2014-2015 eruption at Holuhraun. We develop a new 

spectral index for Landsat 8, named the thermal eruption index (TEI), based on the SWIR 

and TIR bands (bands 6 and 10). The purpose of the TEI consists mainly of two parts: (i) 

as a threshold for differentiating between different thermal domains; and (ii) to apply dual-

band technique to determine the maximum subpixel temperature (Th) of the lava. Lava 

surface roughness effects are accounted for by using the Hurst exponent (H), which is 

estimated from radar backscattering profiles. A higher H (smooth surface) generates 

thinner crust and high thermal flux meanwhile a lower H (rough surface) generates thicker 

crust and lower thermal flux. The total thermal flux peak is underestimated compared to 

other studies, although the trend shows good agreement with both field observation and 

other studies. 

In the second study, we focus on retrieving the lava surface types contributing to the signal 

recorded by airborne hyperspectral at the very top surface of the 2014-2015 lava flow field 

at Holuhraun. For this purpose, an airborne hyperspectral image acquired at Holuhraun 

with an AisaFENIX sensor onboard a NERC (Natural Environment Research Council 

Airborne Research Facility) campaign. For sub-pixel analysis, we used the sequential 

maximum angle convex cone (SMACC) algorithm to identify the spectral image 

endmembers and the linear spectral mixture analysis (LSMA) method was employed to 

retrieve the abundances. SMACC and LSMA methods offer a fast selection for volcanic 

product segregation. However, ground-truthing of spectra is recommended for future work.  

In the third study, we perform both the topographic position index (TPI) and one-

dimensional Hurst Exponent to derived lava flow unit roughness on the 2014-2015 lava 

flow field at Holuhraun using both airborne LiDAR and photogrammetry topography 

datasets. The roughness assessment was acquired from four lava flow features: (1) spiny 

pāhoehoe, (2) lava pond, (3) rubbly pāhoehoe lava, and (4) inflated channel. The TPI 

patterns on spiny lava and inflated channels show that the intermediate TPI values 

correspond to a small slope indicating a flat and smooth surface. Lava pond is 

characterized by low to high TPI values and forms a wave-like pattern. Meanwhile, 

irregular transitions patterns from low to high TPI values characterize lava with rough 

blocky surfaces, i.e. rubbly pāhoehoe to 'ā'a  flows and lobes and their margins. These 

lobes and margins may give the impression of having similar roughness as the ”rough” 

surface on meters scale since this is an “apparent” roughness. On centimeters scale these 



multitudes of lobes feature coherent and smooth surfaces because they are pāhoehoe. The 

surface roughness of these lava features falls within the H range of 0.30 ± 0.05 to 0.76 ± 

0.04. The rubbly pāhoehoe / 'ā'a has the roughest surface and the inflated lava channel 

along with pāhoehoe feature the smoothest surfaces among these four surface types. In 

general, the Hurst exponent values in the 2014-2015 lava field at Holuhraun has a strong 

tendency in 0.5, which is compatible with results from other study of geological surface 

roughness.  

Overall, this project provides an important insights into the application of remote sensing 

for monitoring and studying active lava flow fields and the techniques developed here will 

benefit such work in future events. 

Útdráttur 

Tilgangurinn með verkefninu var að rannsaka hraunrennsli og landform er urðu til í 

eldgosinu norðan Vatnajökuls 2014-2015 og kennt við Holuhraun. Fjölþátta 

fjarkönnunartækni og gögn úr gervitunglum og flugvélum voru nýtt við úrvinnslu 

verkefnisins. Rannsóknin sneri að þremur megin þáttum: (1) greiningu á eðli 

varmaútstreymis frá Holuhrauni, út frá innrauðri varmageislun sem mæld er með 

gervitunglagögnum (2) aðgreining á mismunandi hraunyfirborði, út frá ofur-fjölrófs 

mælingum úr lofti, og (3) greiningu og flokkun á yfirborðshrjúfleika Holuhrauns út frá 

hæðarlíkani er aflað var með LiDAR settur upp í flugvél. 

Fyrsti þáttur beindist að eðli varmaútstreymis á meðan á eldgosi stóð. Stuðst var við 

gervitunglagögn og mælingar með FLIR tækni á meðan eldgosið stóð yfir. Afraksturinn er 

nýr hitastuðull fyrir Landsat 8 og greiningu á eldgosum, (TEI). Hitastuðullinn TEI er 

unninn út frá SWIR og TIR böndum Landsat 8 (bönd 6 og 10). Með TEI næst fram tvennt: 

(i) að greina þröskuld milli tveggja hitasviða; og (ii) að beita tvíbanda tækni til að greina 

hitastig innan hverrar myndeiningar (Th) af hrauninu. Hrjúfleiki hraunsins hefur áhrif á 

varmaútstreymi, og er gert ráð fyrir honum með því að reikna Hurst veldisstuðulinn (H) og 

eru reiknuð út frá radar endurkasti hraunyfirborðs. Hátt H einkennir flatt og mjúkt yfirborð 

og þunna skorpu á hrauninu, á meðan að lágt H einkennir úfið yfirborð, þykka skorpu og 

lága varmaútgeislun. Heildar varmaútgeislun með þessari aðferð er heldur vanmetin en 

ofmetin í samanburði við aðrar aðferðir. Hinsvegar er góð fylgni með mælingum í 

mörkinni og samanburðar aðferðum. 

Annar hluti rannsóknarinnar sneri að túlkun ofur-fjölrófsgreininga á yfirborði Holuhrauns. 

Flogið var yfir Holuhraun sumarið 2015 með ofur-fjölrófsmæli (AisaFENIX) um borð í 

flugvél frá NERC (Natural Environment Research Council Airborne Research Facility). 

Við greiningu á yfirborði innan hverrar myndeiningar var, (i) notast við aðferð 

runubundins hámarkshorns kúptrar keilu (SMACC) til að finna útmörk ofurrófs 

mælinganna, (ii) blönduð línulega rófgreining (LSMA) var nýtt til að greina styrk eða 

gnægð innan myndeiningar. SMACC og LSMA aðferðirnar bjóða upp á mjög hraða 

greiningu á yfirborði og útfellingum efna á yfirborðið. Hins vegar þarf að gera fleiri 

rófmælingar á staðnum, til þess að auka notkunnargetu aðferðarinnar í hraungosum 

framtíðarinnar. 



 

Þriðji þáttur rannsóknarinnar sneri að því að greina landfræðilega stöðuvísitölu (TPI) og 

einvíðan Hurst veldisvísi til að meta hrjúfleika á hinu endanlega yfirborði Holuhrauns. Við 

þessa greiningu var notast við LiDAR mælingu af hrauninu og hæðagrunn unninn út frá 

ljósmyndum. Hrjúfleikinn var metinn fyrir fjögur yfirborð sem einkenna hraunið: (1) 

broddahraun „spiny pāhoehoe lava“, (2) hrauntjörn „lava pond“, (3) klumpahraun „rubbly 

pāhoehoe lava“ og (4) upptjakkaða hrauntröð „inflated lava channel“. TPI fyrir yfirborð (1) 

og (4) gefur meðalgildi sem einkennist af litlum halla og flötu yfirborði. Hrauntjörnin 

einkennist af lágum og háum TPI gildum sem endurspegla bylgjukennt mynstur. Hinsvegar 

einkennast hrjúfustu yfirborðin (3) og hraunjaðrar af óreglulegu mynstri lágra og hárra TPI 

gilda. Hrjúfleika stuðull þessara yfirborða H, er á bilinu 0.30 ± 0.05 til 0.76 ± 0.04. Mestur 

er hrjúfleiki kubbahrauna og minnstur er hrjúfleiki þandar hrauntraðar.  Hurts veldisvísir 

Holuhrauns er nærri 0.5, en það er í mjög góðu samræmi við niðurstöður fyrri rannsókna á 

jarðfræðilegum yfirborðum. 

Í heild gefur verkefnið mikilvæga sýn á notagildi fjarkönnunaraðferða við rauntímaeftirlit 

með hraungosum, m.a. með þróun stuðla sem munu nýtast við atburði framtíðar. Þá voru 

tengsl hraunmyndana við ýmsa eiginleika eldgosa skýrð, sem aftur getur gefið 

vísbendingar um eðli fyrri atburða. 





 

 

 

 

 

 

 

 

“Kalakuan keok memeh dipacok” 

Nothing to lose, don’t give up before trying! 

“Gunung teu meunang di lebur, sagara teu meunang di ruksak, buyut teu meunang di 

rempak” 

We need to live in harmony with nature 

 





 

Preface 

The occurrence of a volcanic eruption every fourth to five years in Iceland, makes it one of 

the liveliest places in the world in regard to volcanic eruptions. Over the past 500 years, 

Iceland’s volcanoes have erupted a third of the total global lava output on Earth 

(Thordarson & Larsen, 2007). Due to this fact, remote sensing will play an essential role 

developing methods for monitoring of volcanic eruptions, especially for lava flows. This 

thesis is is focused on the application of remote sensing of lava flow products during the 

2014-2015 eruption at Holuhraun, Iceland. It is split into three parts utilizing a range of 

applications of remote-sensing techniques to monitor and understand (a) surface thermal 

anomalies, (b) surface type and (c) surface roughness of lava flow.  
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1 Introduction 

This PhD thesis was carried out at the Institute of Earth Sciences, University of Iceland. 

The thesis aims to explore multi remote sensing techniques and datasets to derive physical 

properties of 2014-2015 Holuhraun lava flow during the eruption and after the eruption. 

The results are presented in three papers: I paper published in Remote Sensing, II paper 

published in Remote Sensing and III paper published in Geosciences. 

Paper I: Aufaristama, M.; Hoskuldsson, A.; Jonsdottir, I.; Ulfarsson, M.O.; Thordarson, T. 

New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using Infrared 

Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland. Remote Sens. 2018, 

10, 151. doi.org/10.3390/rs10010151 

Paper II: Aufaristama, M.; Hoskuldsson, A.; Ulfarsson, M.O.; Jonsdottir, I; Thordarson, 

T. The 2014–2015 Lava Flow Field at Holuhraun, Iceland: Using Airborne Hyperspectral 

Remote Sensing for Discriminating the Lava Surface. Remote Sens. 2019, 11, 476. 

doi.org/10.3390/rs11050476 

Paper III: Aufaristama, M.; Höskuldsson, Á.; Ulfarsson, M.O.; Jónsdóttir, I.; Thordarson, 

T. Lava Flow Roughness on the 2014–2015 Lava Flow-Field at Holuhraun, Iceland, 

Derived from Airborne LiDAR and Photogrammetry. Geosciences 2020, 10, 125. 

doi.org/10.3390/geosciences10040125 

This PhD study is focused on the 6-month long eruption at Holuhraun in 2014–2015. This 

event is the largest effusive eruption in Iceland in the past 230 years, with an estimated 

bulk lava volume of about 1.44 km
3
. The eruption had an average discharge rate of ∼90 

m
3
/s (Kolzenburg et al., 2017; Pedersen et al., 2017). The lava was emplaced on the sandur 

plains (glacial outwash sediment plains) north of the Vatnajökull glacier, partially covering 

the previous two Holuhraun lava flow fields. The area is gently sloping (average 

inclination <0.5%; i.e., ∼0.3°) to the east-northeast. Field observation during the 2014–

2015 eruption was documented in Pedersen et al. (2017), which compiled the evolution 

history of the lava flow field and corresponding database. Most of these field observations 

are related to the modes of lava transport, emplacement and thermal camera measurement, 

along with the mapping of the flow field growth and evolution (Kolzenburg, et al. 2018; 

Kolzenburg et al., 2017; Pedersen et al., 2017). Because of this extensive documentation of 

this eruption, it offers an opportunity to improve our understanding of large effusive 

eruptions using multi-modal remote sensing techniques and datasets. In Paper I, we 

focused on deriving physical properties of the lava during the eruption, we presented a new 

approach based on using infrared satellite images to derive thermal properties within the 

lava field during emplacement and then compared the results with field observation and 

measurement. Paper II and III focused on the post-eruptive lava field. This lava flow 

generated in the eruption offers an excellent diverse surface environment to investigate and 

characterize lava flow fields. In Paper II, we identified the primary lava surface type 

contributing to the signal recorded by airborne hyperspectral sensor at the very top surface 

of the 2014-2015 Holuhraun lava field. Further, in this effusive eruption a lava flow field 

of diverse surface structures and morphologies was generated and observed, and, in Paper 
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III, we quantified these structures of the lava flow in regard to roughness based on airborne 

LiDAR and high-resolution airborne photogrammetry DEM. The results from these three 

papers when compiled, demonstrates the importance and significance of remote sensing as 

a data set and a tool for monitoring and studying modern day lava flow fields. Here this is 

achieved by using datasets derived from several remote Sensing tools, namely 

multispectral, hyperspectral, infrared, radar and LiDAR. Thus, this study provides an 

insight into how to derive important physical properties of lava flow fields using multi 

remote sensing techniques and datasets. 

1.1 Research Objectives 

Based on the aims set at the onset of the project, and through exploiting the unique 

opportunities presented by the current remote sensing techniques and datasets observed in 

the Holuhraun eruption in 2014-2015, the main objectives of this thesis are the following: 

1. Present a new approach based on infrared satellite images to derive thermal 

properties within the lava flow field of the 2014-2015 eruption at Holuhraun and 

then compare the results with field observation and measurement. 

 

2. Identify the main lava surface types contributing to the signal recorded by airborne 

hyperspectral remote sensing at the very top surface of the 2014-2015 lava flow 

field at Holuhraun. 

 

3. Develop a quantitative measurement of lava surface roughness to distinguish the 

2014-2015 Holuhraun lava surface morphology based on LiDAR measurements 

and high-resolution DEM. 

1.2 Remote sensing of volcanoes 

In general terms, remote sensing is the science and practice of acquiring information about 

an object without direct contact with itself. It is a process that obtains, prepares, and 

deciphers information of spectral and spatial-temporal nature of an object (Awange et al., 

2013; Lillesand & Kiefer, 1987). It uses the entire electromagnetic spectrum (Fig 1.1), 

ranging from short wavelengths (for example, ultraviolet) to long wavelengths 

(microwaves) emitted from a target. The information is usually captured at a distance from 

above the object and set forth on the form of image data. Such data can allow us to 

determine the composition and nature of the Earth's surface and the atmosphere from local 

to global scales and assess changes by analyzing the spectrum captured at different points 

in time. In this sense, remote sensing is useful in providing spatial information that is 

otherwise difficult or impossible to obtain (Read & Torrado, 2009). 

The development of remote sensing for volcanology purposes has increased rapidly during 

the past decade. Remote sensing provides spectral, spatial, and temporal coverage that can 

be used for monitoring at numerous volcanoes throughout the world. Many of the 

volcanoes are remote but has traces that may extend across many hundreds or thousands of 

square kilometers (Pyle et al., 2013). Volcanoes are inaccessible during eruption and may 

remain inaccessible for extended periods after the eruption; however, their products can 
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scatter on a regional to global scale (Pyle et al., 2013). Consequently, since direct 

measurement can only give us part of the picture of many volcanic processes, remote 

sensing is playing an increasingly important role in advancing the understanding of the 

science underlying volcanic processes (Blackett, 2014; Blackett & Matthew, 2017). 

Satellite, airborne, and ground-based remote sensing are increasingly vital tools for 

monitoring active or potentially active volcanoes and assessing their likely, real-time, or 

time-averaged impact. Multiple and complementary data streams are frequently being used 

both to monitor active volcanoes leading to advance in the understanding of volcanoes. 

New methodology in remote sensing research of volcanoes is often determined by the 

technological advancements of novel sensors, the launching of new platforms, and the 

development of new processing and acquisition techniques. In term of volcanic eruption, 

remote sensing plays important contributions for preliminary assessment of eruption 

products such as:  

1. Rapid detection of an eruption plume (Arellano, 2013; de Michele et al., 2016). 

2. Monitoring of thermal energy emitted from a volcano (Ganci et al., 2013; Harris et 

al., 1997; Lombardo & Buongiorno, 2006; Murphy et al., 2003).  

3. Large area mapping of surface deformation of a volcano (Browning & 

Gudmundsson, 2015; Gudmundsson et al., 2014; Hollingsworth et al., 2012). 

4. Measurement of volcano topography and topographical change (MacKay et al., 

1998; Zimbelman et al., 2008). 

5. Illustrating the spatial distribution of ash, gases, and aerosols produced by eruptions 

(Schmidt et al., 2015).  

6. Referencing a data set for each volcano for quantifying future changes (Pedersen et 

al., 2018).  

 

Figure 1.1 Electromagnetic spectrum, giving the terminology used for various wavelength 

intervals as well as illustrating schematically the characteristic wavelengths. Adapted from 

(Lillesand & Kiefer, 1987) 

1.2.1  Remote sensing of a lava flow 

Remote Sensing technology for studying lava flow emerged in the 1980s and has 

established itself in the following decades (e.g. Oppenheimer, 1991; Pieri et al., 1990; 

Rothery et al., 1988). It spans a range of applications of remote-sensing techniques, from; 

1) monitor surface thermal anomalies, 2) map lava flow emplacement and 3) classify lava 

flow morphology as illustrated in Table 1.1, which lists several remote sensing sensors 
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used in  monitoring and studying active lava flow along with citations to selective cohort 

of recent publications.  

This thesis is divided into two main parts, firstly an analysis of the lava during the eruption 

and secondly looking at the final results and the emplaced lava flow field and its 

characteristics.  The papers that make up this thesis cover a range of applications in 

remote-sensing techniques used to monitor and map; (a) surface thermal anomalies, (b) 

surface type discrimination and (c) surface roughness of the lava flow. 

Table 1.1 Remote sensing sensor that commonly used for lava flow study for different 

applications 

Remote Sensing Sensor Lava flow application References 

Infrared lava subpixel temperature, 

radiant flux, mass eruption 

rate, volume and lava crust 

thickness, etc 

(Bonny et al., 2018; 

Harris et al., 1998; 

Lombardo & 

Buongiorno, 2006; 

Oppenheimer, 1991; 

Wright & Flynn, 2003) 

Radar (SAR), LIDAR Surface roughness, lava 

morphology, thickness, etc 

(Byrnes et al., 2004; 

James, 2019; Neish et 

al., 2017; Pedersen et 

al., 2017; Shepard et al., 

2001) 

Optical (VIS), Hyperspectral, 

Multispectral 

 

Lava morphology, surface 

mineral, surface type, 

hydrothermal alteration, 

etc 

(Aufaristama et al., 

2016; Gudmundsson et 

al., 2016; Head et al., 

2013; James, 2019; Li et 

al., 2015; Smets et al., 

2010) 

   

1.2.2  Infrared remote sensing of the lava flow 

Satellite-based infrared remote sensing data are increasingly being used to monitor active 

volcanoes around the world. Monitoring volcanoes by infrared remote sensing is essential 

to improve our understanding and occurrence of volcanic eruptions. For example, thermal 

monitoring of volcanoes and volcanic eruptions does improve our understanding of 

volcanic eruption processes, since almost all volcanic eruptions are associated with a 

thermal anomaly, either through changes in temperatures of crater lakes, extrusion of 

molten material onto the Earth’s surface or injection of hot ash and gas into the 

atmosphere. The potential for using thermal infrared (TIR) measurements to track volcanic 

eruptions and to constrain volcanic processes has been recognized for many years (e.g., 

Harris et al., 1998; Harris et al., 1997), with an automated volcanic alert system in 

operation since 2002 (Wright et al., 2002). Space-based measurements have also been used 

to estimate the global volcanic heat flux to the atmosphere (Wright et al., 2015). 

This dissertation focuses on remote sensing of thermal features associated with an effusive 

eruption that formed a lava flow. Effusive eruption activity is known for generating lava 
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fields that can change during the time of emplacement and the development of the lava 

field. In most cases, thermal observations of active eruptions, from the ground and by 

aircraft, are risky and difficult, primarily when the lava flow field covers a large area. 

Satellite-based remote sensing does provide high temporal resolution of infrared data that 

are very suitable for monitoring large effusive eruptions, as in the case of the 2014-15 

effusive eruption at Holuhraun, Iceland. Satellite-base remote sensing provides data that 

allow for detection of changes in the eruption style and evolution of activity regardless of 

the coarse spatial resolution of the data (Bonny et al., 2018; Harris et al., 1997).  

Satellite-based remote sensing is used to monitor thermal activity within lava fields (Bonny 

et al., 2018; Ramsey & Harris, 2013; Wright & Flynn, 2003). Over the past 25 years, 

several remote sensing techniques have been proposed to estimate the thermal structure of 

active lava flows from infrared remotely-sensed data (Lombardo & Buongiorno, 2006; 

Lombardo et al., 2004; Pieri et al., 1990), heat flux (Harris et al., 1997; Piscini & 

Lombardo, 2014; Wright et al., 2010), effusive rate (Morgan, 2012; Oppenheimer, 1991; 

Zakšek et al.,, 2015) and crust thickness (Harris et al., 1997; Oppenheimer, 1991). Dozier 

(1981) developed a method involving a solution of simultaneous equations that allow the 

calculation of the ‘sub-pixel’ coverage and temperature of cool and hot components. This 

method is called the dual-band method, and involves two distinct infrared bands to 

formulate a system of two equations from the simultaneous solution of the Planck equation 

in each band as shown below: 

Rx = pR(λx,Th) + (1 − p)R(λx, Tc) (1) 

Ry = pR(λy, Th) + (1 − p)R(λy, Tc) (2) 

where Rx and Ry are the radiances in bands x and y, respectively, (Wm
−2

 sr
−1

 m
−1

) after 

adjusting for atmospheric effects and surface emissivity; p is the pixel portion occupied by 

the hot component; R(λx, Th) and R(λy, Tc) are the radiances (Wm
−2

 sr
−1 

m
−1

) emitted for 

wavelengths λx,, and λy, at surface temperatures Th (hot component) and Tc (cool 

component), respectively. The dual-band method can be applied if the two bands of the 

short-wave infrared (SWIR) and the thermal infrared (TIR) data are available (Harris, 

2013), whereby any two of the unknowns, Tc , Th, and p, can be estimated if the third is 

assumed. This method has been successfully applied by several researchers (Flynn et al., 

2001; Harris et al., 1997; Lombardo et al., 2004; Lombardo et al., 2012; Lombardo et al., 

2006). Harris et al. (1997) and Lombardo et al. (2004) used the dual-band method to 

retrieve the crust, and the hot cracks temperature for active lava flows in Mt. Etna. They 

used band 5 (1.55– 1.75 µm) and 7 (2.08–2.35 µm) from Landsat Thematic Mapper (TM) 

and assumed Th to estimate Tc and p. 

1.2.3  Hyperspectral unmixing remote sensing on a lava field 

Characterization of surface spectral reflectance by remote sensing is constrained by the 

spectral resolution as well as by the spatial resolution of the imagery. The spectral 

reflectance of the lava of different compositions has been documented using laboratory 

spectrometry measurements on decimeter-size samples (Spinetti et al., 2009). For 

accessible volcanic terrains, field spectrometry offers a useful alternative approach for 

characterizing the spectral reflectance of contrasted lava surfaces and for documenting its 

spatial variation at different spatial scales (Li et al., 2015; Spinetti et al., 2009). The great 
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variety of morphologies observed in the 2014-2015 lava flow field at Holuhraun 

(Kolzenburg et al., 2018; Pedersen et al., 2017) encouraged a detailed study of their 

spectral characteristics, to obtain information about lava composition and detect possible 

differences in the spectra of the flow. In spectroscopy, the identification of the mineral 

constituents of major rock types is typically approached using spectral unmixing methods 

(Daskalopoulou et al., 2018; Li, Canters, et al., 2015). Various spectroscopy studies over 

the volcanic area (Graettinger et al., 2013; Li et al., 2015; Tayebi et al., 2014) have 

examined the mineralogical composition of extensive lava fields. Usually, in the visible 

(VIS) and near-infrared (NIR) spectral range, mafic rocks are characterized by very low 

reflectance due to the presence of large amounts of dark mafic minerals (Spinetti et al., 

2009).  

Spectral indices provide a first efficient way to emphasize subtle spectral variants at the 

surface (Clark & Roush, 1984). More elaborate methods have been developed to 

distinguish and quantify mixtures of mafic minerals. They have been used to derive 

composition maps of mafic minerals (Rowan et al., 2005; Zhang et al., 2004; Zhang et al., 

2005). However, some lava flows can have a similar chemical/mineralogical composition 

but different spectral behavior due to the varying grain size, surface texture, and presence 

of weathering (Aufaristama et al., 2016; Spinetti et al., 2009). The main components of 

igneous rocks do not display any peculiar spectral features in the visible and near-infrared 

spectral range. In the case of basalts, the only spectral feature commonly found is an 

absorption peak due to iron, located around 1000 nm (Clark & Roush, 1984). However, in 

the case of hydrothermal alteration, hydroxyl bearing minerals show distinctive absorption 

features in the 2000–2500 nm spectral region (Hellman & Ramsey, 2004). Because of the 

heterogeneity of a lava surface and due to the limited spectral resolution of the remote 

sensing sensors, mixed pixels are very common, as is illustrated in Figure 1.2a and Figure 

1.2b.  

Spectral Mixture Analysis (SMA) has been specially developed to account for mixtures 

(Adams et al., 1986). Analysis of the data sample can simply be performed on these 

abundance fractions rather than the sample itself. This method is well-suited for 

spectroscopic analysis because most of the spectral shapes are due to different materials. 

The signal detected by a sensor at a single pixel is frequently a combination of numerous 

disparate signals. Li et al. (2015) used unmixing techniques to discriminate lava flows of 

different ages at the volcano of Nyamuragira. The most recent study by Daskalopoulou et 

al. (2018) used unmixing techniques to segregate lava flows and related products from the 

historical eruptions on Mt. Etna. Nonetheless, to date no lava identification studies that 

include lava flow delineation through unmixing, have been undertaken in Iceland. 
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Figure 1.2 Illustration of (a) the mixed pixel in lava surface due to present another 

spectral in the pixel; (b) variability of lava surfaces in the Holuhraun lava field, which 

includes oxidizing surface, sulfate mineral, and lava. The original figure was presented in 

Paper II. 

1.2.4  Lava surface roughness estimated from remote sensing 

Measurements of lava surface roughness on Earth have been used to describe changes in (i) 

eruption conditions (Kilburn, 1999; Lopes & Kilburn, 1990; Swanson, 1973), (ii) surface 

processes that have occurred post-emplacement (Shepard et al., 2001), and (iii) to identify 

and map out individual lava flows (Gaddis et al., 1990; Morris et al., 2008). The relation 

between lava roughness and composition has been explored in some detail (e.g. Anderson 

et al., 1998; Ramsey & Fink, 1999; Shepard et al., 2001). Basaltic lava is generally 

produced by effusive eruptions and are typified by low magma viscosity, low volatile 

content and high magmatic temperatures. Fast-flowing lava tend to produce a crust that is 

disintegrated as it is formed (Anderson et al., 1998; Guest et al., 2012). This influences 

centimeter to decameter-scale roughness. If the flow of the lava is slow and fully laminar it 

allows formation of smooth, continuous, coherent crust that typifies pāhoehoe. its 

formation is initated by formation of thin viscous skin (Hon et al. 1994). In this case the 

transport of the lava takes place beneath a stationary crust. This process minimizes the 

heatloss from the lava interior because it is confined to conductive heat transfer through 

lava crust. If this crust is, by some process, broken up it results in a rougher lava surface as 

is the case with rubbly pāhoehoe (Anderson et al., 1998; James, 2019; Keszthelyi, 2002; 

Keszthelyi et al., 2004). 

According to Kilburn (Kilburn, 2000), most basaltic lavas can be grouped using their 

characteristic surface roughness such as; (1) pāhoehoe, with surfaces is smooth, continuous 

and coherent surfaces, (2) 'ā'a with its incoherent, clinkery rough and fragmented surfaces, 

and (3) block lava where is the surface is brecciated and typified by meter-size equant 

blocks. Hence, studies of lava surface textures and structures gives insight into lava flow 

dynamics. Generally speaking, lower viscosities or shear strain results in smooth textures; 

rough textures are the result of higher viscosities, higher shear strain, or disruption of the 

rapidly cooled surface (Gaddis et al., 1990; Neish et al., 2017; Shepard et al., 2001). 

Identification of lava surface textures and structures can aid understanding of eruption 

history as it may indicate changes in the eruption styles, timing of events and geographic 

extent of the lava (Byrnes et al., 2004). 

Emplacement histories can be inferred frome variations in lava surface roughness at 

different scales. Spiny pāhoehoe are typically smooth at meter scale and with mm-cm large 
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spines spinose preserved on the surface of a pāhoehoe flow and sometimes characterized 

by feature longitudinal grooves and ridges (Griffiths & Fink, 1992). Ropy fold also 

provides an example of relating roughness to local emplacement conditions (Anderson & 

Fink, 1990; Fink & Fletcher, 1978). Field observations of solidified pāhoehoe surfaces and 

motion pictures of active flows suggest that these features may be interpreted as folds that 

develop in response to the shortening of the flow surface (Fink & Fletcher, 1978). These 

features also indicate that slow moving, and low viscosity basalt lava flows forms 

pāhoehoe surface (Moore et al., 1987; Ramsey & Fink, 1999; Swanson, 1973). Though 

these features may appear flat and devoid of height changes at the meter and decameter 

scale, the texture is quite rough when observed at the centimeter scale. Spiny surfaces and 

ropy folds are very different from 'ā'a lava surfaces, which are composed of piles of jagged 

blocks and are rough at centimeter to decameter scale (Gaddis et al., 1990; Shepard et al., 

2001). 

A variety of methods are used to assess surface roughness of various lava surfaces (Gaddis 

et al., 1990; Shepard et al., 2001; Whelley et al., 2014). Two commonly used are the Root 

Mean Square (RMS) heights and Hurst exponent (H) (Mallonee et al., 2017; Shepard et al., 

2001). RMS represents the standard deviation of the height slope around the mean height 

(Shepard et al., 2001). RMS is a valuable method for vertical roughness, but it does not 

include horizontal patterns (Bretar et al., 2013; James, 2019). It has been used to study the 

roughness of lunar impact melts, and Martian lava flows (Neish et al., 2017).  

In this study, we consider using rescaled range analysis, the R/S technique, to derive Hurst 

exponent (Hurst, 1951). The method offers fast computation and relatively straightforward 

to adapt with localization in space domains. It is well adapted in the analysis of surface 

roughness of the material, providing an insight into the stochastic properties of a fractal 

surface (Candela et al., 2009; Kuang & Chien, 2011; Torres-Argüelles et al., 2010; 

Wawszczak, 2005). This study provides the first R/S technique applied to a lava flow 

roughness study. Currently, there is no lava surface roughness study that compares RMS 

and R/S techniques, but such studies do exist in material science (Babič et al., 2014; 

Wawszczak, 2005). 

To accurately reflect lava surface roughness, elevations within 360° radius around a point 

should be considered, rather than only measuring topographic changes along single 

horizontal direction (James, 2019). Therefore, we use TPI, and the one-dimensional Hurst 

exponent for assessing the surface roughness of the 2014-2015 lava flow field at 

Holuhraun from both LiDAR DEM and photogrammetry DEM. The detailed methodology 

for these techniques is explained in chapter 2. 

We examine roughness of the lava surfaces at four sites within the 2014-15 flow field as is 

depicted in Figure 1.3. These areas were selected because they represent portions of the 

flow field where the lava surface morphology is well established (Neish et al., 2017; 

Pedersen et al., 2018). The lava features that are considered are (1) a lava pond, (2) a spiny 

pāhoehoe, (3) an inflated channel and (4) a rubbly pāhoehoe/'ā'a. The lava pond formed 

during the first phase of the eruption (Pedersen et al., 2017). Ropy folds preserved on the 

surface of a lava pond (Figure 1d) are consistent with formation via slow moving, low 

viscosity lava (Fink & Fletcher, 1978). In the 2014-15 lava field at Holuhraun, the spiny 

pāhoehoe is characterized by a network of interconnected lobes that in some instances have 

merged to form inflated sheet-lobes with spinose but coherent surfaces. The millimeter-

scale spines on the surface of these flows resemble the texture of 'ā'a, but the flow surfaces 
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are coherent and continuous (Neish et al., 2017). Spiny pāhoehoe are the dominant flow 

type along most of the margins of the flow field, with exception of margins in the NE 

(Neish et al., 2017). Two pre-exiting lava channel, the channels of flows 1 and 2, were 

reactivated towards the end of the second phase and remained active throughout the final 

phase (Pedersen et al., 2017). These reactivated channels maintained the original lava 

channel surface morphology as it was elevated via inflation. It is well established that lava 

inflation is an important component of the emplacement of pāhoehoe. However, 

emplacement of 'ā'a may also inflate under certain circumstances (Hargitai, 2015). Rubbly 

pāhoehoe surfaces consist of jumbles of the blocks and plates. This feature likely formed 

due to sustained auto-brecciation initially of coherent pāhoehoe crust and subsequently of 

crustal slabs into blocks via mechanical collisions induced by the moving lava. In the 

2014-15 lava flow field at Holuhraun the rubbly pāhoehoe are common in the proximity of 

the source vents. 
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Figure 1.3 The four different surface morphologies that typify the Holuhraun lava flow 

field illustrated via aerial photographs (a) location of the selected study areas,(b) Lava 

pond (LP); (b) spiny pāhoehoe (SP); (c) inflated channel (INF); and (d) rubbly pāhoehoe 

(blocky) surface (BL). The horizontal and vertical profiles are collected for each unit 

marked with H1, H2, V1, and V2. The original figure presented in Paper III.  
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1.3 Study area 

1.3.1 Geologic setting 

Iceland is one of the most active volcanic regions on the Earth due to its situation at the 

Mid-Atlantic Ridge and the Greenland–Iceland–Faeroe Ridge. Active volcanism in Iceland 

is primarily constrained to the area known as the Neovolcanic Zone. The Neovolcanic 

Zone contains three subzones: The North Volcanic Zone (NVZ), the West Volcanic Zone 

(WVZ), and the East Volcanic Zone (EVZ) (Fig.1.4). Volcanic eruptions occur every four 

to five years and produce more than 5 km
3
 magma per century (Thordarson & 

Höskuldsson, 2008). Volcanism surrounding the Neovolcanic Zone is primarily 

concentrated in volcanic systems, and these are the main geological features in Iceland. 

There are 30 volcanic systems, distributed evenly throughout the Neovolcanic Zone. 

Twenty of the 30 volcanic systems feature a fissure swarm According to Thordarson & 

Larsen (2007), 12 of those are well developed and mature swarms, five are of average 

maturity, and four can be regarded as embryonic. The mature and moderately mature 

fissure swarms are distinct narrow and elongated strips (5–20 km wide and 50–200 km 

long) with a high density of tensional cracks, normal faults, and volcanic fissures, whereas 

embryonic swarms feature one or a few discrete volcanic fissures.  

The spreading and subsequent rifting of the crust that occurs at the plate boundary is not a 

continuous process, in either time or space.  It occurs in different rifting episodes that most 

commonly are narrowed to a single volcanic system at any one time, although near-

concurrent activity on two or more systems is known to have occurred (Thordarson & 

Larsen, 2007; Thordarson & Höskuldsson, 2008). The 2014–2015 lavas at Holuhraun were 

emplaced on the central part of the floodplain, 6 km north of the Dyngjujökull glacier. This 

floodplain is primarily covered by glacial and fluvial deposits from Jökulsá á Fjöllum river 

and has a regional dip of ~1° to the northeast. It features decimeter to meter scale banks, 

bars and river terraces, which close to the central parts of the river channel may have relief 

up to 7 m (Pedersen et al., 2017). This eruption has been related to The Bárðarbunga-

Veiðivötn volcanic, one of Iceland's largest volcanic systems (Reynolds, et al., 2017).  

The central volcano is located within the northwestern part of the Vatnajökull ice cap and 

features an 8 km by 13 km wide and 500–700 m-deep caldera (Gudmundsson et al., 2016). 

The eruption history of the Bárðarbunga-Veiðivötn volcanic system in the Holocene is not 

fully known. However, the eruption frequency is suggested to be ~five eruptions per 

century (Óladóttir et al., 2011). Tephrachronological studies of ice and soil, along with 

written records from the last 1000 years have verified 22 eruptions on the southwestern 

(i.e. Veiðivötn) segment of the fissure swarm in the last 9000 years. The eruption history of 

the fissure swarm segment to the north is less well constrained, but observations suggest 

that more than ten eruptions have taken place there during the Holocene (Óladóttir et al., 

2011). The most recent pre-2014 lava flow fields in the region are the Holuhraun lavas of 

1797 CE (Holuhraun I) and 1867 CE (Holuhraun II). These basaltic lavas have chemical 

composition identical to that of 2014-15 lavas and chemical signatures that indicate affinity 

with the Bárðabunga-Veiðivötn volcanic system (e.g., Hartley & Thordarson, 2013). 

Holuhraun I erupted from a 1.5 km long fissure 5–6 km north of Dyngjujökull, whereas 

Holuhraun II erupted just outside the Dyngjujökull glacier. The 2014-15 fissure opened up 

through the cone row of the Holuhraun I event and thus reactivated a more than 200 year 

old fissure.  
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Figure 1.4 Map showing  Iceland‘s Neovolcanic Zone at the junction of the Reykjanes and 

Kolbeinsey Ridges to the south and north, respectively ( Thordarson & Höskuldsson, 

2008). 

1.3.2 The 2014-2015 Holuhraun eruption 

On 16 August 2014, the beginning of intense seismic activity beneath, north and east of the 

Bárðarbunga central volcano marked the beginning of a significant rifting event 

(Gudmundsson et al., 2016). On the 16
th

 seismic activity was confined to four areas in at or 

near the Bárðarbunga volcano: (i) beneath southeast flank of the volcano propagating from 

the caldera rim to the southeast over a few hours, (ii) beneath the northeast flank of the 

volcano, (iii) in the region beneath Mt. Kistufell and (iv) beneath the glacier in an aera 5-6 

km to the east of the volcano (Sigmundsson et al., 2014; Ágústsdóttir et al., 2016; 

Gudmundsson et al 2016). Over the following 14 days, the seismic activity represented by 

the easternmost cluster concentrated along a lineament and propagated about 39 km to the 

northeast, terminating on the floodplain, six km north of the outlet glacier Dyngjujökull 

(Fig. 1.5). The northern terminus of the seismic activity was directly below the cone row of 

the Holuhraun I event and was the loci of the minor eruption on 29
th

 August, 2014 as well 

as the main eruption that began two days later at 4 am (local time) on 31
st
 August. The 

main eruption was characterized by a high average flux of ~90 m
3
/s, and the maximum 

discharge rate during the first phase of the eruption is estimated to have been ≥350m
3
/s 

(Bonny et al., 2018;; Pedersen et al., 2017), dropping to ~60–70 m
3
/s at the end of 

December, after four months of continuous eruption. The discharge rate continued to 

decrease from mid- January until the end (Bonny et al., 2018; Coppola et al., 2017). In 

total, the bulk volume of erupted lava has been estimated to be 1.44 km
3
 based on pre and 

post-eruption topography derived from stereo-photogrammetry and satellite (Bonny et al., 

2018). The erupted lava had an olivine tholeiite composition with a minor abundance of 
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phenocrysts and a groundmass containing silicate glass with plagioclase, clinopyroxene, 

and olivine microlites (Geiger et al., 2016; Halldórsson et al., 2018). 

 

Figure 1.5 The 2014-2015 eruption at Holuhraun on 6
th

 September 2014, acquired from 

Landsat 8 False color band 7,6,5. The Holuhraun lava field is situated on the flood plain, 

which is situated south of Askja volcano and north of Dyngjujökull, which is an outlet 

glacier from the Vatnajökull ice cap. 

The 2014-15 eruption at Holuhraun began on 31
st
 August on a 1.8 km long fissure feeding 

up to 500 m wide, incandescent sheets of slabby pāhoehoe (Pedersen et al., 2017). The 

eruption is divided into three phases based on the lava field evolution: (i) Phase I from 31
st
 

August to mid-October, (ii) Phase II from mid-October to end-November and Phase III 

from early December to 27
th

 February 2015 (Pedersen et al., 2017). The first phase of the 

2014–2015 eruption was dominated by transport of lava through open channels. This phase 

had a discharge rate of ~560–100 m
3
/s. The second phase had a discharge rate ranging 

from 100 to 50 m
3
/s (Bonny et al., 2018; Pedersen et al., 2017). Throughout this time (mid-

October to end-November), a lava pond <1 km
2
 was active at 0.8 km east of the vents. 

from this time on this lava pond became the main point of lava distribution, controlling the 

emplacement of the lava flow field (Pedersen et al., 2017). Towards the end of this phase, 

the lava channel formed during the first phase was reactivated and inflated due to the 

injection of new lava into the previously active lava (Pedersen et al., 2017). The final 

phase, from early December to the end of February, had a mean discharge of <50 m
3
/s. In 

this phase, the lava transport was confined to internal lava pathways within flow field. 

Over 19 km
2
 of the flow field was resurfaced via surface breakouts from these internal 

pathways. It is likely that restrictions within the lava transport system resulted in build up 

of the lava static pressure within the flow field (Pedersen et al., 2017), such that it could lift 
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it surface 5-10 m in places. Thus, allowing new lava to be transported to the distal ends of 

the lava flow field. According to Pedersen et al. (2017), shelly, slabby, rubbly, and spiny 

pāhoehoe along with formation of 'ā'a were observed within the first week of the eruption. 

During the first phase and the second phase, 'ā'a was the dominant lava type, and in the 

final phase, spiny pāhoehoe was the primary lava type(Pedersen et al., 2017). This change 

from 'ā'a and pāhoehoe in the first and second phases to spiny pāhoehoe in the final phase 

makes Holuhraun a paired lava field. Rowland and Walker (1990) suggest that a paired lava 

field is formed due to the decline in the effusion rate over the course of the eruption. The 

2014-15 lava flow field was emplaced on a near-flat floodplain, and the chemical 

composition of the lava was uniform throughout the whole eruption Halldórsson et al., 

2018). This suggests that neither the topography nor the composition was the main factor for 

the observed changes in flow morphology (Pedersen et al., 2017). The first transition of 

slabby pāhoehoe to rubbly pāhoehoe to 'ā'a took place downstream of the vent, which is 

consistent with such changes in other lava producing eruptions and is explained by increased 

viscosity due to cooling of the lava during transport and emplacement (e.g. Harris and 

Rowland, 2001), mixing of cold components into the hotter interior (Crisp and Baloga, 1994) 

and gas loss during lava transport (Cashman et al., 1999). 
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2 Datasets and Methods 

This chapter will describe datasets and methods used for Paper 1,2 and 3. Limitation of 

datasets and methods will be further discussed in Chapter 4. 

2.1 Datasets 

The multiple datasets used in this study range from multispectral satellite, SAR satellite, 

airborne hyperspectral, airborne LiDAR, DEM, aerial photograph, and field data. These 

datasets were grouped into two based on time of the acquisition, “during the eruption 

datasets” and “post-eruption datasets.” The details of datasets will be explained in sections 

2.1.1 and 2.1.2, respectively. 

2.1.1 During the eruption 

Landsat 8: In this study, thermal remote sensing observations made during the eruption by 

Landsat 8. Landsat 8 Level 1 product band 6 (1.56–1.66 µm) and band 10 (10.60–11.19 

µm). The selection of band 6 and 10 was made to minimize oversaturation effects on the 

active lava flow. Acquisition dates are selected according to the availability and quality of 

data covering the eruption (Table 2.1). The data selected and used has minimum cloud 

coverage. The data can be downloaded USGS website (https://earthexplorer.usgs.gov).  

Table 2.1 Product ID and the dates of the Landsat 8 datasets that were used in this study 

Product ID Date 

LC82170152014249LGN00 6 September 2014 

LC82180142014272LGN00 

LC82180142014288LGN00 

LC80642292014297LGN00 

LC80642302014329LGN00 

LC80652292014336LGN00 

LC80652292014352LGN00 

LC80652292015003LGN00 

LC82180142015035LGN00 

29 September 2014 

15 October 2014 

24 October 2014 

25 November 2014 

2 December 2014 

18 December 2014 

3 January 2015 

4 February 2015 

 

Sentinel 1A: Sentinel 1A satellite radar data from 18 October 2014 was used to derive 

roughness of lava during the eruption based on backscattering signal. This data can be 

acquired from the Copernicus website (https://scihub.copernicus.eu/dhus/#/home).  

Field data for validation: In this study, thermal camera (FLIR) measurement carried out 

on 2 December 2014, are used since those observations overlap with the satellite data that 

were used to compare with satellite-derived temperature. Similarly, the theodolite derived 

lava height measurement made during 3-4 September 2014 were used for comparison with 

satellite-derived crust thickness calculations. 

https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
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2.1.2 Post-eruption 

Airborne Hyperspectral: Airborne hyperspectral data were acquired on 4 September 

2015 between 16.56 and 17.58 (local time) with an AisaFENIX sensor (Specim, Spectral 

Imaging Ltd, http://www.specim.fi) onboard a NERC Airborne Research Facility (Natural 

Environment Research Council Airborne Research Facility http://www.bas.ac.uk/nerc-arf) 

aircraft. The hyperspectral data contain 622 bands with a spectral range from ~0.4 µm to 

2.5 µm (break at ~0.97 µm). In total, eight flights were acquired over the 2014-15 lava 

flow field at Holuhraun during this period, and acquisition flight altitude was 2.4 km 

(Figure 2.1a) and pixel size 3.5 m. The data are delivered as level 1b ENVI BIL format 

files, which means that radiometric calibration algorithms have been applied and 

navigation information have been synchronized to the image data (Figure 2.1b). In this 

study, the data used was a subset focused on the area around the eruptive fissures vent 

(Figure 2.1c). 

 

Figure 2.1 Map showing line acquisition of FENIX hyperspectral image in the Holuhraun 

lava field; (b) Image mosaic from eight FENIX lines collected during the campaign (red 

box shows the image subset location); (c) Image subset of the focusing study area in the 

eruptive fissure vent of Holuhraun. The original figure presented in Paper II. 

Airborne LiDAR: LiDAR data was collected by the Natural Environment Research 

Council (NERC). It was acquired on September 4, 2015, and we processed the DEM based 

on the LiDAR point cloud with 1 m spatial and vertical resolution (mean error of 4 to 5 cm 

depending on the flight line) over most of the lava flow. Eight flight lines were made over 

the 2014-15 lava flow-field at Holuhraun: seven of these are parallel and aligned with the 

long axis of the field (from the vent to the hot springs region in the northeast end of the 

lava field) while the eighth is transverse and crosses all the others. The LiDAR, therefore, 

http://www.specim.fi/
http://www.bas.ac.uk/nerc-arf
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does not cover the entirety of the flow-field. Furthermore, clouds obscured parts of the lava 

and created gaps in the data (Figure 2.2). 

 

Figure 2.2 The LiDAR DEM acquired on 4 September 2015, with the 1-meter pixel spatial 

resolution. The LiDAR does not cover the entirety of the flow-field and has a gap in 

between eight lines. 

Very high-resolution aerial photograph: Very high-resolution aerial photographs of the 

lava field (Fig 2.3a) from Loftmyndir ehf (http://www.loftmyndir.is/) acquired on 30 

August 2015 are used in this study. Clouds obscured interior portion of the 2014–2015 lava 

flow-field at Holuhraun (Fig. 2.3a). This dataset, along with a collection of field 

photographs, was used for comparison and validation of the unmixing results. This aerial 

photograph has a spatial resolution of 0.5 m. Photogrammetry-derived DEM based on this 

data with spatial resolution 5 m was used. The DEM is used to deriving surface roughness 

(Fig 2.3b).  

 

(a) 

 

(b) 

Figure 2.3 (a) Aerial photograph of the Holuhraun lava field, the spatial resolution of this 

image is 0.5 m. The white patch in the image is cloud covering the area. (b) 

Photogrammetry-derived DEM based on an aerial photographs with spatial resolution 5 

m. 

http://www.loftmyndir.is/
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2.2 Methods 

2.2.1  Deriving thermal properties of lava flow during the 
eruption 

The processing workflow to derive the temperature of the lava surface, identify different 

thermal domains, estimation of radiant flux, and the crust thickness model of the lava flow 

is illustrated in Fig 2.4. 

 

 

Figure 2.4 The workflow used for processing derive thermal properties of the lava flow 

field from Landsat 8. 

Thermal Eruption Index (TEI): TEI was developed by using the SWIR and the TIR 

bands from Landsat 8. The method uses the sensitivity difference between SWIR (band 6) 

and TIR (band 10) to differentiate pixel hot spots. The objective of TEI is to provide a new 

variant for a hotspot thermal index, by using data from the medium spatial resolution 

satellite Landsat 8. TEI is based on the principle that the SWIR spectral radiance (RSWIR) 

from the crust will be less than the TIR spectral radiance (RTIR) and vice versa, on the 

active lava (RSWIR>RTIR). The active lava pixels are emitting more spectral radiance in 

both band 6 and band 10; at the same time, the crust pixels are emitting more spectral 

radiance in TIR. Therefore, TEI has higher values where there is active lava, than where 

there is a stagnant crust. This index uses the square of the TIR spectral radiance and the 

maximum of the SWIR spectral radiance to differentiate between the thermal domains. TEI 

is expressed as, 

TEI =
RSWIR −

(RTIR)2

10 RSWIR MAX

RSWIR +
(RTIR)2

10 RSWIR MAX

  
(RTIR)2

(
RSWIR MAX

3 )2
 (3) 

where RSWIR , RTIR  are the pixel corrected spectral radiances detected in the band 6 and 

band 10, respectively and RSWIR MAX  are the maximum spectral radiances detected in band 

6. The purpose of TEI is mainly of two kinds; (1) detect a threshold to differentiate 

between different thermal domains of the lava field and (2) to estimate subpixel 

temperature within thermal domains to differentiate between types of lava surface. 

Dual-band method: In this study, the dual-band method was applied to automatically 

calculate the hot component temperature within the region defined by the hotspot threshold 

(TEI > 0.10). By use of simple two thermal component scenarios, with Th as the 
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temperature of the lava surface and, Tc as temperature surrounding the lava. Tc was set 

equal to the lowest brightness temperature detected in TIR data, for each thermal domain 

considered, with , Tc = 25 C in the surrounding of warm crust, , Tc = 50 C in the 

surrounding of hot crust, and , Tc = 85 C in the active lava. These assumptions is suitable in 

situations where different thermal domains (active lava and crust) within the lava flow are 

clearly separable. Pixel portion (p) was solved by iterating for, Th, by equation (1) and (2). 

Radiant flux estimation: Radiation is the most important direct heat flux to estimate. For 

rough lava surface (aa and brecciated surface), not all the radiation can escape from the 

lava surface because of surface scattering. Therefore, in this study, the Hurst exponent (H) 

is introduced to describe the lava surface roughness; thus the actual radiation emitted is 

reduced due to the fractal model (this technique will be explained in detail on section 2.2.3 

and Appendix A). In Paper I, we estimate H from a radar backscattering profiles from 

Sentinel 1A VH polarization data that have been calibrated, speckle filtered, and terrain 

corrected.  Here, we assume that surface roughness reflects the lava thermal domain in 

such a way that active lava (moving incandescent lava) is smooth, the hot crust is rough, 

and the warm crust domain is very rough. We assume that H has a strong tendency to 

cluster around 0.5 from topography profiles (Shepard et al., 2001). Therefore, we simply 

adjust the H value on radar backscattering profiles by multiplying it with 0.5. although 

there is no reference related to this, we did this in an empirical way. Hurst exponent range 

from 0 to 1, where a higher H tends to have a relatively smoother surface (Babič et al., 

2014; Candela et al., 2009; De Assis, 2015; Fargier et al., 2018; Kuang & Chien, 2011; 

Martino et al., 2008; Sanchez-Ortiz et al., 2015). Following this model, the radiant flux for 

each pixel that contains lava can be estimated as 

Φrad =  εσHA𝑇𝑒
4  (4) 

where Φrad is the radiant flux (W), σ is the Stefan–Boltzmann constant (5.67 × 10
−8

 W m
−2

 

K
−4

), and A is the Landsat 8 pixel area, which is 900 m
2
. In this approach, we use the 

effective temperature model (Te), which is the average surface temperature of lava for the 

two thermal components present on the lava flow surface (Ferrucci & Hirn, 2016; Pieri et 

al., 1990). 

Crust thickness model: The crust thickness Δh is calculated by assuming that the density  

of conductive heat flux across the surface of a crust is equal to the total densities of the 

radiative and convective heat flux leaving the surface of lava (Oppenheimer et al., 1993; 

Oppenheimer, 1991), so that 

Δh = −k 
ΔT

Mrad +  Mconv
    (5) 

where Δh is the crust thickness (m), Mrad and Mconv are radiative and convective flux 

densities (W m
−2

), respectively, k is the thermal conductivity, where we use 2.5 Wm
−1

 K
−1

 

(Lombardo et al., 2011; Reynolds et al., 2017), and ΔT is the temperature of the lava flow 

interior. In this study, the interior temperature of 1128 °C (for lava outside vent) and 1200 

°C (for lava surrounding vent) were used; these values were selected according to 

thermocouple measurements for freshly exposed patches of lava in the flow field on 19 and 

20 November 2014 (Kolzenburg et al., 2017).  
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2.2.2  Discriminating lava surface 

In this study, a spectral unmixing technique was applied to the airborne hyperspectral data 

to discriminate between lava surfaces. The processing workflow towards unmixing and 

generating abundance consists of four steps: (1) Atmospheric correction to retrieve surface 

reflectance; (2) Data masking, geo-correction, reprojection, and resampling; (3) An 

endmember selection algorithm was adopted to select the endmembers; then a linear 

spectral mixture analysis method was employed to retrieve the abundance (Fig 2.5). 

 

Figure 2.5 The workflow processing used to derive an abundance map from the FENIX 

hyperspectral data. 

Atmospheric Correction: In this study, the data were atmospherically corrected using the 

quick atmospheric correction (QUAC) algorithm (Bernstein et al., 2005; Bernstein, 2012), 

since we had no prior knowledge to perform empirical calibration (Karpouzli & Malthus, 

2003; Kizel et al., 2018). QUAC is an in-scene approach, requiring only an approximate 

specification of sensor band locations (i.e., central wavelengths) and their radiometric 

calibration; no additional metadata is required (Bernstein, 2012). QUAC does not involve 

first principles radiative transfer calculations, and therefore it is significantly faster than 

physics-based methods; however, it is also more approximate ( Bernstein, 2012). 

Data Masking, Geocorrection, Reprojection, and Resampling: Airborne Processing 

Library (APL) software was used in this study (Warren et al., 2014). The first step of the 

APL processing is to apply the mask of bad channels to atmospherically corrected data, 

creating a new file with bad channels set to zero. The next step uses the navigation file, the 

view vector file, and the digital elevation file (DEM) to calculate the ground position for 

each pixel, it is subsequently changed to the UTM projection (Universal Transverse 

Mercator) Zone 28N (Warren et al., 2014). A satellite-based ASTER sensor was used for 

the DEM. In the final step, we resampled the output pixel size to ~3.5 m according to the 

height above ground level (AGL) that is given by the theoretical pixel size chart that can be 

found on https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize. 

https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize
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Endmembers Selection: The sequential maximum angle convex cone (SMACC) 

algorithm was employed (Gruninger et al., 2004) to identify spectral image endmembers. 

Endmembers are spectra that represent pure surface materials in a spectral image. The 

extreme points were used to determine a convex cone, which defined the first endmember. 

A constrained oblique projection was applied to the existing cone to derive the next 

endmember. The cone was then increased to include a new endmember (Gruninger et al., 

2004; Zhang et al., 2014). This process was repeated until a projection derived an 

endmember that already existed within the convex cone, or until a specified number of 

endmembers was satisfied (Gruninger et al., 2004). When implemented with SMACC, the 

output endmember number was set as 5, 10, 15, 20, and 30, respectively. Endmembers 

could be identified easily from the 15 endmembers. Then, the selected 15 endmembers 

were used to derive the abundance. 

Linear Spectral Mixture Analysis: The linear spectral mixture analysis (LSMA) 

approach was adopted to calculate the abundance of endmembers for each pixel. LSMA 

assumes that the spectrum measured by a sensor is a linear combination of the spectra of 

all components (endmembers) within the pixel, and the spectral proportions of the 

endmembers (i.e., their abundance) reflect the proportion of area covered by distinct 

features on the ground (Adams et al., 1995; X. Zhang et al., 2014). The general equation 

for linear spectral mixing can be expressed as: 

𝑅𝑖𝑗,𝜆 =  ∑ 𝑝𝑖𝑗,𝑛𝑅𝑛,𝜆 +  𝐸𝑖𝑗,𝜆

𝑁

𝑛=1

  (6) 

where 𝑅𝑖𝑗,𝜆 is the measured reflectance at wavelength λ for pixel i,j, where i is the column 

pixel number, and j is the line pixel number; 𝑝𝑖𝑗,𝑛 is the abundance of endmembers n 

contributing to the image spectrum of pixel ij; N is the total number of endmembers; 

𝑅𝑛,𝜆 is the reflectance of endmember n at wavelength λ; and 𝐸𝑖𝑗,𝜆 is the error at wavelength 

λ of the fit of the N spectral endmembers. The abundance 𝑝𝑖𝑗,𝑛 can be solved using a least-

square method with fully constrained unmixing. Fully constrained unmixing means that the 

sum of the endmember fractional (abundance) values for each pixel must equal unity, 

which requires a complete set of endmembers. In this study, fully constrained LSMA was 

applied to the FENIX image to obtain the abundance result and both SMACC and LSMA 

were executed by ENVI 5.3 and IDL 8.5 language programming. 

2.2.3  Deriving roughness properties 

The methodology adopted for the assessment of the roughness is given in sequential a 

manner in Figure 2.6. In this study, we use the Topographic Position Index (TPI) to 

describe roughness pattern and one-dimensional Hurst exponent approaches to assess the 

roughness on the 2014-2015 Holuhraun lava flows from both photogrammetry DEM and 

LiDAR DEM. Finally, we determined the roughness properties for four different regions 

on the lava field from Figure 1.3. 
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Figure 2.6 The workflow processing used to assess roughness from the lava flow from 

LiDAR and photogrammetry 

Topographic Position Index (TPI): The topographic position index (TPI) was introduced 

by Guisan et al. (1999) and was further developed by Jennes (2006). Mokarram et al. 

(2015) were used TPI for landform classification, a recent study from James (2019) was 

derived roughness of lava flow in the Earth and Mars based on TPI. TPI compares the 

elevation of each cell in a DEM to the mean elevation of a specified neighborhood around 

that cell. Mean elevation is subtracted from the elevation value at the center. 

𝑇𝑃𝐼 =  
𝐶0 −  𝐶̅

𝜎
 (7) 

where 𝐶0 is the elevation of the model point under evaluation, 𝐶̅ is the mean elevation cell 

of the grid, 𝜎 is the standard deviation of elevation in the neighborhood. TPI indicates that 

the cell is higher in elevation (or more steeply sloping) than the average of its neighbors up 

to a specified distance away, whereas a negative one shows the cell is lower than the 

average surrounding elevations (Fig 2.7) (Jennes, 2006). The cell is classified by the 

magnitude of the difference in elevation along with the slope value. The cell neighborhood 

can be adjusted to produce varying TPI values for different scales, thus changing the scale 

of roughness being measured (Jennes, 2006). This extension was initially created for use in 

geomorphology- and hydrology-based projects (Jennes, 2006) but may be useful in 

assessing the topographic characteristics of a lava flow surface by building a catalog of 

features present at each scale (James, 2019). In this study, we use a rectangular TPI with a 

3x3 neighborhood size for both LiDAR DEM and photogrammetry DEM. 
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Figure 2.7 Illustration of the topographic position index (TPI) value in the topography 

(Jennes, 2006). The original figure presented in Paper III. 

Hurst exponent: The Hurst exponent is derived using rescaled range analysis (R/S) 

for the Radar backscattering profiles (Paper I) and TPI profiles (Paper III). This technique 

originally developed by Hurst (1951) to investigate long term capacity of water reservoirs. 

R/S has the advantage of fast computation with localization in space domains and is well 

adapted in the analysis of surface roughness, providing an insight into the stochastic 

properties of a fractal surface (Candela et al., 2009; Kuang & Chien, 2011; Torres-

Argüelles et al., 2010; Wawszczak, 2005). In R/S, a profile of the spatial series is 

constructed by averaging over the values of a newer series made of accumulated deviations 

from the arithmetic mean. With the profile, the method forms a rescaled range by 

standardizing each range by their corresponding standard deviation. For many sub spatial 

points 𝜏, the rescaled range is given by 

(𝑅/𝑆)𝜏~ 𝜏𝐻 (8) 

Then, a least-squares regression on logarithms of each side is applied, so that 

log(𝑅/𝑆)𝜏 =  𝐻 log 𝜏 (9) 

where H is the Hurst exponent, for smaller τ, the exponent is biased and a larger value of τ 

is recommended (Babič et al., 2014; Couillard & Davison, 2005). The details for deriving 

equation (8) and equation (9) is described in Appendix A. The Hurst exponent value has a 

range 0 < H < 1. In this study, we consider higher Hurst exponent indicates a relatively 

smoother surface or profile (Candela et al., 2009; De Assis, 2015; Kuang & Chien, 2011; 

Martinez et al., 2014; Torres-Argüelles et al., 2010; Wawszczak, 2005). There are several 

ways and techniques to interpret and derive H, which will be covered in Chapter 4. There 

are also several naming for H in the literature which have similar or analogous meanings 

and are often confused with one another, among them the Hurst exponent (Alvarez-

Ramirez et al., 2008; De Assis, 2015; Jordan et al., 2017; Shepard et al., 2001), Hurst 

coefficient (Kuang & Chien, 2011; Martino et al., 2008; Tubman & Crane, 1995) and 

Hurst parameter (Babič et al., 2014). In order to maintain consistency, in this dissertation, 

we will refer to H as the Hurst exponent. 
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3 Summary of papers 

3.1 Paper I 

Paper I, New Insights for Detecting and Deriving Thermal Properties of Lava Flow Using 

Infrared Satellite during 2014–2015 Effusive Eruption at Holuhraun, Iceland. This study 

presented a new approach based on infrared satellite images to derive thermal properties 

within the lava field during eruption and then compare the results with field measurement 

during the 2014-2015 eruption at Holuhraun. We develop a new spectral index for Landsat 

8, named the thermal eruption index (TEI), based on the SWIR and TIR bands (bands 6 

and 10). The purpose of the TEI consists mainly of two parts: (1) be a threshold for 

differentiating between different thermal domains; and (2) applying a dual-band method 

(Dozier, 1981; Harris et al., 1997; Lombardo et al., 2004) to estimate subpixel temperature 

within thermal domains and differentiating between the types of lava surface. The active 

lava surface has thermal domain complexity and contains more than one thermal 

component, here we use two thermal component scenarios, with Th as the temperature of 

lava surface and Tc as temperature surrounding the lava for different thermal domains. We 

also discuss the effect of lava surface roughness using the Hurst exponent (H) on Φrad and 

Δh. 

3.1.1 Main highlights of paper I 

 Introduce a new spectral index called the thermal eruption index (TEI) based on the   

SWIR and TIR   bands, allowing us to differentiate thermal domains within the lava 

flow field. 

 TEI   detects hotspots with   TEI  >  0.10:   this value provides encouragement that 

the TEI method yields robust estimates. 

 Apply dual-band technique to determine the subpixel temperature (Th) of the lava 

 Lava surface roughness effects are accounted for by using the Hurst exponent (H) 

(derived from Sentinel 1 radar backscaterring profiles) for deriving the radiant flux 

and crust thickness. 

 The higher H (smoother surface) generates thinner crust; meanwhile, the lower H 

(rough surface) generates a thicker crust. 

 The total radiant flux peak is underestimated (~8 GW) compared to other studies 

(~25 GW), although the trend shows good agreement with both field observation 

and other studies. 

 The proposed techniques were successfully applied to Landsat 8 on SWIR and TIR 

datasets from the 2014–2015 Holuhraun eruptions. 

 In future work, the proposed methods will be applied to other satellite/airborne 

datasets that have both SWIR and TIR band and consider an alternative method to 

determine H (e.g., airborne LiDAR and terrestrial laser scanning). 
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3.2 Paper II 

Paper II, The 2014–2015 Lava Flow Field at Holuhraun, Iceland: Using Airborne 

Hyperspectral Remote Sensing for Discriminating the Lava Surface. This paper was 

focused on both endmember extraction and estimation of fractional abundances of the lava 

field products in the 2014–2015 lava flow field at Holuhraun. The aim of this study is to 

retrieve the main lava surface type contributing to the signal recorded by airborne 

hyperspectral at the very top surface of the 2014-2015 lava flow field at Holuhraun. For 

this purpose, an airborne hyperspectral image with an AisaFENIX sensor onboard a NERC 

(Natural Environment Research Council Airborne Research Facility) campaign was 

acquired at the flow field after the eruption, and for the sub-pixel analysis, we used the 

sequential maximum angle convex cone (SMACC) algorithm to identify the spectral image 

endmembers while the LSMA method was employed to retrieve the abundances. Our 

approach was narrowed to the eruptive fissure vent part since it is considered to have a 

more diverse surface. The resulting abundances from the linear spectral mixture analysis 

(LSMA) method were both quantitatively and qualitatively compared with the spectral 

indices’ technique, aerial and field photographs, respectively. 

3.2.1 Main highlights of paper II 

 In total, 15 spectral endmembers and their abundances were acquired. The first 

endmember was the brightest pixel, which represented saturated incandescent lava. 

 These 15 endmembers were grouped into six groups (basalt, oxidized surface, 

sulfate mineral, hot material, water, and noise) based on the shape of the 

endmembers since the amplitude varies due to illumination conditions, spectral 

variability, and topography. 

 We, thus, obtained the respective abundances from each endmember group using 

fully constrained linear spectral mixture analysis (LSMA). 

 The oxidized surface and water abundances indicate a good correlation with the 

reference indices. This suggests that both oxidation and water generated from a 

spectral index are properly validated. Meanwhile, basalt shows a low correlation 

with the mafic index suggesting that the estimates of the basalt surface from the 

unmixing technique are an overestimation since the basalt abundance shows the 

older lava flows as mafic with a relatively high fraction compared to the mafic 

index that only showed for fresh lava flow. This being due to a full spectrum of 

hyperspectral can easily differentiate between basalt surface and non-basalt. 

 A Combination of SMACC and LSMA methods offers an optimum and a fast 

selection for volcanic product segregation. However, ground-truthing spectra are 

recommended for future work. 

 In a future study due to the complementary nature of the reflective (VIS-SWIR) 

and emissive (TIR) spectral regions, synergistic use of airborne data from both 

FENIX (VIS-SWIR) and OWL (TIR) could give great potential for lava 

discrimination. This might significantly improve our understanding of physical lava 

surface properties determination. 

3.3 Paper III 

Paper III, Lava Surface Roughness on 2014-2015 Lava Flow Field at Holuhraun, Iceland 

derived from Airborne LiDAR and photogrammetry. In this paper, lava surface roughness 
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in the 2014-2015 lava flow field at Holuhraun was quantified based on LiDAR DEM and 

airborne photogrammetry DEM. Roughness properties were determined for four different 

surfaces (Lava pond; spiny pāhoehoe; inflated channel; and blocky surface) that exhibit 

well-studied known lava flow morphology at Holuhraun. This study used Topographic 

Position Index (TPI) and One-dimensional Hurst exponent approaches to determine 

roughness on the 2014-2015 Holuhraun lava flows for both photogrammetry DEM and 

LiDAR DEM. TPI compares the elevation of each cell in a DEM to the mean elevation of a 

specified neighborhood around that cell. Mean elevation is subtracted from the elevation 

value at the center. One-dimensional TPI was acquired in perpendicular directions in order 

to avoid directional bias (Hamilton et al., 2018; Neish et al., 2017). The Hurst exponent is 

derived using a rescaled range analysis (R/S technique) for the TPI profiles. Hurst 

exponents range from 0 to 1, where a higher Hurst exponent tends to have relatively 

smoother profiles. 

3.3.1 Main highlights of paper III 

 Both the TPI and One-dimensional Hurst Exponent can distinguish end member 

flow roughness. 

 TPI patterns show the intermediate TPI values correspond to a small slope 

indicating a flat and smooth surface which found on spiny lava and inflated 

channel. 

 Lava pond is characterized by low to high TPI values and forms a wave-like 

pattern. Meanwhile, irregular transitions patterns from low to high TPI values 

indicate a rough surface that is found on blocky surfaces, i.e. rubbly pāhoehoe to 

'ā'a  flows and lobes and their margins. These lobes and margins may give the 

impression of having similar roughness as the ”rough” surface on meters scale 

since this is an “apparent” roughness, On centimeters scale these multitudes of 

lobes feature coherent and smooth surfaces because they are pāhoehoe. 

 Quantitative measures of surface roughness of lava features fall within the H range 

of 0.30 ± 0.05 (Blocky) to 0.76 ± 0.04 (Inflated lava). This indicates that the lower 

H tends to have a relatively rougher surface. Meanwhile for the higher H, 

Indicating relatively smoother surface at large scales relative to small scales. 

 In general, the Hurst exponent values in the 2014-2015 lava field at Holuhraun has 

a strong tendency in 0.5, which has good agreement with early study for geological 

surface roughness. 

 Neighborhood size is a critical component for TPI to quantify the roughness. Small 

neighborhoods capture small and local features and valleys, while large 

neighborhoods capture larger-scale features. 

 We consider there are at least two factors that affected Hurst exponent values: (1) 

pixel size and (2) the profile length. 

 We recommend in a future study to build series of profiles that are rotated by some 

number of degrees to capture a wider range of directions around the surface area of 

interest. The integration of multimodal remote sensing datasets and field 

measurement also could improve in achieving accurate estimation surface 

roughness of lava flow in the future. 
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4 Discussion and Limitations 

This chapter will discuss the limitations and recommendations for datasets and methods 

used in the study.  

4.1 Deriving thermal properties 

In Paper I, we used TEI to automatically detect thermal domains of the lava field, the 

signal obtained from Landsat 8 SWIR and TIR data. The hotspot region is defined by TEI 

> 0.10. This method provides encouragement that the TEI yields robust estimates of 

hotspot anomalies within lava fields during an eruption. Since TEI is determined by 

empirical technique, it does not directly discriminate between the different types of the 

hotspot domains that are observed. As a result, the interpretation can be difficult, as the 

active lava, hot crust and warm crust could be mistaken for eruptive activity. Therefore, 

accurate lava evolution or knowledge of the area under investigation where the hotspots 

occur becomes critical for determining the origin of TEI anomaly. 

On the other hand, differentiating between thermal domains offers new possibilities to use 

different Tc setting for each domain to derive subpixel temperature for the dual-band 

method. However, as explained by Lombardo et al. (2004), the dual-band method provides 

a rough approximation to the thermal model when only two infrared bands are available. 

Therefore, we recommend further improvement by using satellite sensors that have more 

than two infrared bands such as ASTER, EO-1 Hyperion (Abrams et al., 2013; Murphy et 

al., 2011). This offer possibility to use more than two thermal components for the analysis 

to improve thermal approximation (Lombardo & Buongiorno, 2006). 

4.2 Hyperspectral unmixing 

The methods for discriminating the lava surface (Paper II) were only tested on a subset 

area of the lava field (around vent). In order to apply the method on the entire lava flow 

area a challenge rises due to three reasons; (1) The high spatial heterogeneity typically 

gives rise to mixed pixels containing multiple materials and it will increase the number of 

endmembers detected by SMACC (Gruninger et al., 2004). (2) Different illumination 

occurs within the different flight lines for the entire lava flow (Figure 2.1b) since the data 

acquisition time is acquired between 16.56 and 17.58 local times which results in 

acquisition during very low sun angle. The solution to this problem can be approached by 

collecting ground truth spectra, extensive calibration, and atmospheric correction using the 

simultaneous and constrained calibration of multiple hyperspectral images through a new 

generalized empirical line model purposed by Kizel et al. (2018). (3) The computation time 

to perform unmixing also must be considered for the entire lava flow field since the area is 

relatively large (84 km
2
) and taking into account that hyperspectral data contains 622 

channels with a 3.5-meter spatial resolution. In order to process a data set of this size, we 
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would need to consider using high-performance computing (HPC) and machine learning 

(ML) in the future. 

Paper II demonstrate that hyperspectral VIS-SWIR image is effective for discrimination of 

mafic minerals, oxidation, sulfate etc. However, not all the minerals and surface types are 

always mapped uniquely with VIS-SWIR hyperspectral data. A typical surface such as 

rock-forming minerals associated with unaltered rocks and alteration minerals associated 

with altered rocks can be identified with TIR (Thermal Infrared) data (Riley & Hecker, 

2013; Schlerf et al., 2012; Vaughan et al., 2003). Image processing methods that have 

become standard for hyperspectral VNIR/SWIR data analysis also work for hyperspectral 

TIR data (Vaughan et al., 2003). Pixel classification based on spectral variability within the 

scene and mineral libraries for matching spectral emissivity features can be used for TIR-

derived mineral maps using SEBASS hyperspectral TIR image data (Vaughan et al., 2003). 

Hyperspectral TIR instruments operational for airborne surveys are also available in the 

NERC Airborne Research Facility with a Specim AisaOWL sensor (Schlerf et al., 2012). 

Synergistic use of airborne data from both FENIX (VIS-SWIR) and OWL (TIR) allows 

great potential for lava discrimination in a future study due to the complementary nature of 

the reflective (VIS-SWIR) and emissive (TIR) spectral regions. This might significantly 

improve our understanding of physical lava surface properties. Specifically, VIS-SWIR 

imaging spectrometers can discriminate surface materials and TIR data acquisitions can 

help to identify the thermal characteristics of different materials. For instance, combining 

emissivity spectra with reflectance spectra in a mixing model would improve 

discriminating lava surfaces (Ball et al., 2008; Harris, 2013b; Ramsey et al., 2016). 

4.3 Roughness indicator 

Since Hurst exponent is widely used in scientific fields other than earth science, there are a 

couple of methods available for estimates Hurst exponent. The R/S method is commonly 

perceived as the most suitable for its estimation because it presents the relationship 

between irregular (singular) rescaled ranges, signal value and their local statistical 

properties relative to the scale factor. There is ample evidence for the popularity of this 

method in various disciplines, like finance, material science, water, signal processing, earth 

science, etc. (Alvarez-Ramirez et al., 2008; Couillard & Davison, 2005; Fargier et al., 

2018; Hamed, 2007; Raoufi & Hosseinpanahi, 2012). However, some studies suggest that 

the roughness–length method (R-L) (Gong et al., 2016; Malinverno, 1990; Wawszczak, 

2005) is the most appropriate for describing the roughness of surfaces. That method is 

descended from RMS profile analysis (Shepard et al., 2001) and calculates a surface 

roughness parameter. The R–L method permits the description of profiles as the 

relationships between local statistical properties (standard deviation) versus the scale factor 

(length of the part of the profile).  

There are also various techniques to estimate H based on moving average (DMA) (Alessio 

et al., 2002), wavelets and wavelet transform (Alessio et al., 2002; De Assis, 2015), RMS 

(Neish et al., 2017; Shepard et al., 2001), variogram (Babič et al., 2014; Wawszczak, 

2005), etc. The variogram is similar to the roughness–length method because it uses 

variance for the description of the average trend versus the length of windows (lags). The 

variogram method is most popular in earth sciences or geomorphology and is very useful 
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for surface approximations in the case  of sparse datasets (Babič et al., 2014; Wawszczak, 

2005). 

The problem with these methods are that they are based on different bases (aggregation, 

variance, wavelet transformation, etc.), which in turn lead to different values (Babič et al., 

2014; De Assis, 2015; Kuang & Chien, 2011; Martino et al., 2008; Wawszczak, 2005). 

However, each method has certain advantages and limitations in regard to the captured 

profile series. Some methods are better for large samples, some for smaller ones (Babič et 

al., 2014; Hamed, 2007; Wawszczak, 2005). There are also studies that state there is no 

precise method by which to calculate the Hurst parameter accurately and that it can only be 

estimated (Babič et al., 2014; Hamed, 2007; Wawszczak, 2005). 

These differences lead to a different point of view when interpreting H, especially in the 

case of roughness. In material science and signal processing, commonly, higher values of 

the Hurst exponent suggest a relatively smoother surface/profile (Babič et al., 2014; De 

Assis, 2015; Fargier et al., 2018; Martinez et al., 2014; Sanchez-Ortiz et al., 2015). 

Meanwhile, when looking at lava flow roughness, H can be defined as how roughness 

change with scale. That means a Hurst exponent close to zero indicates that the surface 

becomes smooth as the scale increases. A Hurst exponent close to one indicates that the 

surface maintains its roughness (or smoothness) as the scale increases. From our point of 

view, both interpretations have a strong argument because these techniques, scale matters. 

Despite similar theoretical foundations, the practical implementation of these methods is 

dependent on the physical nature of the investigated material. In order for future 

investigation of lava flow roughness, a comparison study of H estimation by use of 

different techniques (other than RMS) is recommended. This would bridge the knowledge 

gap between different scientific fields. 
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5 Concluding remarks 

In this thesis, several remote sensing techniques to derive physical properties of the 2014-

2015 Holuhraun lava flow field are explored. Data obtained during the eruption, infrared 

remote sensing based on Landsat 8 satellite images, was used to develop a new spectral 

index called the thermal eruption index (TEI) based on the SWIR and TIR bands that allow 

differentiating between thermal domains within the lava flow field. TEI detects hotspots 

with TEI > 0.10: this value indicates that the TEI method yields robust estimates of hotspot 

anomalies during the eruption. Two main thermal domains were distinguished within the 

lava flow field. The first is the active lava domain, which is characterized by high TEI 

(0.51). The second is the crust domain surrounding active lava, characterized by TEI below 

the active lava domain but exceeding the hotspot threshold (0.10–0.51). The result from 2 

December 2014 shows that satellite-derived temperature estimate (1096 ◦C; occupying 

area of 3.05 m
2
) from a lava breakout has a close correspondence with a thermal camera 

measurement (1047 ◦C; occupying area of 4.52 m
2
). Effect of lava surface roughness was 

also taken into account by using the Hurst coefficient (H) to deriving the radiant flux and 

the crust thickness. Where the higher H (smoother surface) reflects thinner crust 

meanwhile, the lower H (rough surface) will reflect thicker crust. Crust thickness in the 

lava channel during 6 September 2014 (~3.4–7.7 m) is comparable with the lava height 

measurement in the field (~2.6–6.6 m). The study also shows that the total radiant flux 

peak is underestimated in comparison to other studies (Bonny et al., 2018; Wright et al., 

2015), however, the trend is in good agreement with both field observation and other 

studies.  

In the post-eruption scenario, an application of potential spectral unmixing methods on the 

lava flow field was presented. In total, fifteen spectral endmembers and their abundances 

were acquired. The first endmember was chosen as the brightest pixel, which represented 

saturated incandescent lava. These 15 endmembers were grouped into six groups (basalt, 

oxidized surface, sulfate mineral, hot material, water, and noise) based on the similarity 

shape of the endmembers since the amplitude varies due to illumination conditions, 

spectral variability, and topography. The endmembers represent pure surface materials in a 

hyperspectral image. A combination of SMACC and LSMA methods offers an optimum 

and a method for fast selection and discrimination of volcanic product. However, ground-

truth spectra are recommended for further analysis. Synergistic use of airborne data from 

both FENIX (VIS-SWIR) and OWL (TIR) offers potential for lava surface discrimination 

in future, due to the complementary nature of the reflective (VIS-SWIR) and emissive 

(TIR) spectral regions. This might significantly improve our understanding of physical lava 

surface properties and emplacement stories of large lava fields.  

For the lava flow roughness, we perform both the topographic position index (TPI) and 

One-dimensional Hurst Exponent to derived lava flow unit roughness on the 2014-2015 

lava field at Holuhraun using both airborne LiDAR and photogrammetry topography 

datasets. The roughness assessment was acquired from four lava flow features: (1) spiny 

lava, (2) lava pond, (3) blocky surface, and (4) inflated channel. The TPI patterns on spiny 

lava and inflated channels show that the intermediate TPI values correspond to a small 

slope indicating a flat and smooth surface. Lava pond is characterized by low to high TPI 



34 

values and forms a wave-like pattern. Meanwhile, irregular transitions patterns from low to 

high TPI values indicate a rough surface that is found in blocky lava and flow margins. 

The surface roughness of these lava features falls within the H range of 0.30 ± 0.05 to 0.76 

± 0.04. The roughest surface is the blocky, and inflated lava flows appear to be the 

smoothest surface among these four lava units. In general, the Hurst exponent values in the 

2014-2015 lava flow field at Holuhraun has a strong tendency towards 0.5, which is in 

good agreement with earlier studies on geological surface roughness. These techniques 

could be used on any topographic surface, including terrestrial and planetary lava flow 

fields. The application of multi remote sensing techniques and datasets to derive physical 

properties of the 2014-2015 lava flow field at Holuhraun was successfully applied in this 

thesis.
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6 Synthesis 

The purpose of this chapter is to synthesize the key findings resulting from this study and 

to put them into a broader perspective. It is followed by putting the scientific work of this 

thesis in a broader context and closing with an outlook on future efforts on lava flow 

remote sensing.  

To summarize, the author employed multimodal remote sensing techniques and datasets to 

develop three studies; (1) deriving thermal properties from satellite infrared remote 

sensing, (2) differentiating lava surface using airborne hyperspectral remote sensing, and 

(3) quantifying lava surface roughness from elevation model acquired by airborne LiDAR 

and photogrammetry. In the first study, we present a new approach based on infrared 

satellite images to derive thermal properties within the lava field during eruption and then 

compare the results with field measurement during the eruption. In the second study, we 

focus on retrieving the lava surface types contributing to the signal recorded by airborne 

hyperspectral at the very top surface of the lava flow-field. In the third study, we perform a 

roughness assessment on the part of the lava flow field using both airborne LiDAR and 

photogrammetry topography datasets. These studies demonstrate the potential multimodal 

remote sensing data sets and techniques can be used for estimating properties of lava flow 

fields. Overall, this study provides an important application of remote sensing methods in 

the monitoring of growing lava flow fields. The application of the techniques can be useful 

in case of future events and for lava flow hazard assessment, simulation, and mitigation. 

However, physical modelling and assumption play a central role in extracting information 

with those techniques. Almost by definition, remotely sensed data must pass through the 

atmosphere on its path from the lava flow to the sensor, in this context also the part of 

atmospheric modelling needs to be considered. Different types of measurements are 

affected in different ways and by different components. Before accurate values of the 

required parameters can be obtained, these nuisance parameters must be accounted for 

using assumptions, external data, or more commonly modelled values (Davies et al., 2008; 

Harris, 2013a; Vaughan et al., 2003). Obtaining these parameters requires knowledge in 

the field and how to characterize parameters, what can we measure and what we need to 

assume. That means that more work integrating field knowledge with that of remote 

sensing will help us to better understand signals obtained during remote observations and 

thus enhancing our understanding of remote sensing. 

6.1 Future for remote sensing for the volcano, 

artificial intelligence, and new sensor? 

Retrieval of the physical properties of volcanic products has long been crucial for 

volcanologist since they play a pivotal role in eruption dynamics and could serve as 

parameters for future volcano hazard assessment. Once volcanic products, such as a lava 

flow, volcanic ash and gas are ejected, multimodal remote sensing plays an important role 

in terms of tracking their short-term impacts and assessing their long-term impacts. When 
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characterizing multimodal remote sensing attended for volcanology application, one must 

keep in mind that multimodal data differs according to sensors, resolutions, revisit cycle, 

spectrum, and mode of imaging. The increased use of multimodal remote sensing sensors, 

ranging from thermal, infrared, hyperspectral, multispectral, radar, LiDAR, optical video, 

etc., make it desirable to develop more methods for simultaneous use of multiple data 

sources to improve volcanic surveillance, mapping and physical information on products 

expelled in case of an eruption.   

Such datasets are getting larger since sensors are getting more robust and complicated. In 

order to handle such datasets, machine learning is an effective empirical approach to 

analyzing data from complex nonlinear systems. Such systems can be massively 

multivariate, involving a few or literally thousands of variables. As a broad subfield of 

artificial intelligence (AI), machine learning (ML) is concerned with algorithms and 

techniques that allow computers to “learn” by example and interpret the results. This will 

also enable an analysis of large areas on Earth and other planetary bodies. The major focus 

of machine learning is to extract information from acquired data automatically by using 

computational and statistical methods that have been correlated with the actual observed 

phenomenon. Over the last decade, there has been considerable progress in developing 

machine learning methodology for a variety of phenomenon, volcanological being on of 

more promising and high importance due to the similarity between volcanoes and hazard 

they pose to its surroundings (Anantrasirichai et al., 2019).  

In terms of volcanic products, machine learning has been applied to lava flow morphology, 

lava flow delineation, SO2 height retrieval and volcanic ash classification (Hajian et al., 

2019; Li et al., 2017; Maschmeyer et al., 2019; Waske et al., 2009). All these studies were 

focused on testing a single sensor (dataset), resulting in biased results. However, 

multimodal remote sensors might provide a solution to those biases. The integration of 

spectral information obtained by remote sensors with spatial, contextual, and structural 

information obtained by field measurement has demonstrated considerable improvements 

in achieving accurate interpretation and classification of observed phenomenon (Hajian et 

al., 2019). Future satellite missions and new sensors also will undoubtedly benefit us in 

term of dataset range and resolution. The invention of new and different sensors will 

provide new insight into the subject at study. Therefore, from the point of view of remote 

sensing future is bright, as is the future of knowledge on Earth natural processes and 

comparative studies. For the future of volcano remote sensing, volcanology, volcano 

hazard assessment and mitigation to the community, greater studies by remote sensors will 

surely be of benefit 
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Abstract: A new lava field was formed at Holuhraun in the Icelandic Highlands, north of Vatnajökull
glacier, in 2014–2015. It was the largest effusive eruption in Iceland for 230 years, with an estimated
lava bulk volume of ~1.44 km3 covering an area of ~84 km2. Satellite-based remote sensing is
commonly used as preliminary assessment of large scale eruptions since it is relatively efficient for
collecting and processing the data. Landsat-8 infrared datasets were used in this study, and we
used dual-band technique to determine the subpixel temperature (Th) of the lava. We developed a
new spectral index called the thermal eruption index (TEI) based on the shortwave infrared (SWIR)
and thermal infrared (TIR) bands allowing us to differentiate thermal domain within the lava flow
field. Lava surface roughness effects are accounted by using the Hurst coefficient (H) for deriving
the radiant flux (Φrad) and the crust thickness (∆h). Here, we compare the results derived from
satellite images with field measurements. The result from 2 December 2014 shows that a temperature
estimate (1096 ◦C; occupying area of 3.05 m2) from a lava breakout has a close correspondence with
a thermal camera measurement (1047 ◦C; occupying area of 4.52 m2). We also found that the crust
thickness estimate in the lava channel during 6 September 2014 (~3.4–7.7 m) compares closely with
the lava height measurement from the field (~2.6–6.6 m); meanwhile, the total radiant flux peak
is underestimated (~8 GW) compared to other studies (~25 GW), although the trend shows good
agreement with both field observation and other studies. This study provides new insights for
monitoring future effusive eruption using infrared satellite images.

Keywords: effusive eruption; Landsat-8; TEI; SWIR; TIR; Hurst coefficient; dual-band; radiant flux;
crust thickness

1. Introduction

Holuhraun is a lava field in the Icelandic Highlands, north of Vatnajökull (Figure 1). The 2014–2015
Holuhraun lava field was created by basaltic fissure eruptions [1,2]. The eruptions lasted from 31
August 2014 to 27 February 2015 and formed a lava flow field covering 84 km2, with a bulk volume of
1.44 km3 [1,2]. This eruption is the largest effusive eruption observed in the last 230 years in Iceland.
Field observation during the 2014–2015 eruption has been documented in detail, i.e., Pedersen et al. [1]
compiled a detailed evolution of the lava field and created a corresponding database containing
information of the lava flows. Most of these field observations are related to the modes of lava
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transport and emplacement and thermal camera measurement, along with the mapping of the flow
field growth and evolution [1,3]. This eruption offers an opportunity to improve our understanding of
large effusive eruptions using satellite-based remote sensing. Here we present a new approach based
on infrared satellite images to derive thermal properties within the lava field during eruption and then
compare the results with field measurement.
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Figure 1. The new Holuhraun lava field map by Icelandic Meteorological Office (after modification) [4].
The Holuhraun lava field is situated on the flood plain, which is situated south of Askja volcano and
north of Dyngjujökull, which is an outlet glacier from the Vatnajökull ice cap [1].

Study Area

Iceland is one of the most active volcanic regions on Earth; volcanic eruptions occur, on average,
every four to five years, and produce more than 5 km3 magma per century [5]. The 6-month long
eruption at Holuhraun 2014–2015 was the largest effusive eruption in Iceland in 230 years, with an
estimated bulk lava volume of about 1.44 km3. The 2014–2015 Holuhraun lava flows are emplaced on
the floodplain 0–6 km from the Dyngjajökull glacier (Figure 1) occupying a relatively flat area. The
eruption had an average discharge of about 77 m3/s, making it the longest effusive eruption observed
in modern times with such a flux [1,6]. According to the study of Pedersen et al. [1], the eruption was
divided into three phases based on the lava field evolution, as follows:

Phase 1: Open channel lava pathways: 31 August to mid-October (Figure 2a);
Phase 2: Lava pond formation: Mid-October to end-November (Figure 2b);
Phase 3: Tube-fed lava pathways: early December to 27 February (Figure 2c).

The first phase of the 2014–2015 Holuhraun eruption was dominated by open lava channels. This
phase had a discharge ~350–100 m3/s. The eruption began on a 1.8 km long fissure feeding up to
500 m wide, incandescent sheets of slabby pahoehoe [1,2]. Apart from fire fountaining in the first
few weeks, in 15 days, the volcanic activity had formed an open channels lava flow that advanced
17–18 km towards NNE and subsequently the lava morphology changed to rubbly and aa types [1,7].
The second phase had a discharge ranging from 50 to 100 m3/s [1,6]. During this time, a lava pond
<1 km2 was formed at a distance of 0.8 km east of the vents [1]. This pond became the main point of
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lava distribution, controlling the emplacement of the lava flows [1,2]. Towards the end of this phase,
the open channel in the first phase was inflated due to new lava injections into the previously active
lava channel lifting the channel [1]. The final (third) phase from December to the end of February had
a mean discharge <50 m3/s. In this phase, the lava transport was confined to closed lava pathways
within flows. Over 19 km2 of the flow field was resurfaced via surface breakouts from the closed
pathways [1].
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phase of eruption.

2. Infrared Remote Sensing in Volcanoes

Satellite-based infrared remote sensing data are increasingly being used to monitor active
volcanoes around the world [8–10]. Monitoring volcanoes by infrared remote sensing is essential to
improve understanding of active volcanoes. For example, thermal monitoring of volcanoes is necessary
in order to understand the volcanic eruption processes. Effusive eruption activity can change rapidly
over time as new lava flow form and develop. In many cases, thermal observations of active eruptions
from both ground and aircraft are risky and difficult, especially when the lava covers a large area.
Satellite-based remote sensing provides high temporal resolution infrared data that are suitable for
monitoring long effusive eruption such as in the new lava field at Holuhraun, Iceland. Such a tool
provides data in which effusive events are detectable and changes in the eruption style and evolution
of activity can be identified regardless of the coarse spatial resolution of the data [11]. Satellite-based
remote sensing can be used to monitor thermal activity within lava fields [9]. In the last 25 years,
there have been several methods that have been used for deriving eruption activity information from
infrared remotely-sensed data to estimate the thermal structures of hot volcanic features such as
active lava flows [12–16], heat flux [11,17,18], effusive rate [10,11,17,18] and crust thickness [10,11]. In
1981, Dozier [19] developed a method involving a solution of simultaneous equations that allows the
calculation of the ‘sub-pixel’ coverage and temperature of cool and hot components. This method is
called the dual-band method, and involves two distinct infrared bands to formulate a system of two
equations from the simultaneous solution of the Planck equation in each band as shown below:
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Rx = pR(λx, Th) + (1− p)R(λx, Tc) (1)

Ry = pR
(
λy, Th

)
+ (1− p)R

(
λy, Tc

)
(2)

where Rx and Ry are the radiances in bands x and y, respectively, (Wm−2 sr−1 m−1) after adjusting
for atmospheric effects and surface emissivity; p is the pixel portion occupied by the hot component;
R(λx, Th) and R

(
λy, Tc

)
are the radiances (Wm−2 sr−1 m−1) emitted for wavelengths λx and λy, at

surface temperatures Th (hot component) and Tc (cool component), respectively. The dual-band
method can be applied if the two bands of the short-wave infrared (SWIR) and the thermal infrared
(TIR) data are available [20], whereby any two of the unknowns, Tc, Th and p, can be estimated if
the third is assumed. This method has been successfully applied by several researchers [5–10,13,14].
Harris et al. and Lombardo et al. [11,16] used dual band method to retrieve the crust and the hot cracks
temperature for active lava flows in Mt. Etna. They used band 5 (1.55–1.75 µm) and 7 (2.08–2.35 µm)
from Landsat Thematic Mapper (TM) and assumed Th to estimate Tc and p. In this study, we develop
a new spectral index for Landsat 8, named the thermal eruption index (TEI), based on the SWIR and
TIR bands (bands 6 and 10). The purpose of the TEI consists mainly of two parts: (1) as a threshold for
differentiating between different thermal domains; and (2) applying a dual-band method to estimate
subpixel temperature within thermal domains and differentiating between the types of lava surface.
The active lava surface has thermal domain complexity and could contain more than one thermal
component [13,21]; here we use two thermal component scenarios, with Th as temperature of lava
surface and Tc as temperature surrounding the lava for different thermal domains. The remainder
of this manuscript is organized as follows. Section 3 describes the datasets and the preprocessing.
The proposed methodology for TEI, the dual-band method, the estimation of radiant flux (Φrad), and
the crust thickness model of lava flow (∆h) is explained in Section 4. We also discuss the effect of
lava surface roughness using Hurst coefficient (H) on Φrad and ∆h. Further results are arranged in
Section 5, and in Section 6 we give a brief discussion. In Section 7, we give a summary of our work.

3. Datasets and Preprocessing

3.1. Datasets

Remote sensing observations were made using Landsat 8 Level 1 product band 6 (1.56–1.66 µm)
and band 10 (10.60–11.19 µm). The eruption was well monitored from Landsat 8, and although Landsat
8 only has a temporal resolution of once every 16 days (making it of limited value for making time
series studies of the eruption), the spatial resolution makes it a good tool to derive thermal properties
within the lava flow. Landsat 8 has different spatial resolution for band 6 and band 10: band 6 has
30 m spatial resolution and band 10 has 100 m spatial resolution (resampled to 30 m). The selection of
band 6 and 10 are considered to minimize oversaturation effects over active lava flows. According
to Blackett [22], Landsat 8 has an enhanced dynamic range compared to Landsat ETM+: this means
that temperatures of up to 747.9 K can be detected without saturation in band 6 as compared with
those for the corresponding ETM+ band 724.5 K. Acquisition dates are selected according to the
availability and quality of data covering the eruption (Table 1), we only took the data where cloud
coverage is minimal. The data can be downloaded from the U.S Geological Survey (USGS) website
(https://earthexplorer.usgs.gov). In our work, we subset Landsat 8 images into 562 by 333 and then
converted the satellite-recorded digital numbers (DN) to sensor radiance for both SWIR and TIR
bands. In this study, we use radar Sentinel 1A data from 18 October 2014 to derive Hurst coefficient
from the lava. This data represents roughness of the lava and can be downloaded from the website
(https://scihub.copernicus.eu/dhus/#/home). We also use thermal camera (FLIR) measurement
during 2 December 2014 that overlaps with the satellite data and theodolite lava height measurement
in the field for result comparison.

https://earthexplorer.usgs.gov
https://scihub.copernicus.eu/dhus/#/home
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Table 1. Product ID and the dates of the Landsat 8 datasets that were used in this study.

Product ID Date

LC82170152014249LGN00 6 September 2014
LC82180142014272LGN00 29 September 2014
LC82180142014288LGN00 15 October 2014
LC80642292014297LGN00 24 October 2014
LC80642302014329LGN00 25 November 2014
LC80652292014336LGN00 2 December 2014
LC80652292014352LGN00 18 December 2014
LC80652292015003LGN00 3 January 2015
LC82180142015035LGN00 4 February 2015

3.2. Atmospheric and Emissivity Correction

The MODTRAN model atmosphere is used for atmospheric correction in this study [13,23]. Since
emissivity and atmospheric effects will vary by wavelength [20], corrections are needed for both SWIR
and TIR as follows:

RSWIR = [L(λSWIR)− LR(λSWIR)]/τ ε (3)

RTIR = [L(λTIR)− LU(λTIR)]/τ ε (4)

where RSWIR and RTIR are the corrected spectral radiances at wavelength λSWIR and λTIR, respectively,
L(λSWIR) and L(λTIR) are the spectral radiances at the sensor, LU(λTIR) is the atmospheric upwelling
radiance, LR(λSWIR) is the atmospheric reflected radiance, τ is atmospheric transmissivity, and ε is the
surface emissivity. In this case, we set the emissivity at 0.97 for the Holuhraun basaltic lava. RSWIR

and RTIR will be used in Sections 4.1 and 4.2 both as an input for the calculation of TEI and for the
dual-band method.

4. Method

4.1. Thermal Eruption Index (TEI)

In this study, TEI is developed by using the SWIR and the TIR bands from the medium spatial
resolution satellite Landsat 8. The method uses the sensitivity difference between SWIR (band 6) and
TIR (band 10) to detect pixel hot spots instead of using mid-infrared (MIR) as in NTI (Normalized
Thermal Index) [22,24]. The objective of TEI is to provide a new variant for a hotspot thermal index
derived by using data from the medium spatial resolution satellite Landsat 8. We derive TEI based on
image observation and define the empirical formula for this observation. TEI is based on the principle
that the SWIR spectral radiance (RSWIR) on the crust will be less than in the TIR spectral radiance (RTIR)
and vice versa on the active lava (RSWIR > RTIR) as shown in Figure 3a. Figure 3b shows band 6 and
band 10 of Landsat 8 from the 6 September 2014 Holuhraun eruption, the active lava pixels are emitting
more spectral radiance in both band 6 and band 10; meanwhile the crust pixels are emitting more
spectral radiance only in TIR. Therefore TEI has higher values in the active lava than in crust. This
index uses the square of the TIR spectral radiance and the maximum of the SWIR spectral radiance to
differentiate between the thermal domains. TEI is expressed as

TEI =
RSWIR − (RTIR)

2

10 RSWIR MAX

RSWIR + (RTIR)
2

10 RSWIR MAX

(RTIR)
2

(RSWIR MAX
3 )

2 (5)

where RSWIR and RTIR are the pixel corrected spectral radiances detected in the band 6 and band 10,
respectively and RSWIR MAX are the maximum spectral radiances detected in band 6 for each scene. In
this study, we applied the dual band method to automatically calculate the hot component temperature
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within the region defined by the hotspot threshold (TEI > 0.10). This selected value is explained in
more detail in Sections 5.1 and 5.3.
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Figure 3. RSWIR and RTIR from Landsat 8 of the lava flow at Holuhraun, Iceland, on 6 September 2014.
(a) Spectral radiances plot of SWIR (Band 6 and 7)–TIR (Band 10 and 11) and thermal mix model (hybrid
Planck curve for the mixed pixel) (b) the band 6 detects the emissions from active lava (yellow-orange
color); band 10 detects the emissions both from active lava and crust (red-green color).

4.2. Dual-Band Method

The dual-band method relies on a system of two equations (Equations (1) and (2)) and requires
the assumption of one of three unknowns, Th, Tc and p. In term of this study, we consider that Th
relates to the temperature of recently active lava and recently crusted lava, while Tc relates to the
surrounding temperature that is influenced by the eruption processes (Figure 4). both of these can be
assumed; meanwhile, p is typically difficult to assume accurately and therefore has to be derived [22].
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Figure 4. The pixel mixture of the cool and the hot components. The region defined by the hot
component temperature (Th) has pixel portion (p) and the region defined by the cool component
temperature (Tc) has pixel portion (1-p): (a) A picture taken by Armann Hoskuldsson in Holuhraun,
in 13 September 2014 showing the hot and the cool components; (b) The model of Landsat 8 mixed
thermal pixel with 30 m pixel resolution.

In this study, we set Tc equal to the lowest brightness temperature detected in TIR for each thermal
domain considered, with Tc = 25 ◦C in the surrounding warm crust, Tc = 50 ◦C in the surrounding
hot crust, and Tc = 85 ◦C in the active lava. These assumptions will be suitable in situations where
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different thermal domains (active lava and crust) within the lava flow are clearly separable. We solve p
by iterating on Th, until p(RSWIR) = p(RTIR) then we can rearrange Equations (1) and (2) into

p(RSWIR) =
RSWIR − R(λSWIR, Tc)

R(λSWIR, Th)− R(λSWIR, Tc)
(6)

p(RTIR) =
RTIR − R(λTIR, Tc)

R(λTIR, Th)− R(λTIR, Tc)
(7)

4.3. Radiant Flux Estimation

Radiation is the most direct heat flux to estimate. For rough lava surface (aa and brecciated
surface), not all the radiation can escape from the lava surface because of surface scattering. Therefore,
in this paper, we propose to use the Hurst coefficient (H) [25,26] to describe the surface roughness of
lava, so that the actual radiation emitted is reduced due to the fractal model. Following this model, the
radiant flux (Φrad) for each pixel that contains lava can be estimated as

Φrad = εσHATe
4 (8)

where Φrad is the radiant flux (W), σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4), and
A is the Landsat 8 pixel area, which is 900 m2. In this approach, we use the effective temperature
model (Te), expressed as

Te =
(

pTh
4 + (1− p)Tc

4
)1/4

(9)

which is the average surface temperature of lava for the two thermal components present on the lava
flow surface [27,28]. H is the Hurst coefficient (0 < H < 1), where a higher H means a smoother surface.
We set H for each thermal domain within lava field as shown in Table 2, these values were derived
from radar image speckle pattern transect (H’) [29] and we normalized with 0.5 according the study
by Shepard et al. [30]. Further details about the derivation of H from radar image are explained in
Appendix A.

Table 2. The values of the Hurst coefficient for different thermal domains.

H’ H (after
Normalized) Description Thermal Domain

0.43 0.21 Very rough surface (Aa flow, large,
tilted, spinny pates [30]). Warm crust

0.70 0.35 Rough surface (Aa flow, small spinny
plates [30]). Hot crust

0.89 0.44 Smooth surface (Sheet pahoehoe flow,
channel, roppy structure [30]). Active lava

4.4. Convective Flux Estimation

Convective flux (Φconv) is estimated for the entire lava-flow field with a similar approach as
above for Φrad, i.e., given surface temperature Te and surfaces roughness H, Φconv is calculated using
the free convection formula given by [11,14] which is given by

Φconv = AhcH(Te − Ta) (10)

where the unit of Φconv is W, hc = 5 W m−2 K−1 is the heat transfer coefficient for free convection [11],
and Ta is the ambient air temperature that is unaffected by eruption processes. In this work we use
Ta = 25 ◦C.
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4.5. Crust Thickness Model

The crust thickness ∆h is calculated by assuming that the conductive flux density across the
surface crust is equal to the total of the radiative and convective flux densities leaving the same surface
of lava [20,23], so that

Mrad + Mconv = −k
Ti − Te

∆h
(11)

Then, re-arranged for ∆h:

∆h = −k
∆T

Mrad + Mconv
(12)

where ∆h is the crust thickness (m), Mrad and Mconv are radiative and convective flux densities
(W m−2), respectively, k is the thermal conductivity, where we use 2.5 Wm−1 K−1 [14,31], and Ti is
the temperature of the lava flow interior. In this study, we use an interior temperature of 1128 ◦C
(for lava outside vent) and 1200 ◦C (for lava surrounding vent); these values were selected according
to thermocouple measurements for freshly exposed patches of lava in Holuhraun on the 19 and 20
November 2014 [3]. Mrad and Mconv are obtained by dividing Φrad and Φconv by the pixel area A.
Figure 5 depicts the physical meaning of ∆h [10,20]. On rough surface (aa and brecciated surface) ∆h
is the thickness of the thermal boundary beneath a thermally mixed surface rubble [10,20]. Meanwhile,
since there is no surface rubble in smooth surface (brittle layer and thin), we can assume that ∆h is the
complete thickness of the thermal boundary of the lava surface [10,20].
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Figure 5. Conductive model of the surface of lava and the basal thermal boundary layers for (a) an
active smooth surface lava flow and (b) a crusted rough surface lava flow. (Adapted and modified
from Harris [20] p. 222).

5. Results

5.1. TEI Hotspots Anomaly

We detected different types of hotspots associated with the 2014–2015 Holuhraun eruption by
using TEI. In this section, we review some of these results to illustrate the utility of the TEI for
differentiating thermal anomalies within the lava field. As noted in Section 4.1, TEI detects hotspots
with TEI > 0.10, but it does not discriminate between the different types of the hotspot domains that
occurs in the lava field. As a result, the interpretation can be difficult, as the active lava, hot crust
and warm crust could be mistaken for eruptive activity. Therefore, accurate lava evolution where the
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hotspots occur becomes critical for determining the domain of TEI anomaly. Thus, we selected the
image from 6 September 2014 to assess the TEI value, since the image has a clear difference between
active lava and recently emplaced crust. Figure 6a shows the spatial distribution of TEI on 6 September
2014. In general, TEI values detect hotspots in the range from 0.10 to 0.53. We distinguish the two main
thermal domains within the lava flow field. The first is the active lava domain, which is characterized
by high TEI. The second is the crust domain surrounding active lava, characterized by TEI below active
lava domain but exceeding the hotspot threshold (>0.10). Figure 6b shows that the active lava domains
have TEI value of >0.51: this value is related to high emitted radiance in SWIR and TIR, whilst crust
domains have value ranging from 0.10 to 0.51. The crust zone itself is divided into two sub-domains:
(1) hot crust domain, having values ranging from 0.21 to 0.51; (2) warm crust domain, having values
ranging from 0.10 to 0.21, This also can be seen during 29 September and 24 October (See Appendix B).
Clearly, TEI allows better discrimination within the lava flow; active lava, crust and non-volcanic
hotspot, offering the possibility that different mode of lava flows can be automatically discriminated
based of TEI threshold as will be discussed in Section 5.3.
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formed thick crust, as lava cools the crust component increases and progressively thickens from the 
vent towards the distal end. Such results are broadly consistent with observed emplacement 
processes of aa flows on the 6 September 2014. The result points out that lowest p (0.10–0.17%) of a 
pixel), equivalent to 0.90–1.53 m2, can be occupied by small freshly exposed lava patches or breakouts; 
this will be discussed further in Section 6. 

Figure 6. (a) Spatial distribution of thermal eruption index (TEI) during the 6 September 2014 eruption:
the four white dots show the location of the vents during the first phase of eruption [1]: (b) TEI
differentiates four different thermal domains within the Holuhraun lava flow on 6 September 2014.
TEI allows the active lava domain to be distinguished from crust domain and the non-volcanic
hotspot domain.

5.2. Spatial Distribution of Th and p

Table 3 shows the hot component temperature (Th) and the pixel portion of the hot component
(p) computed by using the TEI based dual band-method for nine Landsat 8 time series during the
eruption. Our solutions of Th ranges between 344 ◦C and 1208 ◦C, and p ranges between 0.10 and 13%
with an average of 769 ◦C and 1.5%, respectively. Figure 7 shows the spatial distribution map of Th,
and p obtained from the Landsat 8 time series. The highest Th and lowest p mostly relate to active
lava locations such as channels, lava ponds and breakouts. Meanwhile, the lowest Th and highest p
corresponds to crust zone in the edge of active lava and flow fronts that indicates lava cooling and
formed thick crust, as lava cools the crust component increases and progressively thickens from the
vent towards the distal end. Such results are broadly consistent with observed emplacement processes
of aa flows on the 6 September 2014. The result points out that lowest p (0.10–0.17%) of a pixel),
equivalent to 0.90–1.53 m2, can be occupied by small freshly exposed lava patches or breakouts; this
will be discussed further in Section 6.
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Table 3. Maximum, minimum and mean Th, p, and TEI values derived from the Landsat 8 time series.

Date Th min
(◦C)

Th max
(◦C)

Th average
(◦C) p Min p Max p

Average TEI Min TEI Max

6 September 2014 346 1185 685 0.14% 13% 2.2% 0.102 0.53
29 September 2014 442 1199 885 0.10% 6% 1% 0.100 0.53

15 October 2014 526 1195 816 0.11% 5% 1.2% 0.101 0.53
24 October 2014 347 1195 705 0.13% 13% 2% 0.100 0.53

25 November 2014 392 1201 901 0.11% 7% 0.08% 0.102 0.53
2 December 2014 368 1208 770 0.10% 10% 1.4% 0.101 0.53

18 December 2014 358 1191 677 0.17% 10% 2.1% 0.100 0.53
3 January 2015 344 1176 689 0.15% 13% 2% 0.102 0.53

4 February 2015 487 1154 790 0.12% 4% 1% 0.101 0.53
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Figure 7. Spatial distribution map of Th and p during 2014–2015 Holuhraun eruption: (a) 6 September
2014; (b) 29 September 2014; (c) 15 October 2014; (d) 24 October 2014; (e) 25 November 2014;
(f) 2 December 2014; (g) 18 December 2014; (h) 3 January 2015; and (i) 4 February 2015. White dot show
vent locations.

5.3. Trend Th vs. p and TEI

We plotted Th as a function of p and TEI, respectively for 6 September 2014, as shown in Figure 8a,b,
respectively. The scatter plot of Th vs. p shows a logarithmic decrease in Th as p increases: this means
that the higher the temperature, the smaller the pixel portion. This general trend is in good agreement
with theoretical models [13,14,16,21]. There are three sub-trends (x, y and z) identified on the scatter
plots (Figure 8a,b), and these sub trends allow for classification of lava thermal domain as shown in
Figure 8c. The same trends are observed on open channel flow during 29 September and 24 October
(See Appendix C). This classification shows that the active lava domain is associated with Th in the
range 901–1208 ◦C and p in the range 0.1–0.13% with TEI > 0.51, while the hot crust domain is in the
range of 400–900 ◦C and p in the range of 0.20–7.5% with TEI 0.21–0.51 and warm crust domain is
in the range of 346–750 ◦C and p is in the range of 0.30–13% with TEI 0.10–0.22. This classification
result has good agreement with lava flow field observations. In Figure 8a, we observe a nearly linear
decrease for sub-trend x; on the other hand, the scatter plot associated with sub-trend y and z show
logarithmic decrease as in the general trend. The scatter distribution for sub-trend x has its support in
region enclosed by Th between 901 and 1185 ◦C and p between 0.10% and 1.30%. For sub-trend y, Th
ranges between 400 and 900 ◦C while p in the range 0.10–7.5% and for sub-trend z, Th ranges between
346 and 750 ◦C while p remains in the range 0.10–13%. These trends are also apparent in scatter plots
of Th versus TEI. The trends show large variation in Th within the subtrends. Examination of the
scatter distribution for sub-trend y exhibits wide range of Th (346–1150 ◦C) being associated with a
range 0.10–0.21 of TEI. For sub-trend z, Th ranges between 400 and 1160 ◦C while TEI is in the range
0.21–0.51. Meanwhile for sub-trend x, Th ranges between 901 and 1185 ◦C while exhibiting narrow
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range of TEI between 0.51 and 0.53. One can note from these results that maximum Th could occur in
TEI < 0.51. This can happen for several reasons: (a) The effect of plumes from the eruption that mix
within the lava pixels. This means that, due to the sensibility of band 6 [32], the plume was detected as
high radiance in band 6. This makes TEI > 0.1 (hotspot threshold) and the dual-band produces very
high temperatures, while TEI < 0.51: (b) A different spatial resolution between band 6 (30 m) and band
10 (100 m) causes lower TEI value due to the small fragments of high emission lava in band 6 that is
not detected in band 10.
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5.4. Radiant Flux Time Series during 2014–2015 Holuhraun Eruption

Figure 9 depicts the temporal evolution of the radiant flux (total energy radiated) for nine
observations of the 2014–2015 Holuhraun effusive eruptions. As mentioned in Section 3.1, Landsat 8
has limited value for making time series studies of the eruption, since the temporal resolution is low
and there are quite a lot of flux gaps. However, the trend shows good agreement with results from
MODIS done by Wright et al. [33] during the first 101 days of eruption, although our total radiant
flux peak is underestimated compared to Wright et al. [33] since we consider the effect of the Hurst
coefficient (H) parameter that affects the total flux value (discussed in Section 6). The maximum
peak detected is on day 7 of the eruption (6 September 2014), with a total flux of 7.8 GW, and then it
continues to decline until it reaches a low level of 1.6 GW on day 46 before it rises again to a new peak
of 3.2 GW on day 55. It then decreases to a new low on day 87 with 1.3 GW and then it increases to a
new peak on day 110 with 1.6 GW. Then, it continues to decrease until day 158 with 0.2 GW, indicating
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that the eruption has almost stopped. This total flux peak trend is also in good agreement with field
observations [1,2]: the first phase of eruption is related to the evolution of the vent system from a
fissure with discrete vents distributed along the length of the fissure (day 7) decreasing in number
with time to eruption from a single source vent (day 30) and formed a lava pond in the second phase
(day 46) (Figure 7a–c). Then, on day 55, the pond becomes the main lava distributor and the pond
size continues to decrease [1,2] until the final phase of eruption starts on day 110 (Figure 7d–f). In the
final phase of eruption, during days 110, 126 and 158, the flow field was mostly formed via surface
breakouts [1,2] until the eruption stopped (Figure 7g–i).
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Figure 9. Time series of the total radiant flux estimated from Landsat 8 for the 2014–2015
Holuhraun eruption.

5.5. Crust Thickness Model of Lava Flow

Figure 10a shows the crust thickness estimate of lava flow for 6 September 2014. The thickness
estimates range from 2 to15 m. The thickest crust is located along the edge of lava flow and in lava
flow front. Meanwhile the thinnest part is mostly located in the active lava flow (lava channel and
breakouts). This result also has a good agreement with Rossi et al. [34] that shows using TanDEM-X
data, that the thickness in the lava field ranges between 0 and15 m during 9 September 2014 with
the thicker part along the edge and the thinner parts in the middle of the channel. For comparison,
15 points of lava height measurement were done using Theodolite during 3 to 4 September 2014
(location measurement points are in Appendix D). Figure 10b shows the comparison between thickness
measurement from the field and the satellite derived estimate. We found that the ground-based
thickness measurement are closer to the satellite derived estimates in the middle of lava channel.
Meanwhile, along the edge of lava flow, the satellite derived thickness estimates are thicker than
the ground-based measurements. Presumably, this is because the lava in the edge cools down and
fully develops into crust on satellite, since there are temporal gaps between the field observations
and the satellite derived estimates. On the other hand, the lava in the middle of the channel is still
active and has not completely cooled, and this leads to small thickness difference between the field
measurement and the satellite derived estimates. We also note that we only derive the crust thickness
and not complete thickness of the lava, since there are still have fluid interior layer beneath the crust,
especially for active lava flow, as seen in Figure 5.
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different Tc setting for each domain to derive sub pixel temperature using the dual-band method. 
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approximation to the thermal model when only two infrared bands are available. Figure 11a,b show 
comparison of active lava temperature obtained from satellite and forward looking infrared (FLIR) 
camera measurements during 2 December 2014 lava breakout in 64°54.644’N, 16°42.931’W. This 
comparison shows a good agreement for both satellite and field measurements. Satellite 

Figure 10. (a) Crust thickness estimate derived from Landsat 8 by using the dual-band method during
the eruption on 6 September 2014 (The black box shows the location of the field measurement; further
details are given in Appendix D); (b) Thickness comparison between the satellite derived estimates
and field measurements.

6. Discussions

In Section 5.1 , Sections 5.2 and 5.3, we have used TEI to automatically detect and derive thermal
properties from infrared remotely-sensed data within the hotspot region defined by TEI > 0.10. This
value provides encouragement that the TEI method yields robust estimates of hotspot anomalies
during eruption. On the other hand, differentiating between thermal domains offers new possibilities
to use different Tc setting for each domain to derive sub pixel temperature using the dual-band
method. However, as explained by Lombardo and Buongiorno [13], the dual-band method provides a
rough approximation to the thermal model when only two infrared bands are available. Figure 11a,b
show comparison of active lava temperature obtained from satellite and forward looking infrared
(FLIR) camera measurements during 2 December 2014 lava breakout in 64◦54.644’N, 16◦42.931’W. This
comparison shows a good agreement for both satellite and field measurements. Satellite measurement
yields Th of 1096 ◦C in an area of 3.05 m2 which is 0.33% of the pixel size, meanwhile FLIR shows a
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maximum temperature around 1047 ◦C for an area of 4.52 m2. However, this comparison is a rough
estimation, since the temperature is not uniform within the active lava. Therefore, we recommend
further improvement by using more than two thermal components. We also performed an experiment
to study the effect of different Tc on Th for different thermal domains in this area. Figure 12 shows a
logarithmic increase in Th as Tc increases [28]; therefore, Tc is an important parameter for deriving
precise temperature estimates from the dual-band method.
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In Sections 5.4 and 5.5, we found that both the radiant flux estimate and crust thickness estimate
agree closely with the field observations trends. In Figure 13a,b, we conduct an experiment by varying
H: for very rough lava (H = 0.3), rough lava (H = 0.7) and perfectly smooth lava (H = 1). Smoother
lava will produce the highest total radiant flux, but on the other hand, the crust becomes thinner. The
higher H (0.7–1) agrees with the radiant flux peak result of Wright et al. [33] (~25 GW), since the effect
of surface roughness are not accounted in their study. Interestingly, in the channel and northern part of
the crust (Figure A4, points 1 to 6) results are produced that are closer to the field measurements; this
means that the lava in those thermal domains is mostly dominated by rough surface (lower H). This is
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in good agreement with field observations that show that brecciated surface is dominant in Holuhraun.
Meanwhile, the southern part of the crust (Figure A4, points 10 to 15) is overestimated, which means
that the H is higher (smoother surface) than we estimate. Simply, as we mentioned earlier, this is
due to the temporal gap between field measurement and satellite. In Figure 14a,b, it is shown that
the temperature of the channel decreases with distance from the vents and crust thickness increases
from the vents on 6 September 2014 (Figure 7a); This trend has good agreement with past work from
Oppenheimer during the Lonquimay eruption (Chile, 1989) [10] which showed such trends. However,
the H parameter is still open for discussion, and we recommend performing an alternative method to
determine H (e.g., airborne light detection and ranging (LIDAR) and terrestrial laser scanning) and
varying H based on LIDAR model during future eruption in order to get a better estimate.
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7. Conclusions 

In this paper, we introduce a new spectral index called the thermal eruption index (TEI) based 
on the SWIR and TIR bands, allowing us to differentiate thermal domains within the lava flow field. 
TEI detects hotspots with TEI > 0.10: this value provides encouragement that the TEI method yields 
robust estimates of hotspot anomalies during eruption. Two main thermal domains were 
distinguished within the lava flow field. The first is the active lava domain, which is characterized by 
high TEI (0.51). The second is the crust domain surrounding active lava, characterized by TEI below 
active lava domain but exceeding the hotspot threshold (0.10–0.51). The result from 2 December 2014 
shows that a temperature estimate (1096 °C; occupying area of 3.05 m2) from a lava breakout has a 
close correspondence with a thermal camera measurement (1047 °C; occupying area of 4.52 m2). This 
paper also considered effect of lava surface roughness effects by using the Hurst coefficient (H) for 
deriving the radiant flux (Φ_rad) and the crust thickness (Δh), where the higher H (smoother surface) 
produce thinner crust meanwhile the lower H (rough surface) will produce thicker crust. Crust 
thickness in the lava channel during 6 September 2014 (~3.4–7.7 m) compares closely with the lava 
height measurement from the field (~2.6–6.6 m); meanwhile, the total radiant flux peak is 
underestimated (~8 GW) compared to other studies (~25 GW), although the trend shows good 
agreement with both field observation and other studies. These results show that the proposed 
techniques were successfully applied to Landsat 8 on SWIR and TIR datasets from 2014–2015 
Holuhraun eruptions. In future work, the proposed methods will be applied to other 
satellite/airborne datasets which have both SWIR and TIR band and consider alternative method to 
determined H (e.g., airborne LIDAR and terrestrial laser scanning). This study provides new insights 
for monitoring future effusive eruption using infrared satellite images. 
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7. Conclusions

In this paper, we introduce a new spectral index called the thermal eruption index (TEI) based on
the SWIR and TIR bands, allowing us to differentiate thermal domains within the lava flow field. TEI
detects hotspots with TEI > 0.10: this value provides encouragement that the TEI method yields robust
estimates of hotspot anomalies during eruption. Two main thermal domains were distinguished within
the lava flow field. The first is the active lava domain, which is characterized by high TEI (0.51). The
second is the crust domain surrounding active lava, characterized by TEI below active lava domain but
exceeding the hotspot threshold (0.10–0.51). The result from 2 December 2014 shows that a temperature
estimate (1096 ◦C; occupying area of 3.05 m2) from a lava breakout has a close correspondence with a
thermal camera measurement (1047 ◦C; occupying area of 4.52 m2). This paper also considered effect
of lava surface roughness effects by using the Hurst coefficient (H) for deriving the radiant flux (Φ_rad)
and the crust thickness (∆h), where the higher H (smoother surface) produce thinner crust meanwhile
the lower H (rough surface) will produce thicker crust. Crust thickness in the lava channel during
6 September 2014 (~3.4–7.7 m) compares closely with the lava height measurement from the field
(~2.6–6.6 m); meanwhile, the total radiant flux peak is underestimated (~8 GW) compared to other
studies (~25 GW), although the trend shows good agreement with both field observation and other
studies. These results show that the proposed techniques were successfully applied to Landsat 8 on
SWIR and TIR datasets from 2014–2015 Holuhraun eruptions. In future work, the proposed methods
will be applied to other satellite/airborne datasets which have both SWIR and TIR band and consider
alternative method to determined H (e.g., airborne LIDAR and terrestrial laser scanning). This study
provides new insights for monitoring future effusive eruption using infrared satellite images.
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Appendix A

We derived the Hurst coefficient (H) using rescaled range analysis, known as the R/S
technique [29], from a radar signal backscattering transects (H’). In this study we use Sentinel 1A VH
polarization data that have been calibrated, speckle filtered and terrain corrected. Equation (A1) below
models the relation between R/S and H’ as

H′ =
log(R

S )

log(τ)
(A1)

where R is the maximum and minimum value detected in the transect, S is the standard deviation of
the time series, and τ is the measured time period. Here, we assume that surface roughness represents
the lava thermal domain, active lava is smooth, hot crust is rough, and warm crust domain is very
rough. This situation also can be seen clearly in radar backscattering on 18 October 2014 (Figure A1A).
The lava channel has low backscattering (dark signal) due to smooth surface, on the other way very
rough lava has strong backscattering (bright signal). We pick random transects from Figure A1A that
represent the roughness shown in Figure A1B. These transect lines are then used to derive H’. We
normalized H’ by multiplying it by 0.5, since the study from Shepard et al. [30] shows that geological
surface has a strong tendency to cluster around H = 0.5. According to this technique active lava has
H = 0.44, hot crust has H = 0.35 and warm crust has H = 0.21.
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Figure A1. (A) Sentinel 1A VH polarization backscattering from 18 October 2014. The red, yellow and 
green transect represent smooth, rough and very rough surface, respectively; (B) Transect and Hurst Figure A1. (A) Sentinel 1A VH polarization backscattering from 18 October 2014. The red, yellow and

green transect represent smooth, rough and very rough surface, respectively; (B) Transect and Hurst
coefficient that are derived from (A). According to this technique active lava has H = 0.44, hot crust has
H = 0.35 and warm crust has H = 0.21.
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Appendix B

Figure A2A–D show TEI anomaly on open channel flow during 29 September and 24 October.
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Figure A2. (A) Spatial distribution of TEI during 29 September 2014 eruption; (B) TEI differentiates
four different thermal domains within the Holuhraun lava flow at 29 September 2014. TEI allows
the active lava domain to be distinguished from crust domain and the non-volcanic hotspot domain.
(C) Spatial distribution of TEI during 24 October 2014 eruption (D) TEI differentiates four different
thermal domains within the Holuhraun lava flow at 24 October 2014. TEI allows the active lava domain
to be distinguished from crust domain and the non-volcanic hotspot domain.

Appendix C

Here we plot Th as a function of p and TEI with classification, respectively for 29 September 2014
and 24 October 2014, as shown in Figure A3A–F.
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Figure A3. (A) Scatter plot of Th vs. p ; (B) Scatter plot of Th vs. TEI; (C) classification of lava thermal 
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Appendix D 

The locations of the thickness measurement points are shown in Figure A4, where the arrows 
represent the order of points. The measurements were done using theodolite with certain distance 
and dates for each points. Table A1 shows the detailed acquisition from Figure A4 and a comparison 
with the satellite derived crust thickness estimate on 6 September 2014. 

 

Figure A4. The Location of thickness measurement points, the arrows represent the order of points 
from 1 to 15. 

Table A1. Detail of the lava height measurement during 3–4 September 2014 and a comparison with 
satellite derived crust thickness measurement on 6 September 2014. 

Points Height Crust Thickness in 
6 September 2014 from Satellite 

Distance
Points to Lava Date 

1 5.47336 11.9 72 2014-09-03T08:39:40Z 
2 11.76946 10.5 144 2014-09-03T07:59:53Z 
3 9.24672 10.29 144 2014-09-03T07:59:53Z 
4 7.573852 10.47 84 2014-09-03T08:15:07Z 
5 7.993413 9.6 90 2014-09-03T08:20:59Z 

Figure A3. (A) Scatter plot of Th vs. p ; (B) Scatter plot of Th vs. TEI; (C) classification of lava thermal
domain on 29 September 2014; (D) Scatter plot of Th vs. p ; (E) Scatter plot of Th vs. TEI; (F) classification
of lava thermal domain on 24 October 2014.
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Appendix D

The locations of the thickness measurement points are shown in Figure A4, where the arrows
represent the order of points. The measurements were done using theodolite with certain distance and
dates for each points. Table A1 shows the detailed acquisition from Figure A4 and a comparison with
the satellite derived crust thickness estimate on 6 September 2014.
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Table A1. Detail of the lava height measurement during 3–4 September 2014 and a comparison with
satellite derived crust thickness measurement on 6 September 2014.

Points Height
Crust Thickness
in 6 September

2014 from Satellite

Distance Points to
Lava Date

1 5.47336 11.9 72 2014-09-03T08:39:40Z
2 11.76946 10.5 144 2014-09-03T07:59:53Z
3 9.24672 10.29 144 2014-09-03T07:59:53Z
4 7.573852 10.47 84 2014-09-03T08:15:07Z
5 7.993413 9.6 90 2014-09-03T08:20:59Z
6 6.618929 7.76 35 2014-09-03T08:25:16Z
7 5.647851 5.6 41 2014-09-03T08:32:52Z
8 4.018422 4.33 21 2014-09-04T07:52:11Z
9 2.676691 3.4 13.3 2014-09-04T07:44:08Z
10 6.007832 6.6 34.1 2014-09-04T07:35:15Z
11 3.691354 7.6 16.7 2014-09-04T07:27:34Z
12 4.269408 11.59 17.4 2014-09-04T07:16:23Z
13 4.651991 12.5 23.7 2014-09-04T07:11:51Z
14 5.230504 12.2 24.5 2014-09-04T07:03:49Z
15 4.36857 12.8 20 2014-09-04T06:57:22Z
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Abstract: The Holuhraun lava flow was the largest effusive eruption in Iceland for 230 years, with
an estimated lava bulk volume of ~1.44 km3 and covering an area of ~84 km2. The six month long
eruption at Holuhraun 2014–2015 generated a diverse surface environment. Therefore, the abundant
data of airborne hyperspectral imagery above the lava field, calls for the use of time-efficient and
accurate methods to unravel them. The hyperspectral data acquisition was acquired five months after
the eruption finished, using an airborne FENIX-Hyperspectral sensor that was operated by the Natural
Environment Research Council Airborne Research Facility (NERC-ARF). The data were atmospherically
corrected using the Quick Atmospheric Correction (QUAC) algorithm. Here we used the Sequential
Maximum Angle Convex Cone (SMACC) method to find spectral endmembers and their abundances
throughout the airborne hyperspectral image. In total we estimated 15 endmembers, and we grouped
these endmembers into six groups; (1) basalt; (2) hot material; (3) oxidized surface; (4) sulfate mineral;
(5) water; and (6) noise. These groups were based on the similar shape of the endmembers; however,
the amplitude varies due to illumination conditions, spectral variability, and topography. We, thus,
obtained the respective abundances from each endmember group using fully constrained linear spectral
mixture analysis (LSMA). The methods offer an optimum and a fast selection for volcanic products
segregation. However, ground truth spectra are needed for further analysis.

Keywords: hyperspectral; FENIX; lava field; SMACC; LSMA

1. Introduction

Lava flow emplacement is an important constructive geological process that contributes to
reshaping natural landscapes [1–3]. To assess the hazards and long-term impacts posed by lava flows,
it is vital to understand aspects such as the return period of effusive eruptions, to map the areas covered
by eruptions in the past and to characterize the evolution of lava flow surfaces after emplacement [4,5].
In high eruption frequency areas, lava flows often overlap each other. If the overlapping lava flows
erupt within a short time span and have similar chemical and surface characteristics, discrimination
will be further complicated by their similar spectral signatures. Spectral reflectance plays an important
role in visible and shortwave infrared (VIS-SWIR) remote sensing. Each material absorbs and reflects
the incoming radiation in a characteristic way. In the 400–2500 nm range, minerals display absorption
features due to the interaction of light with cations (Fe, Mg, Al) and anions (OH, CO3) [6]. Reflectance
spectra provide information about the specific material and their composition. They are used for
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different applications such as classification of remotely sensed data, identification of mineral features
of rock, and environmental assessment [7,8]. The interest in reflectance spectra of volcanic rocks has
increased recently as they can play an important role as planetary analogues. In fact, these spectra can
be used to identify compounds by data acquired by ongoing solar system exploration missions [9,10].

Characterization of surface spectral reflectance by satellite remote sensing is constrained by the
spectral range and resolution (i.e., number of spectral bands) as well as by the spatial resolution of
the imagery. Whereas multispectral imagery can be acquired at very high spatial resolution (e.g.,
WorldView [11,12]); the spatial resolution of hyperspectral satellite data remains low (e.g., EO-1
Hyperion with a ground resolution of 30 m x 30 m); and spectral mixing is thus a major issue [13].
The spectral reflectance of lava of different compositions has also been documented using laboratory
spectrometry with decimeter-size samples [14]. For accessible volcanic terrains, field spectrometry
offers a useful alternative approach for characterizing the spectral reflectance of contrasted lava
surfaces and for documenting its spatial variation at different spatial scales [5,14]. The great variety of
morphologies observed in the 2014–2015 Holuhraun lava flows [1,15] encouraged a detailed study
of their spectral characteristics, to obtain information about lava composition and detect possible
differences in the spectra of the flow. In spectroscopy, the identification of the mineral constituents
of major rock types is typically approached using spectral unmixing methods [5,16]. Usually, in the
visible and near-infrared spectral range, mafic rocks are characterized by very low reflectance due to the
presence of large amounts of dark mafic minerals [14]. The 2014–2015 lava flow at Holuhraun in NE
Iceland offers an excellent diverse surface environment for investigating and characterizing lava deposits.
Its intense volcanic activity [1,17–19], geomorphological complexity [20], and well-documented flank
eruptions [1] perplex the remote sensing monitoring of the bulk volcanic edifice. However, the detailed
field mapping of lithologies is frequently obstructed by difficulties in accessibility, the scale of lava
flow fields, topography, while remote sensing has become increasingly important in mapping volcanic
terrains and specifically in mapping lava flows. Mapping individual lava flows using satellite remote
sensing is challenging for at least three reasons: vegetation cover, spatial overlapping, and spectral
similarity [3,4]. Moreover, a high eruption frequency often leads to lava flows overlapping each other.
If the overlapping lava flows are erupted within a short period and have similar chemical and surface
characteristics, discrimination will be further complicated by their similar spectral signatures.

Hyperspectral remote sensing provides information on hundreds of distinct and contiguous
channels of the electromagnetic spectrum, thus enabling the identification of multiple ground objects
through their detailed spectral profiles. However, restrictions on the spatial resolution of hyperspectral
data, the multiple scattering of the incident light between objects, and microscopic material mixing
form the mixed pixel problem. Pixels are identified as mixed when they are composed of the spectral
signatures of more than one ground object. Therefore, we adopted linear spectral mixture analysis
(LSMA) techniques [8,21], which model the pixel spectra as a combination of pure components
(endmembers) weighted by the fractions (abundances) that contribute to the total reflectance of the
mixed pixel [22]. Ideally, each selected endmember from the hyperspectral image under study has
the maximum possible abundance of a single physical material present and minimum abundance
of the rest of the physical materials. Spectral unmixing typically consists of two main substages:
(a) endmember extraction; and (b) abundance estimation [22]. In this paper, we focus on both
endmember extraction and estimation of fractional abundances of the lava field products on 2014–2015
Holuhraun lava fields. For this purpose, an airborne hyperspectral image with an AisaFENIX sensor on
board a NERC Airborne Research Facility (Natural Environment Research Council Airborne Research
Facility) campaign was acquired at Holuhraun after the eruption and for the sub-pixel analysis we
used the sequential maximum angle convex cone (SMACC) algorithm to identify the spectral image
endmembers while the LSMA method was employed to retrieve the abundances. Our approach was
narrowed to the eruptive fissure vent part since it is considered to have a more diverse surface. The
resulting abundances from the LSMA method were both quantitatively and qualitatively compared
with the spectral indices technique, aerial and field photographs, respectively. The objective was to
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retrieve the main lava surface type contributing to the signal recorded by airborne hyperspectral at the
very top surface of Holuhraun.

2. The 2014–2015 Eruption at Holuhraun

The eruption took place in the tectonic fissure swarm between the Bárðarbunga-Veiðivötn and
the Askja volcanic systems (Figure 1a). It lasted about six months (31 August 2014 to 27 February
2015) and produced a bulk volume ~1.44 km3 of basaltic lava [1]. Lava effusion rates during the
eruption period range from 320 to 10 m3/s. Averaged values are ∼250, 100, and 50 m3/s during the
initial (August–September 2014), intermediate (October–December 2014) and final phase (December
2014 to February 2015), respectively [1,17] (Figure 1b). The lava was emplaced on the sandur plains
(glacial outwash sediment plains) north of the Vatnajökull/Dyngjujökull glacier, partially covering
the previous two Holuhraun lava flow fields south of the Askja caldera [1]. The area is gently
sloping (average inclination <0.5%; i.e., ∼0.3◦) to the east-northeast. The shallow gradient resulted
in low topographic forcing of the flow and, therefore, rather slow lava flow advance. During its
emplacement history, the lava field was initially dominated by channels and horizontal expansion.
Then it transitioned to grow in volume primarily by inflation, tube-fed flow (i.e., transport of lava
through roofed over partially or filled channels) and vertical stacking of lava-lobes. The 2014–2015
effusive eruption products originate from intense activity in the vent, in which high oxidation occurs
in this area. The main lava channel shows significant inflation (5–10 m). Lava advancement rates were
generally low ∼0.0167 m/s during the initial eruption phase [1] and dropped to ∼0.0017 m/s during
the middle of November 2014 [23]. The six-month-long effusive eruption features diverse surface
structures and morphologies. The 2014–2015 lava flow at Holuhraun in NE Iceland offers an excellent
diverse surface environment to investigate and characterize lava deposits.
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3. Spectral Unmixing on Lava

Various spectroscopy studies [2,5,7,14,25] over the volcanic area have examined the mineralogical
composition of the extensive lava fields. Usually, in the visible (VIS) and near-infrared (NIR) spectral
range, mafic rocks are characterized by very low reflectance due to the presence of large amounts of
dark mafic minerals [14]. Spectral indices provide the first efficient way to emphasize subtle spectral
variations at the surface [26]. More elaborate methods have been developed to discriminate and
quantify mixtures of mafic minerals. They have been used to derive composition maps of mafic
minerals [27–29]. However, some lava flows can have a similar chemical/mineralogical composition
but dissimilar spectral behaviour due to the different grain size, surface texture, and presence of
weathering [13,14]. The main components of igneous rocks do not display any peculiar spectral
features in the visible and near infrared spectral range. In the case of basalts, the only spectral feature
commonly found is an absorption peak, due to iron, located around 1000 nm [26]. However, in the
case of hydrothermal alteration, hydroxyl bearing minerals show distinctive absorption features in the
2000–2500 nm spectral region [30]. Because of the heterogeneity of the lava surface, mixed pixels are
very common which is illustrated in Figure 2a,b.
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Figure 2. Illustration of (a) the mixed pixel in the lava surface caused by the presence of small, sub
pixel targets within the area; (b) variability of lava surfaces in Holuhraun lava field which include the
oxidizing surface, sulfate mineral, and lava.

Spectral Mixing Analysis (SMA) has been specifically developed to account for mixtures [10].
Analysis of the data sample can simply be performed on these abundance fractions rather than the
sample itself. This method is well-suited for spectroscopic analysis because most of the spectral
shapes are due to different materials. The signal detected by a sensor at a single pixel is frequently
a combination of numerous disparate signals. Unmixing techniques were applied to the volcano of
Nyamuragira for discriminating lava flows of different ages by Li et al. [5]. The most recent study by
Daskalopoulou et al. [16], used unmixing techniques to segregate lava flows and related products from
the historical Mt. Etna. Nonetheless, there are no findings concerning lava flow delineation through
unmixing in Iceland.

4. Data Acquisitions and Methods

4.1. Airborne Hyperspectral Data Acquisitions

Airborne hyperspectral data were acquired on 4 September 2015 between 16.56 and 17.58 (local
time) with an AisaFENIX sensor (Specim, Spectral Imaging Ltd, http://www.specim.fi) [31] on board
a NERC Airborne Research Facility (Natural Environment Research Council Airborne Research Facility
http://www.bas.ac.uk/nerc-arf) aircraft [32]. Pushbroom VNIR and SWIR sensor, are two separate
detectors with common fore-optics. The hyperspectral data contain 622 channels with spectral range
from ~400 nm to 2500 nm (break at ~970 nm). The pixel size of this data is explained in Section 4.2.2.

http://www.specim.fi
http://www.bas.ac.uk/nerc-arf
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In total, eight flights were acquired at the Holuhraun lava flow during this period with an average
altitude of 2.4 km (Figure 3a). The data are delivered as level 1b ENVI BIL format files which means
that radiometric calibration algorithms have been applied and navigation information has been synced
to the image data (Figure 3b). In this study, we subset the data to focus on the area around the eruptive
fissures vent (Figure 3c) which is thought to have a diverse surface and has field photographs. Very
high-resolution aerial photographs of the lava field (0.5 m spatial resolution) from Loftmyndir ehf
(http://www.loftmyndir.is/) [33] were used for comparison and validation of the unmixing results.
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(b) Image mosaic from eight FENIX lines collected during the campaign (red box shows the image
subset location); (c) Image subset of the focusing study area in the eruptive fissure vent of Holuhraun.

4.2. Spectral Unmixing and Abundance Retrieval

The processing workflow towards unmixing and generating abundance consists of four steps:
(1) Atmospheric correction to retrieve surface reflectance; (2) Data masking, geocorrection, reprojection,
and resampling; (3) An endmember selection algorithm was adopted to select the endmembers; then a
linear spectral mixing analysis method was employed to retrieve the abundance (Figure 4).

4.2.1. Atmospheric Correction

Remote-sensing applications require removing the atmospheric effect from the imagery, to retrieve
the spectral reflectance of the surface materials. In this study, the data were atmospherically corrected
using the quick atmospheric correction (QUAC) algorithm [34,35], since we had no prior knowledge to
perform empirical calibration [36,37]. QUAC is an in-scene approach, requiring only an approximate
specification of sensor band locations (i.e., central wavelengths) and their radiometric calibration;
no additional metadata is required [35]. QUAC does not involve first principles radiative transfer
calculations, and therefore it is significantly faster than physics-based methods; however, it is also
more approximate [35].

http://www.loftmyndir.is/
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4.2.2. Data Masking, Geocorrection, Reprojection, and Resampling

In this study, we use the Airborne Processing Library (APL) software for processing the data [38].
The first step of the APL processing is to apply the mask of bad channels to atmospherically corrected
data, creating a new file with bad channels set to zero (Appendix A on Figure A1). The next step uses
the navigation file, the view vector file, and the digital elevation file (DEM) to calculate the ground
position for each pixel then change the projection to UTM (Universal Transverse Mercator) Zone
28N [38]. We used satellite-based ASTER sensor for the DEM. In the final step we resampled output
pixel size to ~3.5 m according to the height above ground level (AGL) that is given by the theoretical
pixel size chart that can be found in Appendix A on Figure A2 (https://nerc-arf-dan.pml.ac.uk/trac/
wiki/Processing/PixelSize) [39].

4.2.3. Endmembers Selection

The conventional image-based endmember selection approach based on scatterplots of the image
bands may not be effective in identifying a sufficient number of endmembers. In this paper, we
employed the sequential maximum angle convex cone (SMACC) algorithm [34] to identify spectral
image endmembers. Endmembers are spectra that represent pure surface materials in a spectral
image. The extreme points were used to determine a convex cone, which defined the first endmember.
A constrained oblique projection was applied to the existing cone to derive the next endmember.
The cone was then increased to include a new endmember [8,40]. This process was repeated until a
projection derived an endmember that already existed within the convex cone, or until a specified
number of endmembers was satisfied [21]. When implemented with SMACC, the output endmember
number was set as 5, 10, 15, 20, and 30 respectively. Better endmembers could be identified easily from
the 15 endmembers output (more detail in Section 6.2). Then, we used the selected 15 endmembers for
deriving the abundance.

4.2.4. Linear Spectral Mixture Analysis

The linear spectral mixture analysis (LSMA) approach was adopted to calculate the abundance of
endmembers for each pixel. LSMA assumes that the spectrum measured by a sensor is a linear
combination of the spectra of all components (endmembers) within the pixel, and the spectral
proportions of the endmembers (i.e., their abundance) reflect the proportion of area covered by distinct
features on the ground [8,21]. The general equation for linear spectral mixing can be expressed as:

Rij,λ =
N

∑
n=1

pij,nRn,λ + Eλ (1)

where Rij,λ is the measured reflectance at wavelength λ for pixel ij, where i is the column pixel number,
and j is the line pixel number; pij,n is the fraction of endmembers n contributing to the image spectrum
of pixel ij; N is the total number of endmembers; Rn,λ is the reflectance of endmember n at wavelength
λ; and Eλ is the error at wavelength λ of the fit of N spectral endmembers. The fraction pij,n can be
solved using a least-square method with fully constrained unmixing. Fully constrained unmixing
means that the sum of the endmember fractional (abundance) values for each pixel must equal unity,
which requires a complete set of endmembers. Therefore, it should meet the following two conditions:

0 ≤ pij,n ≤ 1 (2)

N

∑
n=1

pij,n = 1 (3)

In the majority of cases, the unmixing is only partially constrained because the extracted
endmember set is incomplete for the image and only term (2) (i.e., Equation (2)) is satisfied. In this

https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize
https://nerc-arf-dan.pml.ac.uk/trac/wiki/Processing/PixelSize


Remote Sens. 2019, 11, 476 7 of 19

study, fully constrained LSMA were applied to the FENIX image to obtain the abundance result and
both SMACC and LSMA were executed by ENVI 5.3 and IDL 8.5 language programming.
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5. Results

5.1. Endmember Groups

The approximate locations of the 15 endmembers selected are shown in Figure 5a. SMACC first
finds the brightest spectral in the image and defines it as the first endmember. In this study, the first
endmember (endmember 1) represented saturated hot material. We grouped these 15 endmembers
into six groups; (1) basalt; (2) hot material; (3) oxidized surface; (4) sulfate mineral; (5) water; and (6)
noise (Figure 5b–g). These groups were based on the similar shape of the endmembers with the USGS
spectral library; however, the amplitude of the endmembers within a group vary due to illumination
conditions, spectral variability, and topography. We added up the abundances within the group to
derive the abundance according to this endmembers group.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 20 
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Figure 5. (a) The spatial distribution of 15 endmembers extracted by SMACC; The numbers on the
image indicate the approximate location of the pixels selected as the represented endmembers of (b)
basalt; (c) hot material; (d) oxidized surface; (e) sulfate mineral; (f) water; and (g) noise, extracted
by SMACC.

5.2. Basalt Abundance

Figure 6a indicates the presence of the dominant basalt abundance pixel throughout the image.
This abundance is associated with endmember 8 which is characterized by very low reflectance
(Figure 5b) due to the presence of large amounts of dark mafic rock since the study area is dominated
by basaltic lava (Figure 6b).
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Figure 6. (a) The abundance map for basalt endmember, yellow areas indicate the highest fraction
of basalt meanwhile the black areas indicate the lowest fraction of basalt (the red box shows the
approximate location of the field photo); (b) field photograph of basaltic lava field of the Holuhraun.

5.3. Hot Material Abundance

As shown in Figure 7a, the hot material abundance map is very sparse. This abundance is
described as blends of the endmember 1, 4, 5, and 13 which are characterized by very high reflectance
in the SWIR due to the presence of hot material (Figure 5c). Figure 5a shows that endmembers 1, 4, 5,
and 13 are located in the lower right corner and the upper part of the image, Figure 7b shows a false
color (NIR-SWIR) image which agrees with the abundance map, i.e., some patches of hot material
(red-yellow color) exist in the area. The false color image is created by stacking R: 2200 nm; G: 1600 nm,
and B: 896 nm. This indicates that the lava field is still emitting hot material during the data acquisition.
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5.4. Oxidized Surface Abundance

The oxidized surface endmembers (3, 6, and 12) have the highest abundance fraction at the vent
as shown in Figure 8a. This agrees with a field observation shown in Figure 8b which highlights the
matching dominant oxidized surface at the vent wall.
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Figure 8. (a) Abundance map oxidized surface endmember; yellow areas indicate the highest fraction
of oxidized surface meanwhile the black areas indicate the lowest fraction of oxidized surface; (b) Field
photograph of an oxidized surface of the vent wall (red box and the line shows the approximate location
of the field photograph)

5.5. Sulfate Mineral Abundance

The sulfate mineral endmembers (2, 7, 10, 11, and 15) have the highest abundance fraction around
the lava pond and there are four most prominent areas for the sulfate (Figure 9a). This surface mineral
looked as if it had been dusted by snow (white color) commonly identified as thernadite (Na2SO4) [41].
This can be directly seen from a true color image. This mineral formed as the flow cooled, a thin
sublimate coating formed on the surface of the lava [41]. Figure 9b,c shows the thernadite formed in
surface lava at Holuhraun.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 20 
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Figure 9. (a) The Abundance map for the sulfate mineral endmember, the yellow areas indicate the
highest fraction of sulfate mineral meanwhile the black areas indicate the lowest fraction of the sulfate
mineral; (b) Field photograph of sulfate mineral (white surface) formed on the surface of lava (the red
boxes and lines show the approximate location of the field and aerial photo respectively); (c) aerial
photograph of sulfate mineral (white surface) formed on the surface of lava (The numbers on the image
indicate the approximate location of the sulfate for both the abundance and photograph).

5.6. Water Abundance

The water abundance (Figure 10a) has the highest abundance fraction at the location mainly
recognized as a glacial river (Figure 10b). Endmember 14 represents water which is characterized by
a relatively low reflectance and has the highest reflectance in the blue wavelength. Water has high
absorption and virtually no reflectance in the NIR-SWIR wavelengths range (Figure 5f).
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Figure 10. (a) The abundance map for water endmember, the highest abundance fraction indicated by
a yellow color, and the lowest abundance fraction indicated by a black red box shows the approximate
location of the aerial photograph); (b) aerial photograph of the glacial river.

5.7. Noise Abundance

Figure 11 shows the abundance map corresponding to endmember 9. We consider this endmember
as representing noise due to an unrecognized spectral signature since this spectrum is characterized by
saturated reflectance in channels ~2000 nm and ~2400 nm (Figure 5g). The saturated reflectance could
be due to corrupted bands in some pixels.
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Figure 11. The abundance map for the noise endmember, the highest abundance fraction is indicated
by the yellow color, and the lowest abundance fraction is indicated by the black color.

5.8. False Color Abundance

The abundance results depicted as false color (R: Oxidized surface; G: Sulfate mineral; B: Basalt)
images show that the majority of rocks or minerals in the study area are dominated by basalt as shown
in the blue color in Figure 12a. The other colors such as magenta and yellow indicate a mixture. The
mixture phenomenon is illustrated in Figure 12b, as the surface has 0.25 oxidized surface mix with 0.75
basalt resulting in the magenta color; and 0.25 oxidized surface mix with 0.75 sulfate mineral resulting
in the yellow color pixel.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 20 
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Figure 12. (a) False color of abundance highlighting for R: oxidized surface; G: sulfate mineral; and
B: Basalt; (b) Illustration of the mixed pixels in the area, 0.25 oxidized surface mix with 0.75 basalt
resulting in the magenta color; and 0.25 oxidized surface mix with 0.75 sulfate mineral resulting in the
yellow color pixel.

5.9. Validation

The very high-resolution aerial photograph was used for ground truth. The aerial photograph was
classified into oxidized surface, sulfate, basalt, and water using visual image interpretation and used
for validation of the unmixing results. We only validate three endmembers for basalt—oxidized, sulfate,
and water—since the noise and hot material cannot be detected based on visual interpretation. We
classified the endmembers that have fractional abundance > 0.5. Validation was based on 150 randomly
generated point samples within each class. Table 1 show the validation results, with a resulting mean
overall accuracy 79% and mean Kappa index of 0.73. This result shows that the abundances have
moderate agreement with the sample points.
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Table 1. Validation of the endmembers that have abundance > 0.5.

Class Overall Accuracy Kappa Index Mean Overall Accuracy Mean Kappa Index

Basalt/Non-Basalt 70% 0.62

79% 0.73
Sulfate/Non-Sulfate 93% 0.89

Oxidized/Non-Oxidized 77% 0.72
Water/Non-Water 76% 0.70

6. Discussion

6.1. Comparison with the Existing Spectral Index Technique

The correlation between the spectral index images and the abundance image was analyzed. We
only correlated the three endmembers since there are no reference spectral indices for sulfate mineral,
hot material, and noise. Here we compared the basalt, oxidized, and water abundance images with
the mafic, oxidized, and water index images proposed by Inzana et al., Podwysocki et al. and Xu
respectively [42–44] (Appendix B). We applied these indices to the hyperspectral image and compared
them with the result from each abundance. Figure 13a–c shows the scatter plots results. The R2 values
were 0.46, 0.91, and 0.77 for the basalt, oxidized surface, and water, respectively. The oxidized surface
and water indicate a good correlation with the indices (Figure 13b,c). This suggests that both oxidation
and water generated from a spectral index are properly validated [2,44]. Meanwhile, basalt shows a
low correlation with the mafic index (Figure 13a) suggesting that the estimates of the basalt surface
from the unmixing technique is an overestimation, since the basalt abundance shows the older lava
flows as mafic with a relatively high fraction compared to the mafic index that only showed for fresh
lava flow. This being due to a full spectrum of hyperspectral can easily differentiate between basalt
surface and non-basalt.

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

abundance shows the older lava flows as mafic with a relatively high fraction compared to the mafic 
index that only showed for fresh lava flow. This being due to a full spectrum of hyperspectral can 
easily differentiate between basalt surface and non-basalt. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Linear regression analysis between the spectral index images and the (a) basalt abundance; 
(b) oxidized surface abundance; and (c) water index. 

6.2. Number of Endmembers 

The determination of the number of endmembers is critical, since underestimation may result in 
a poor representation of the mixed pixels, whereas overestimation may result in an overly segregated 
area [16]. Table 2 shows the relationship between the number of endmember and the number of pixels 
that have fractional abundance > 0.5 and the mean correlation with mafic, oxidized, and water index. 
We considered abundance >0.5 as high abundance. As the number of endmembers increase, the 
number of pixels also increases for an oxidized surface, sulfate mineral, water, and noise abundances, 
respectively. This is due to an increase of endmembers that is detected for each group. Meanwhile, 
the basalt abundance shows the opposite, as the endmembers increase the number of pixels with 
abundance >0.5 decreases. These results show that as more endmembers are considered the mixing 
of basalt with other endmembers increases resulting in a decrease of the fractional abundance of 
basalt. According to the results, we considered the 15 endmembers as an optimum number for this 

Figure 13. Cont.



Remote Sens. 2019, 11, 476 14 of 19

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 20 

 

abundance shows the older lava flows as mafic with a relatively high fraction compared to the mafic 
index that only showed for fresh lava flow. This being due to a full spectrum of hyperspectral can 
easily differentiate between basalt surface and non-basalt. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 13. Linear regression analysis between the spectral index images and the (a) basalt abundance; 
(b) oxidized surface abundance; and (c) water index. 

6.2. Number of Endmembers 

The determination of the number of endmembers is critical, since underestimation may result in 
a poor representation of the mixed pixels, whereas overestimation may result in an overly segregated 
area [16]. Table 2 shows the relationship between the number of endmember and the number of pixels 
that have fractional abundance > 0.5 and the mean correlation with mafic, oxidized, and water index. 
We considered abundance >0.5 as high abundance. As the number of endmembers increase, the 
number of pixels also increases for an oxidized surface, sulfate mineral, water, and noise abundances, 
respectively. This is due to an increase of endmembers that is detected for each group. Meanwhile, 
the basalt abundance shows the opposite, as the endmembers increase the number of pixels with 
abundance >0.5 decreases. These results show that as more endmembers are considered the mixing 
of basalt with other endmembers increases resulting in a decrease of the fractional abundance of 
basalt. According to the results, we considered the 15 endmembers as an optimum number for this 

Figure 13. Linear regression analysis between the spectral index images and the (a) basalt abundance;
(b) oxidized surface abundance; and (c) water index.

6.2. Number of Endmembers

The determination of the number of endmembers is critical, since underestimation may result in a
poor representation of the mixed pixels, whereas overestimation may result in an overly segregated
area [16]. Table 2 shows the relationship between the number of endmember and the number of
pixels that have fractional abundance > 0.5 and the mean correlation with mafic, oxidized, and water
index. We considered abundance >0.5 as high abundance. As the number of endmembers increase, the
number of pixels also increases for an oxidized surface, sulfate mineral, water, and noise abundances,
respectively. This is due to an increase of endmembers that is detected for each group. Meanwhile,
the basalt abundance shows the opposite, as the endmembers increase the number of pixels with
abundance >0.5 decreases. These results show that as more endmembers are considered the mixing of
basalt with other endmembers increases resulting in a decrease of the fractional abundance of basalt.
According to the results, we considered the 15 endmembers as an optimum number for this study since
they have the highest mean correlation with mafic, oxidized, and water index. Clearly, the selection of
appropriate endmembers in such a diverse volcanic environment, considering the particularities of the
FENIX dataset, is of great importance in order to obtain accurate unmixing results. In addition, since
only a small number of the available materials spectra are expected to be present in a single pixel, the
abundance vectors are often sparse [45].

Table 2. Comparison number of pixels that have abundance >0.5, R2 and number of endmembers.

Number of
Endmembers

Number of Pixels Abundance
R2

Oxidized Surface Sulfate Mineral Hot Material Water Noise Basalt

5 19 57 19 0 0 522481 0.27
10 86 115 19 0 2 522406 0.35
15 91 215 34 373 2 522266 0.71
20 95 232 36 373 5 522046 0.67
30 97 250 40 373 7 521707 0.69

6.3. Size of Lava Field Area

As the methods were only tested on a subset area of the lava field vent, to apply the methods for
the entire lava flow is challenging for several reasons. (1) The high spatial heterogeneity typically gives
rise to mixed pixels containing multiple materials and it will increase the number of endmembers
detected by SMACC [40]. (2) Different illumination occurs within the different flight lines for the entire
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lava flow (Figure 3b) since the data acquisition time is acquired between 16.56 and 17.58 local times
which results from the very low sun angle during the acquisition. This problem can be approached by
collecting ground truth spectra, extensive calibration, and atmospheric correction using simultaneous
and constrained calibration of multiple hyperspectral images through a new generalized empirical
line model purposed by Kizel et al. [37]. (3) The computation time to perform unmixing also must be
considered for the entire lava field since the area is relatively large (84 km2) and the hyperspectral data
contains 622 channels with a 3.5-meter spatial resolution. In order to process the full set of data we
need to consider using high performance computing (HPC) [46].

6.4. Using Full Optical Region for Mapping Recent Lava Flow (VIS-SWIR-TIR)

Hyperspectral VIS-SWIR image data is effective for discrimination mafic, oxidation, sulfate
etc. However, not all the minerals and surface type are always mapped uniquely with VIS-SWIR
hyperspectral data. A typical surface such as rock forming minerals associated with unaltered rocks
and alteration minerals associated with altered rocks can be identified with TIR (Thermal Infrared)
data [47–49]. Image processing methods that have become standard for hyperspectral VNIR/SWIR data
analysis also work for hyperspectral TIR data [47]. Vaughan et al [47] showed that pixel classification
techniques based on spectral variability within the scene and mineral libraries for matching spectral
emissivity features can be used for TIR-derived mineral maps using SEBASS hyperspectral TIR image
data. Hyperspectral TIR instruments operational for airborne surveys are also available in the NERC
Airborne Research Facility with a Specim AisaOWL sensor [48]. A synergistic use of airborne data from
both FENIX (VIS-SWIR) and OWL (TIR) allows great potential for lava discrimination in future study due
to the complementary nature of the reflective (VIS-SWIR) and emissive (TIR) spectral regions. This might
significantly improve our understanding of physical lava surface properties. Specifically, VIS-SWIR
imaging spectrometers can discriminate surface materials and TIR data acquisitions can help to identify
the thermal characteristics of different materials [47–49]. For instance, combining emissivity spectra with
reflectance spectra in a mixing model would improve discriminating lava from surfaces [50–52].

7. Conclusions

In this study, an application of potential spectral unmixing methods on 2014–2015 Holuhraun
lava flow field was presented. In total, we acquired fifteen spectral endmembers and their abundances.
The first endmember was chosen as the brightest pixel which represented saturated incandescent
lava. We grouped these 15 endmembers into six groups (basalt, oxidized surface, sulfate mineral, hot
material, water, and noise) based on the shape of the endmembers since the amplitude varies due to
illumination conditions, spectral variability, and topography. The endmembers represent pure surface
materials in a hyperspectral image. We concluded that the selection of appropriate endmembers in
such a diverse volcanic environment, considering the particularities of the FENIX dataset, is of great
importance in order to obtain accurate unmixing results. Combination of SMACC and LSMA methods
offers an optimum and a fast selection for volcanic products segregation However, ground-truthing
spectra are recommended for further analysis. A synergistic use of airborne data from both FENIX
(VIS-SWIR) and OWL (TIR) gives a great potential for lava discrimination in future study due to the
complementary nature of the reflective (VIS-SWIR) and emissive (TIR) spectral regions. This might
significantly improve our understanding of physical lava surface properties.
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Appendix A

The bad channels in this data are located at 968 nm and 1014 nm. Figure A1 show the spectral
reflectance before masking (Figure A1A) and after channel masking (Figure A1B).
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Appendix B

The mafic indices originated, developed by Inzana et al. [42] to distinguish mafic from non-mafic
rocks are from Landsat TM image, expressed as follows:

Ma f ic index =
ρ1600nm

ρ860nm
∗ ρ640nm

ρ860nm
(A1)

where ρ1600nm is the measured reflectance at wavelength 1600 nm, ρ640nm is the measured reflectance
at wavelength 640 nm, and ρ860nm is the measured reflectance at wavelength 860 nm.
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The oxidized index originated designed any multispectral sensor with bands that fall within the
red channel and blue channel [43], expressed as follows:

Oxidized index =
ρ640nm

ρ500nm
(A2)

where ρ500nm is the measured reflectance at wavelength 500 nm.
We calculated the water index using the Modified Normalized Difference Water Index

(MNDWI) [44]. This index enhances open water features while suppressing noise from built-up
land, vegetation, and soil. This is expressed as follows:

Water index =
ρ600nm − ρ1600nm

ρ600nm + ρ1600nm

where ρ600nm is the measured reflectance at wavelength 600 nm.
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Abstract: Roughness can be used to characterize the morphologies of a lava flow. It can be used to
identify lava flow features, provide insight into eruption conditions, and link roughness pattern across
a lava flow to emplacement conditions. In this study, we use both the topographic position index (TPI)
and the one-dimensional Hurst exponent (H) to derive lava flow unit roughness on the 2014–2015
lava field at Holuhraun using both airborne LiDAR and photogrammetric datasets. The roughness
assessment was acquired from four lava flow features: (1) spiny lava, (2) lava pond, (3) blocky
surface, and (4) inflated channel. The TPI patterns on spiny lava and inflated channels show that
the intermediate TPI values correspond to a small surficial slope indicating a flat and smooth surface.
Lava pond is characterized by low to high TPI values and forms a wave-like pattern. Meanwhile,
irregular transitions patterns from low to high TPI values indicate a rough surface that is found
in blocky surface and flow margins. The surface roughness of these lava features falls within the H
range of 0.30 ± 0.05 to 0.76 ± 0.04. The roughest surface is the blocky, and inflated lava flows appear
to be the smoothest surface among these four lava units. In general, the Hurst exponent values
in the 2014–2015 lava field at Holuhraun has a strong tendency in 0.5, both TPI and Hurst exponent
successfully derive quantitative flow roughness.

Keywords: lava roughness; TPI; Hurst exponent; LiDAR; photogrammetry

1. Introduction

In the Earth Sciences, surface roughness is important for modeling natural phenomena and
classifying features of interest [1,2]. Surface roughness refers to a topographic expression of surface
profiles over various scales (i.e., centimeters, meters, kilometers) [1–3]. Quantitative approaches to
estimate the roughness of natural materials are increasingly sought in modern geological research [1].
Statistical descriptors of surface morphology, or roughness, are found in many applications, including
volcanology, especially for analyzing lava flows. Field observations have long been used in the study
of surface roughness of lava flow [2–6]. These analyses are mostly based on in situ measurements,
which require extended time in the field [2,6–8]. In practice, a grid is laid out on the sample surface,
and heights are measured manually or with a profiling instrument [2–4] and continuous Global
Positioning System (GPS) [7]. Lava roughness reflects the morphology of lava flow, and some flows
can be distinguished by roughness [2,7,9]. Thus, roughness can be used to identify lava flow features
that reflect eruption conditions. Patterns of roughness across the lava flow can be tied to emplacement
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conditions such as rate of flow and viscosity [2,3,10–12]. Roughness is typically determined from
topography [2,3,13] or radar backscattering [4,14,15] (e.g., root mean square (RMS) height, correlation
length, and autocorrelation function). Generally, the quantification of surface roughness is derived
from analyzing height variations along profiles.

In the past 25 years, the study of lava flows roughness has embraced the use of remote sensing
for acquiring surface geometry [11,16,17]. Airborne light detection and ranging (LiDAR) scanning
and photogrammetry offers rapid three-dimensional (3D) data capture and have made datasets
increasingly available to scientists [1]. Similar measurement techniques have been used to obtain
ground-based measurements of surface roughness [7,16]. High-resolution topographic methods
such as airborne LiDAR and photogrammetry generated DEMs (Digital Elevation Models) with
meter scale resolution [8,18] allow for detailed roughness assessment. In this study, we evaluated
two approaches to assess lava surface roughness based on LiDAR and photogrammetry datasets
using: (1) the Topographic Position Index (TPI) [11,19]; and (2) the Hurst exponent (H) [2,7,8,16]
on the most recent effusive eruption in Iceland, the 2014–2015 lava field at Holuhraun. We envisage
future applications to assess geomorphic variation amongst different lava flows on Earth and other
planets for which DEMs of high resolution and large areal extent are available.

2. The Surface Roughness of Lava Flows

Measurements of a lava flow surface roughness on Earth are used to describe changes in eruption
conditions across a flow [20–22], surface processes that have occurred post-emplacement [2], to map
flow units [3,8] and the relation between lava roughness and composition [2,9,23]. Effusive eruptions
of basaltic magmas generally produce lava flows due to high magma temperatures and low viscosity.
As lava starts to flow and cool, its surface may fold or break into blocks if the surface is steeply sloping
due to the flow front stagnating from cooling [9,24]. This influences centimeter to decameter-scale
roughness. If the emplacement surface is flat, the flow will advance slowly and take longer to cool,
producing a smooth crust while intact, and a rougher surface if the crust breaks into blocks [9,11].

According to Kilburn [25], most basaltic lavas can be grouped according to surface roughness;
(1) pahoehoe, where the surface is smooth and continuous (Figure 1a), (2) aa, where the surface is rough
and fragmented (Figure 1b), and (3) blocky, where the surface is brecciated (Figure 1c). Furthermore,
a transition surface morphology between aa and pahoehoe has been described as platty, slabby,
and rubbly [26]. Thus, assessing lava flow textures can provide insight into the lava flow dynamics.
Lower viscosities or shear strain results in smooth textures; rough textures are generally the result of
higher viscosities, higher shear strain, or disruption of the cooled surface [2,3,7]. Identification of lava
flows textures can further explain the geologic history of the eruption by confirming the styles, timing,
and geographic extent of volcanic activity that occurred [27].

Volcanic eruptions can be understood through the variations in lava flow roughness at different
scales. Spiny pahoehoe (Figure 1a) are typically smooth at meter scale and with spinose preserved
on the surface of a pahoehoe flow and characterized by longitudinal grooves and ridges [28].
Ropy folds (Figure 1d) also provide an example of relating roughness to emplacement conditions [29,30].
Field observations of solidified pahoehoe surfaces and motion pictures of active flows suggest that
these features may be interpreted as folds that develop in response to the shortening of the flow
surface [30]. These features also indicate slowly moving low viscosity pahoehoe flows in basaltic
eruptions [20,23,27,30–32]. Though these features may appear flat and devoid of height changes
at the meter and decameter scale, the texture is quite rough when observed at the centimeter scale.
Spiny and ropy folds are both different from aa lava flows, which are composed of piles of jagged
blocks and are rough at centimeter to decameter scale [2,3]. Table 1 shows lava surface features and
the scales at which they are observed.
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Holuhraun lava flow with a smooth, coherent crust at the meter scale (Photo was taken by Thorvaldur 
Thordarson). (b) Aa lava flow with brecciated flow tops and bases (Photo was taken by G.B.M. 
Pedersen). (c) A blocky surface that is composed of larger blocks than aa lava and these blocks have 
a larger surface area (Photo was taken by Muhammad Aufaristama). (d) Ropy folds observed in the 
channel flow and pond (Photo was taken by G.B.M. Pedersen). 
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Figure 1. Surface morphology on the 2014–2015 lava flow at Holuhraun. (a) Spiny pahoehoe flow on
Holuhraun lava flow with a smooth, coherent crust at the meter scale (Photo was taken by Thorvaldur
Thordarson). (b) Aa lava flow with brecciated flow tops and bases (Photo was taken by G.B.M. Pedersen).
(c) A blocky surface that is composed of larger blocks than aa lava and these blocks have a larger surface
area (Photo was taken by Muhammad Aufaristama). (d) Ropy folds observed in the channel flow and
pond (Photo was taken by G.B.M. Pedersen).

Table 1. Features Affecting Lava Flow Roughness at Different Scales, modified from James [11].

Scale Flow Features Common Methods Resolution References

Millimeter to centimeter Gas bubble walls and
minor folds/cracks

Microscope, Radar
backscattering <1 cm [33,34]

Centimeter to meter Flow toes and blocks Hurst exponent,
RMS slope <1 m [2,7,11,33]

Meter Tumuli, ridges,
and crease patterns

Radar backscatter,
Hurst exponent ~1 m [7,11,16,31]

More than decameter Full flow fields,
flow margin Radar polarization >10 m [3,4,15]

A variety of methods are used to quantify surface roughness of lava surfaces [2,3,35].
Two commonly used methods are the RMS of height and the H [2,7,16]. RMS represents the standard
deviation of the height slope around the mean height [2]. RMS is a valuable method for vertical
roughness, but it does not account for the horizontal patterns [11,36]. It has been used to study
the roughness of lunar impact melts, and Martian lava flows [7]. To accurately reflect lava
surface roughness, elevations in 360 degrees around a point should be considered, rather than
only measuring topographic changes along one horizontal direction [11]. Therefore, we use TPI,
and the one-dimensional H for determining the roughness of the 2014–2015 Holuhraun lava flows
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from both LiDAR DEM and photogrammetry DEM. The detailed methodology for these techniques
will be explained in Section 4.2.

3. Morphology of the 2014–2015 Lava Flow at Holuhraun

The six months long eruption at Holuhraun 2014–2015 was the largest effusive eruption in Iceland
in 230 years with an estimated bulk lava volume of 1.44 km3 [37–39]. The eruption is split into three
phases based on the lava flow-field evolution [37]. The first phase was dominated by open channels,
and during the second phase, lava emplacement was affected by the formation of a 1 km2 lava pond
about 1 km downstream of the vent [37]. This pond became the main distribution point for the lava
during this phase, controlling the emplacement of lava flows. Near the end of the second phase,
vertical stacking of lava lobes became more prevalent, and lava tubes developed within the channel
system, resulting in the formation of inflation plateaus [37]. In the final phase, transport of lava through
tubes continued, and inflation plateaus grew in extent, raising the original channel surface by 5–10 m
above the surrounding lava. Over 19 km2 of the flow field was resurfaced via surface breakouts from
the closed paths during this period. Pedersen et al. [37] suggest that the topography of the lava field
and surrounding made it possible to build an open channel system that was at minimum 5–10 m higher
than the fluid lava. This system increased the static lava pressure, which was enough to lift the roof of
the lava channels creating the inflation plateaus, allowing new lava to be transported to the distal ends
of the lava field.

During the three phases of the 2014–2015 eruption, major changes in surface morphology of
the lava occurred several times [37,40]. According to Pedersen et al. [37], shelly pahoehoe, slabby
pahoehoe, rubbly pahoehoe, spiny pahoehoe, and aa were observed within the first week of the eruption.
During the first phase and the second phase, aa was the dominant flow morphology of lava flows,
and in the final phase, spiny pahoehoe was the main lava morphology [37]. This change from
aa and pahoehoe morphology in the first and second phases to spiny pahoehoe in the final phase
makes Holuhraun a paired lava flow-field. A paired lava flow-field is formed due to the decline of
the effusion rate over the course of an eruption [41]. The Holuhraun lava flow-field was emplaced on
a low-slope floodplain, and the chemical composition of the lava was uniform throughout the whole
eruption [42,43]. This suggests that neither the topography nor the lava composition was the main
factor for the observed changes in flow morphology [37]. The first transition of slabby pahoehoe to
rubbly pahoehoe to aa occurred downstream of the vent, which is consistent with such changes in other
lava producing eruptions and is explained by increased viscosity due to mixing, cooling, and gas loss
during lava transport [34,37].

In this study, we examined roughness over lava flow surfaces in four locations depicted in Figure 2
that exhibit the known lava flow morphology at Holuhraun [7,37,44]. These lava flow features are:
(1) lava pond, (2) spiny pahoehoe, (3) inflated channel, and (4) blocky surface. The lava pond formed
during the first phase of the eruption [37]. Ropy folds preserved on the surface of a lava pond
(Figure 1d) indicate slowly moving, low viscosity pahoehoe flows, which develop in response to
the shortening of the flow surface in basaltic eruptions [30]. At the Holuhraun lava flow-field, spiny
lava is characterized by a network of interconnected lobes that form inflated sheet-like flow units
with rough spinose surfaces [7]. The millimeter-scale spines on the surface of these flows resemble
the texture of aa, but the flow surfaces are generally continuous and are not decomposed into clinker [7].
Spiny lava units are the dominant flow type along most of the flow margins, except near the NE
margin of the flow [7]. The inflated channel formed towards the end of the second phase to the final
phase [37]. This surface feature maintains the morphology of the flow channel but increases in thickness.
Pahoehoe flows are typically identified as inflated lava flows, but aa type flows may also inflate
under certain circumstances [45]. In this study, we use the term blocky surface to avoid confusion
with rubbly lava. Blocky surface is composed of larger blocks than rubbly. Similar to rubbly lava
this feature likely formed due to continued auto-brecciation of crustal slabs into blocks of material
through mechanical collisions between the slabs during transport [26].At Holuhraun lava flow-field,
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blocky surfaces are mostly found close to the vent. These lava flows were analyzed using the approach
described in Section 4, and the results for the roughness analysis are presented in Section 5.Geosciences 2019, 9, x FOR PEER REVIEW 5 of 23 
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4. Datasets and Methods

To assess the surface roughness of lava flow features, we use high-DEM from two different sources.
We focus on a subset of these data, obtained at four different facies on the lava flow-field. The datasets
used in this study are described further in Table 2 and Section 4.1
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Table 2. High-resolution DEM used in this study.

Platform Date of Acquisition Area Spatial Resolution Source

Airborne LiDAR 4 September 2015 100 km2

(Gap in between lines)
1 m

(processed in ENVI LiDAR 5.3) NERC

Airborne photogrammetry 30 August 2015 167 km2 5 m Loftmyndir ehf

4.1. Airborne LiDAR and Photogrammetry

Airborne LiDAR data, collected and processed by the Natural Environment Research Council
(NERC) was acquired on September 4, 2015. We processed the point clouds to obtain 1 m spatial
resolution over the lava flow-field with a vertical resolution of 4–5 cm (depending on the flight line).
This was done using ENVI LiDAR 5.3 software. Eight flight lines were flown over Holuhraun: seven of
these are parallel and aligned with the long axis of the field, while the eighth is transverse and crosses all
the others (Figure 3a). The LiDAR measurements, therefore, do not cover the entirety of the flow-field.
Furthermore, small clouds and fumaroles obscured parts of the lava and created gaps in the data.
We sought to determine the surface roughness of the 2014–2015 lava flows at Holuhraun. DEMs are
produced upon processing of point-clouds for a variety of lava flow textures around the study area.
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We used photogrammetry-derived DEM provided by Loftmyndir ehf using data taken on
August 30, 2015. Clouds obscured in some parts of the 2014–2015 Holuhraun lava flow-field (Figure 2).
This Photogrammetry-derived DEM has a spatial resolution of 5 m (Figure 3b).

4.2. Deriving Surface Roughness

The methodology adopted for the assessment of the roughness is given in a sequential manner
in Figure 4. In this study, we use TPI and one-dimensional H to quantify roughness values
in the 2014–2015 Holuhraun lava flows from both photogrammetry DEM and LiDAR DEM. Finally,
we determined the roughness properties for four different facies on the lava flow-field from Figure 2.
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4.2.1. Slope

The estimation of slope from a regularly gridded DEM is a common procedure in terrain
analysis [46,47]. The slope can be defined as a function of the gradients in the x and y direction at every
point in a DEM:

slope = arctan
√

f 2
x + f 2

y . (1)

The key in the slope estimation is the computation of the perpendicular gradients fx and fy.
We used moving 3 × 3 windows to derive local polynomial surface fit for the calculation [46,47].
This process was done using ArcGIS 10.6.

4.2.2. Topographic Position Index

In this study, topographic position index (TPI) [48] was used for deriving the roughness pattern
of the lava flow-field. This method was originally created for use in ecology, geomorphology,
and hydrology study [19,48] but has been recently used for assessing the topographic characteristics of
lava flows [11]. TPI compares the elevation of each cell in a DEM to the mean elevation of a specified
neighborhood around that cell. Mean elevation is subtracted from the elevation value at the center

TPI =
C0 −C
σ

, (2)

where C0 is the elevation of the model point under evaluation, C is the mean elevation of a gridpoint
in the neighborhood, σ is the standard deviation of elevation in the neighborhood. Positive TPI
indicates that a cell is higher in elevation (or more steeply sloping) than the average of its neighbors up
to a specified distance away, whereas a negative one indicates that a cell is lower than the average
of surrounding elevations (Figure 5) [19]. The cell neighborhood can be adapted to produce varying
TPI values for different scales, thus changing the scale of roughness could affect the results [11,19,48].
In this study, we use a rectangular TPI with a 3 × 3 neighborhood size for both LiDAR DEM and
photogrammetry DEM.
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4.2.3. Hurst Exponent

In this study, we acquired a one-dimensional TPI profile over various lava flow surfaces in four
locations in Figure 2. The profiles were typically a few hundred meters to kilometers long. Roughness
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properties may have directional biases [2,7,8]. In this study, profiles were collected in perpendicular
directions (Figure 2). The Hurst exponent (H) is derived using rescaled range analysis (R/S) [15,49] for
the TPI profiles. Equation (3) below shows the relation between R/S and H as

H =
log(R

S )

log(τ)
, (3)

where R is the difference between the maximum and minimum TPI detected in profiles, S is the standard
deviation, and τ is the transect profiles. Hurst coefficient ranges from 0 to 1, where a higher H means
a smooth or equally rough surface [2]. The mean Hurst exponent (H) was calculated for each lava unit.

5. Results

We extracted the slope, TPI, and Hurst exponent from the lava flow features in Figure 2 (lava pond,
spiny pahoehoe, inflated channel, and blocky surface). Each lava feature displays TPI and H variations,
although the entire range of H variation is not displayed at any individual flow. The roughness analysis
results are shown as maps and profiles for each lava flow features. Based on the analysis, the surface
feature that corresponds to a higher H and intermediate TPI pattern reflects a smoother surface than
the lower H and irregular TPI patterns.

5.1. Lava Pond Roughness

For the photogrammetry DEM (Figure 6a), TPI and slope values at the lava pond ranged from
−2.8 m to 2.8 m and from 0.4◦ to 12.5◦ (Figure 6b,c), respectively. For the LiDAR DEM (Figure 6d),
TPI and slope values ranged from –3.2 m to 5.4 m and from 0.5◦ to 30◦ (Figure 6e,f), respectively.
Both the LiDAR and photogrammetry derived TPI images have wave-like transitions patterns
(Figure 6c,f). These patterns are also apparent from the slope (Figure 6b,e), indicating a relatively
rough surface due to the ropy fold on the lava pond. Folds form where the velocity and viscosity of
the lava surface decreases rapidly with depth [30]. This causes surface folding and irregular waviness
in the surface which preserve on wave-like pattern on TPI maps.
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5.2. Spiny Lava Roughness

The photogrammetry DEM (Figure 7a) had TPI and slope values at the spiny lava ranging from
–1.8 m to 2.2 m and from 0◦ to 38◦ (Figure 7b,c), respectively. On the other hand, the LiDAR DEM
(Figure 7d), had TPI and slope values ranging from –2.1 m to 1.8 m and from 0◦ to 36◦ (Figure 6e,f).
The LiDAR DEM does not cover the entirety of the spiny lava due to gaps in the image. The low TPI
values correspond to a low slope and indicate a flat and smooth surface that has formed from inflated
spiny lava; however, we cannot differentiate the spinose pattern in this meter scale. The irregular
transitions from low to high TPI and slope pattern around the flow margin might indicate a rough
surface resulting from a breakout from the inflated spiny lava. These features will be explained in more
detail in Section 6.2.
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5.3. Inflated Channel Roughness

The photogrammetry DEM at the inflated channel (Figure 8a) yielded TPI and slope ranging from
–3 m to 3.2 m and from 0.1◦ to 25◦ (Figure 8b,c), respectively. The LiDAR DEM (Figure 8d) yielded
TPI and slope values ranging from –11 m to 4.8 m and from 0◦ to 33◦ (Figure 8e,f). Comparable to
what we have found in spiny lava, low TPI patterns that correspond to a low slope were assigned to
the flat surface of the inflated channel. The lowest TPI values correspond to a high slope indicating
inflation pits and cracks. Inflation pits form where a portion of the flow is not inflating. The highest
TPI values correspond to a high slope relating to boulders and grooves within the lava. The irregular
transitions pattern from a low to a high slope and TPI values around the inflation margin are similar
to what we have found on spiny lava. This indicates this feature is a rough surface that results from
a breakout from the inflated channel (see Section 6.2 for more detail).
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5.4. Block Surface Roughness

The photogrammetry DEM (Figure 9a) at the blocky surface units had TPI and slope ranging
from –2.1 m to 2 m and from 0.4◦ to 15◦, respectively (Figure 9a,b). The LiDAR DEM (Figure 9d) had
TPI, and slope values ranging from −2.3 m to 2.3 m and from 0◦ to 23◦, respectively (Figure 9e,f).
In the LiDAR, blocky surface, typically, had irregular TPI patterns. These patterns indicate that
the surface is rough which related to the decimeter to meter scale blocks of fragmented pahoehoe-like
crust. However, in the photogrammetry DEM, blocky surface appears to have smoother patterns
corresponding to high slope since the roughness of the blocky surface is not distinct in lower resolution.
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Figure 9. (a) DEM of blocky lava derived from the photogrammetry image. (b) The slope of
the blocky surface derived from the photogrammetry DEM. (c) TPI of blocky surface derived from
the photogrammetry DEM. (d) DEM of blocky lava derived from the LiDAR. (e) TPI of blocky surface
derived from the DEM LiDAR. (f) TPI of blocky surface derived from the DEM LiDAR.

5.5. Hurst Exponent Derived Roughness

One Dimensional TPI Profiles

The one-dimensional TPI profiles over the four lava flow units are shown in Figure 10a–d. Based
on H reported in Table 3, the surface roughness of lava features falls within the range from 0.3 ± 0.05 to
0.76 ± 0.04. Typically, LiDAR DEM yields lower Hurst exponent values than photogrammetry DEM.
This was also found for blocky surface, i.e., photogrammetry DEM had higher Hurst exponent than
LiDAR DEM. LiDAR DEM has greater pixel resolution than photogrammetry DEM which results
in more detailed TPI profiles. This issue will be addressed in Section 6.1. Based on the Mean Hurst
exponent (H), the roughest surface is the blocky surface with H’ around 0.52 ± 0.04 and the inflated
lava field appears to be the smoothest surface of these four lava units with H around 0.61 ± 0.06.
These results are comparable with the results from the TPI map pattern that showed that inflated
lava appears to be the smoothest surface, and blocky is the roughest surface. In general, the Hurst
exponent values have a strong tendency to be close to 0.5. This was also suggested by an early study
by Shepard et al. [2] for geological surface roughness.
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Figure 10. TPI profiles representing four different lava units at the 2014–2015 Holuhraun lava flow
in Iceland; (a) horizontal profiles derived from photogrammetry DEM; (b) horizontal profiles derived
from LiDAR DEM; (c) vertical profiles derived from photogrammetry DEM; (d) vertical profiles derived
from LiDAR DEM. The profiles had been offset from each other for clarity.
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Table 3. Lava flow roughness properties at the 2014–2015 eruption at Holuhraun, derived from
one-dimension TPI profiles for each lava unit.

Profile Lava Feature Length (m) H (Photogrammetry) H (LiDAR) ¯
H (Mean)

LPH1 Lava pond 1150 0.53 ± 0.07 0.52 ± 0.05

0.55 ± 0.06
LPH2 Lava pond 1150 0.55 ± 0.06 0.43 ± 0.07
LPV1 Lava pond 530 0.56 ± 0.06 0.6 ± 0.03
LPV2 Lava pond 370 0.65 ± 0.05 0.57 ± 0.06
SPH1 Spiny 810 0.52 ± 0.06 0.56 ± 0.05

0.58 ± 0.05
SPH2 Spiny 810 0.65 ± 0.06 0.56 ± 0.05
SPV1 Spiny 540 0.63 ± 0.04 - *
SPV2 Spiny 480 0.63 ± 0.04 0.54 ± 0.06

INFH1 Inflated channel 950 0.66 ± 0.06 0.52 ± 0.04

0.61 ± 0.06
INFH2 Inflated channel 1000 0.69 ± 0.06 0.55 ± 0.06
INFV1 Inflated channel 630 0.56 ± 0.07 0.56 ± 0.06
INFV2 Inflated channel 540 0.76 ± 0.04 0.60 ± 0.05
BLH1 Blocky surface 390 0.61 ± 0.04 0.49 ± 0.03

0.52 ± 0.04
BLH2 Blocky surface 390 0.65 ± 0.05 0.56 ± 0.03
BLV1 Blocky surface 220 0.4 ± 0.05 0.30 ± 0.04
BLV2 Blocky surface 220 0.65 ± 0.05 0.52 ± 0.03

* was not acquired due to the gap in the LiDAR data.

6. Discussion

In this work, we examined lava flows roughness in the 2014–2015 lava field at Holuhraun using
TPI and one-dimensional H profiles. Both TPI and H successfully derived lava roughness on selected
lava units at Holuhraun. However, there are still some issues. How does the scale affect the roughness
results for both TPI and Hurst exponent? Is the ‘smooth’ surface still smooth for a different scale?
How do we connect the roughness to the emplacement style? What can we improve to get a better
roughness assessment? In this section, we address several issues related to (1) TPI neighborhood size
and profile length, (2) Eruption condition and link roughness pattern with the emplacement style,
and (3) alternative datasets and methods for deriving roughness.

6.1. TPI Neighborhood Size and Profile Length

TPI is naturally very scale dependent [11,19,48,50]. We should consider what scale is the most
relevant for the study being analyzed [19]. The patterns produced by TPI vary on the scale that
we use to analyze. Figure 11 shows an illustration of similar topography using different neighborhood
sizes in TPI [19,51]. We test different TPI neighborhood sizes on LiDAR DEM spiny lava, as shown
in Figure 12a–d. The 1 × 1 neighborhood size (Figure 12a) was not as clear as the larger scales to
differentiate flow margins but appears to emphasize small features on the lava flows, which does not
show in larger neighborhoods. James [11] recommends building a catalog of features presented at each
scale. This could be useful in assessing the topographic characteristics of a lava flow surface.
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Figure 11. The illustration of the effects of the neighborhood size on TPI value adapted and modified
from Jennes [19]. The red line depicts the neighborhood size. In topography (A), the neighborhood size
is small enough that the point is at about the same elevation as the entire analysis region, so the TPI
value is approximately 0, which means it is a flat surface. In topography (B), the neighborhood size
is large enough to encompass the entire small hill, and the point is consequently much higher than
its surroundings and has a correspondingly high TPI value resulting in that the point is detected
as a ridge [19]. In topography (C), the neighborhood includes the hills on either side of the valley,
and therefore the point is lower than its neighbors and has a negative TPI value [11,19].
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We consider that there are at least two factors that affect the H values: (1) pixel size and (2) the profile
length. Figure 13a shows TPI profiles representing blocky surface vertical profile (BLV1) from LiDAR
DEM and photogrammetry DEM. The LiDAR DEM profile is rougher than the photogrammetry DEM
since the spatial spacing (pixel size) in the LiDAR DEM is denser than photogrammetry DEM because
the resolution is higher (1 m vs. 5 m). This spatial spacing issue corresponds to the TPI neighborhood
size in Figure 11, where LiDAR DEM captures more detailed TPI value than photogrammetry DEM
which affects the Hurst exponent derived roughness. Second, we also consider the profile length
as a factor that affects the Hurst exponent values. In Figure 13b, we subset the first 100 m BLV1
profiles, and the Hurst exponent values for these subset profiles were increased for both topographies.
For LiDAR DEM the Hurst exponent values are 0.55 ± 0.05 compared to 0.30 ± 0.05 for full profiles,
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and for photogrammetry DEM the Hurst exponent values are 0.48 ± 0.01 compared to 0.40 ± 0.05 for
full profiles. These results not necessarily conclude that the shorter profiles will increase the Hurst
exponent. Extended profiles also can increase the Hurst exponent since the profiles could be equally
rough, which can represent a ‘smooth’ surface [2]. In many cases, it depends on the morphology
that we are studying [2,3], and we should know the morphology. The other thing we found is that
the direction of profiles could bias the Hurst exponent [7,52]. We recommend in a future study to build
series of profiles that are rotated by some number of degrees to capture a wider range of directions
around the surface area of interest to derive precise roughness. Some studies are currently developing
three-dimensional roughness estimates based on a 3D Gaussian filter applied to DEM [53].
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6.2. Eruption Condition and Link Quantitative Roughness with the Emplacement Style

Quantitative roughness measurement of lava flow features provides insight into the relative
emplacement styles. In particular, higher H and intermediate TPI patterns suggest a smoother surface,
which reflects relatively lower viscosity lavas than for the lower H and irregular TPI pattern. However,
roughness variations do not directly distinguish between lava viscosity. To quantify precise viscosity,
more factors need to consider rather than single roughness. The difference in viscosity may be the result
of transport within an insulated distributary system that limits heat loss. If the differences between
the flow types are predominantly textural, local supply may be a controlling factor [5].
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The two primary roughness identified in the, a smooth surface possibly inflated flow type
and a rough surface possibly breakout, blocky surface and ropy fold data. Sections 5.2 and 5.3
shows that smoother surface types exhibit morphologic properties attributed to flow inflation. Along
margins, irregular transitions TPI pattern supports the interpretation of the occurrence of breakout
(Figures 7c–f and 8c–f). As displayed clearly in Figure 14a–b, the rough surface in lava flow margins
from the three-dimension LiDAR surface model. These rough surfaces result from a breakout from
the inflated surface from both spiny lava (Figure 14a) and inflated channel (Figure 14b). It is reported
by Pedersen et al. [37] that a series of breakouts occurred during the third phase of the eruption,
mostly in the flow margin and also in inflated channels. This breakout is inferred from the false color
on the Earth Observing 1 (EO-1) Advanced Land Imager (ALI) satellite during the eruption (Figure 15).
These breakouts occurred around 16 January 2015, a breakout from spiny lava and inflated channel.
A breakout is a lobe originating from the liquid interior of active lava. It may take place through
a crack at the front or the side of the flow margin when lava is inflated [54]. Injection of fresh basaltic
magma into an established flow produces new breakouts of lava and promotes lifting of the upper
crust (inflation). These breakout phenomena illustrated in Figure 16.
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Figure 15. (a) EO-ALI False color band 7,5,4′ on 16 January 2015 shows the high-temperature area
during the eruption at Holuhraun. Boxes show series of breakout occurred in the flow margin, including
on: (b) spiny lava and; (c) inflated channel margin.
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Figure 16. Cartoon illustrated the lava breakout. (a) A lava core exists within the lava channel/lobe
under the visco-elastic crust. The lava core is contained within a visco-elastic skin covered by a brittle
crust. (b) The lava flow became re-activated, and the lava core injected acted as a flow path promotes
lifting of the upper crust (inflation). (c) Cracks formed on crust on the lava flow front/margin. (d) When
the inflation continues, the crust eventually breaks, and breakouts leek from the margin or flow front of
the inflated surface.
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6.3. Alternative Datasets and Methods for Deriving Roughness

Recently, a number of and methods are used to quantify surface roughness. Neish et al. [7]
quantified the surface roughness from synthetic aperture radar (SAR) using the circular polarization
ratio (CPR). This technique is defined as the radar backscatter ratio in the same polarization that
was transmitted (SC) to the opposite polarization (OC), where the CPR is SC divided by OC [7].
Rough surfaces tend to have approximately equal OC and SC returns, with CPR values approaching
one. Meanwhile, the flat surfaces tend to have high OC returns and low CPR values [7]. We can
also apply Hurst exponent to the radar backscattering profiles in order to derive roughness [15].
Neish et al. [7] also show that linking radar backscatter to the high-resolution topographic profiles is
essential to understanding the structure of various geologic units. Another technique we could consider
in describing roughness is optical images (multispectral–hyperspectral). Several studies characterize
roughness from multispectral and hyperspectral based on the spectral reflectance [27,31,55,56]. The main
assumption is that rough surface has lower reflectance than a smooth surface. The integration of these
techniques with field measurement could improve surface roughness estimation of lava flow.

7. Conclusions

In this study, both TPI and one-dimensional H successfully derive quantitative flow roughness.
The roughness assessment was acquired from four lava flow features: (1) spiny lava, (2) lava pond,
(3) blocky surface, and (4) inflated channel. TPI patterns on spiny lava and inflated channels show
that the intermediate TPI patterns with low slope indicate flat and smooth surface. Lava pond has
transitions pattern from low to high TPI values forming a wave-like pattern. Meanwhile, irregular
transitions from low to high TPI and the slope patterns indicate a rough surface that is found in blocky
surface and flow margins, indicating lava breakouts. Quantitative measures of surface roughness of
lava features fall within the H ranges from 0.30 ± 0.05 to 0.76 ± 0.04. The roughest surface is the blocky
surface, and the inflated lava flow appears to be the smoothest surface among these four lava units.
In general, the Hurst exponent values in the 2014–2015 lava field at Holuhraun has a strong tendency
to be close to 0.5, which has good agreement with an earlier study for geological surface roughness.
Neighborhood size is a critical component for TPI to quantify the roughness. Small neighborhoods
capture small and local features and valleys, while large neighborhoods capture larger-scale features.
We consider that there are at least two factors that affect the Hurst exponent values: (1) pixel size
and (2) the profile length. We recommend in a future study to build a series of profiles that are
rotated by some number of degrees to capture a wider range of directions, in order to derive precise
roughness. The integration of multimodal remote sensing datasets and field measurement can improve
the estimation of surface roughness of lava flow.
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Appendix A: Deriving Hurst exponent 
with R/S technique 

The process for estimating the Hurst exponent from equation 8 and 9 are  described in 

detail: Firstly data points (T ) on profile series  were divided into d contiguous sub-series 

of points τ, where d × τ = T , For each of these sub-series m, where m = 1, ..., d: 

1) Determine the mean, 𝐸𝑚, of each sub-series. 

2) Determine the standard deviation,  𝑆𝑚, of each sub-series. 

3) Normalized the data ( 𝑍𝑖,𝑚 ) by subtracting the mean from each data point: 

𝑋𝑖,𝑚 =  𝑍𝑖,𝑚 − 𝐸𝑚 

4) Using the Normalized data create a cumulative profile series by consecutively 

summing the data points: 

𝑌𝑖,𝑚 =  ∑ 𝑋𝑗,𝑚
𝑖
𝑗=1   , 𝑖 = 1, ..., τ: 

    5) Using the new cumulative series find the range by subtracting the minimum 

value 

from the maximum value from profiles: 

𝑅𝑚 = max(𝑌1,𝑚, … , 𝑌𝜏,𝑚) −  min (𝑌1,𝑚, … , 𝑌𝜏,𝑚)  

6) Rescale the range, 𝑅𝑚/𝑆𝑚 by dividing the range by the standard deviation. 

7) Calculate the mean of the rescaled range for all sub-series of length τ: 

(𝑅/𝑆)𝜏 =
1

𝑑
 ∑ 𝑅𝑚/𝑆𝑚

𝑑

𝑚=1

 

8) The length of τ must be increased to the next higher value, where d × τ = T and 

d is an integer value. Steps 1 to 7 are then repeated, these steps should be 

repeated until τ = T / 2. 

9) Finally, the value of H is obtained using a simple least squares regression with 

log(τ) and log (R / S). The slope of the resulting equation (9) is the estimate of the 

Hurst exponent 
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